
Practical Work: Assembly

Master CSMI
Compilation & Performance

Brenger Bramas

October 9, 2019

1 Summary

In this work, you will program in assembly language (ASM).

2 Ressources

• x86 Assembly LanguageReference Manual: https://docs.oracle.com/cd/E19253-01/817-5477/
817-5477.pdf

• x86 and amd64 instruction reference: https://www.felixcloutier.com/x86/

• Registers: https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture

• CPUID: https://www.amd.com/system/files/TechDocs/25481.pdf

3 Practical work organization (always the same)

In the practical work, you will obtain the code from my repository and push it to your repository.
Therefore, you will have to clone one branch per session and push it to your own repository. You will
also have to put a Git tag at the end of the session such that I can easily look at what you have coded
at the end of the session (and potentially compare it with the latest version you will have).

In the rest of the document, we consider you have a repository named cnp-tp-2019 on git.unistra.fr
that is private but that I can access in read.

3.1 Get the practical work

Consider you are in your project directory do the following:

Clone my repo

git clone https :// git.unistra.fr/bbramas/csmi -tp -2019. git --branch=TP1 csmi -tp1

If you use SSH replace [USER] and use:

git clone git@git.unistra.fr:[USER]/csmi -tp -2019. git --branch=TP1 csmi -tp1

Go in the newly created directory

cd csmi -tp1

3.2 Add your repository as remote

You will push on your own repository:

Rename my remote

git remote rename origin old -origin

Add your own remote

git remote add origin https ://git.unistra.fr/[YOU LOGIN HERE]/cnp -tp -2019. git

If you use an SSH key:

git remote add origin git@git.unistra.fr:[YOU LOGIN HERE]/cnp -tp -2019. git

1

https://docs.oracle.com/cd/E19253-01/817-5477/817-5477.pdf
https://docs.oracle.com/cd/E19253-01/817-5477/817-5477.pdf
https://www.felixcloutier.com/x86/
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://www.amd.com/system/files/TechDocs/25481.pdf

Push the current branch and active the tracking

git push -u origin TP1

3.3 During the session and while you work on the project

After each question or important modification push the current changes:

No matter where you are in the project directory

git commit -a -m "I did something"

git push

3.4 End of the practical session

You must put a tag to let know easily what you did at the end of the session:

Push the changes

git commit -a -m "I did something"

git push

Put a tag

git tag -a 1-END -m "TP 1 end of session"

Push the tag

git push -u origin --tags

3.5 When you are done

You have fully finished your work (at most D+14 H-2):

git commit -a -m "I did something"

git push

3.6 Important!

Remember to commit regularly to keep track of your work and let me see a history of it if
I need it. Do not share any code with someone else, as I am here to answer all questions
and support all of you. Remember that you have questions to answer in the moodle before
the end of the session and that you must push your branch at the end of the session too.
Additional credits can be obtained if you make some modifications after the session to
improve your solution. Changes can be made until two weeks after the session minus two
hours, ie you must push before the beginning of the n+2 practical work.

3.7 Compilation

To compile, we use CMake:

cd Code

mkdir build

cd build

cmake ..

make # Will make all

make something # Will build only something

VERBOSE =1 make # Will show the commands used to compile (including the flags)

4 Reminder about registers

We have seen that modern CPUs have registers. If we leave aside the aspects related to perfomance,
registers are used by the instructions as input/ouput (some instructions can also have main memory as
input/output, but usually the output must be a register). In X86-64, the 64 bits regisers are: %rax, %rbx,
%rcx, %rdx, %rdi, %rsi, %rbp, %rsp, and %r8-r15. These registers are also used to pass parameters

2

when calling a function (if the data to pass are less or equal than 64 bits). However, a convention is used
to know which registers must be saved by the caller or the callee. In fact, a function might put values in
all the registers, then call another function, and thus the question is asked to know which registers can
be safely overwritten by the called function, and which registers must be saved and restored. Registers
%rax, %rcx, %rdx, %rdi, %rsi, %rsp, and %r8-r11 must be saved by the caller. Therefore, the callee can
erase their content and use these registers. Registers %rbx, %rbp, and %r12-r15 must be saved by the
callee before being used. The register %rsp is used as stack pointer (to know where is the top of the
stack) and thus should not be modified.

The six first parameters of a function call are passed using %rdi, %rsi, %rdx, %rcx, %r8, and %r9
(additional parameters or those which excess 64 bits are passed using the stack).

5 Passing a real number as parameter

Generate the assembly of the code in code real.cpp and find-out how a real number is passed by parameter
to the function just add and how the number is returned. To do so, try the three methods:

• GCC and AS:

g++ -S -fverbose-asm -g -O2 code_real.cpp -o code_real.s

as -alhnd code_real.s > code_real.lst

• GCC only

g++ -g -O -Wa,-aslh code_real.cpp > code_real.txt

• Online tool https://godbolt.org/, remember to disable Intel and enable demangle.

6 Update an existing function: return the power of the number
given in parameter

In the power.cpp file, you will find two kernels, both add 1 to a number and return it, but one version is
for integers and the other for real numbers. Update these functions to return the power of the number
given in parameter. If needed, use godbolt to get a possible solution, in this case you could need to play
with the optimization flags.

7 Sum of all the parameters

In sum.cpp add your own assembly code to sum two parameters together (sum2 asm) and seven param-
eters together (sum7 asm). Remember that the first six parameters are passed in registers and the next
ones in the stack.

8 Axpy of integers

In axpy.cpp, add your own code to create a vector product of long int. To compare two registers, you
can use the cmp instruction follow by je or jne for ”jump if equal” and ”jump if not equal”, respectively.
A register can easily be set to 0 using a xor between a register and itself:

xor %rax, %rax; // set rax = 0

You will need to jump to different execution paths:

i_am_a_label:

cmp %rax, %r8; // I compare %rax %r8

je i_am_a_label; // If they are equal, then jump to i_am_a_label

3

https://godbolt.org/

9 Know more about your CPU (CPUID)

CPUs support special instructions to provide information about themselves or the current hardware.
For instance, such instructions can be used to know if a CPU support a given features or instruction
extension, or even to know the size of the caches, etc. To do so, specific registers have to be used to store
the information query. Then, the CPUID instruction can be called and will fill other registers with the
answer.

"movl $X, %eax;\n" // Query part 1

"movl $Y, %ecx;\n" // Query part 2

"cpuid;\n" // Ask the CPU

// Answers are now in %eax, %ebx, %ecx, %edx

// where a bit set to 1 at a given position will mean "yes"

Implement such a function to get the information from the CPUID instruction. As you will see,
0x00000001 is passed to EAX before calling CPUID. Then we use the value from EDX at bits/features:
HTT/28, MMX/23, SSE/25 and SSE2/26. Remark: you can notice that we now work with int instead
of long int, and thus the registers have now different prefix, and the instructions can be post-fixed with
”l”.

4

	Summary
	Ressources
	Practical work organization (always the same)
	Get the practical work
	Add your repository as remote
	During the session and while you work on the project
	End of the practical session
	When you are done
	Important!
	Compilation

	Reminder about registers
	Passing a real number as parameter
	Update an existing function: return the power of the number given in parameter
	Sum of all the parameters
	Axpy of integers
	Know more about your CPU (CPUID)

