
Maze Generation and Resolution Algorithms

Maze Generation (Recursive Division)

The maze generation follows the recursive division algorithm. This algo-
rithm is a form of binary tree maze generation where the maze is divided into
two parts recursively, and walls are placed between the sections to create path-
ways. The procedure ensures that the maze will always have a single exit located
at the bottom-right corner.

Steps for Maze Generation:

1. Recursive Division: The space is recursively divided by drawing walls.
For each division:

• A wall is placed, and a single door (passage) is carved through it.

• The largest dimension (either width or height) is chosen for division,
and the process continues on the resulting subspaces.

2. Random Door Placement: In each step, the algorithm randomly se-
lects a location along the dividing wall and creates a “door” by not placing
a wall in that spot.

3. Termination: The recursion continues until the dimensions of the current
space are small enough (either width or height equals 1).

This approach results in a maze that is guaranteed to have a single solution
and a clear exit. It is simple to implement and ensures that all parts of the
maze are interconnected.

Algorithm Pseudocode:

function generate_maze(width, height):

create initial empty space

recursively divide space by walls:

if the space is too small, stop

else:

pick a random position for a door

divide the space into two subspaces

repeat for each subspace

Why This Algorithm?

• Guaranteed single exit: Since the recursion divides the space until
small subspaces are formed, the exit at the south-east corner is always
reachable.

• Simplicity: The algorithm is straightforward and requires minimal com-
putation.

1



• Efficiency: The recursive approach works well even for relatively large
mazes.

Maze Resolution (Breadth-First Search)

To solve the maze, we use Breadth-First Search (BFS), which is a well-
known graph traversal algorithm that finds the shortest path between a starting
vertex and a target vertex. BFS is ideal for maze resolution because it explores
all possible paths level by level and guarantees the discovery of the shortest path
in an unweighted grid-like structure.

Steps for BFS Resolution:

1. Graph Representation: The maze is represented as a graph where
each cell in the maze corresponds to a vertex. The edges between vertices
represent the possible movements (up, down, left, right).

2. Queue Initialization: BFS uses a queue to explore the maze. Starting
from the initial vertex (a random position), we add it to the queue.

3. Exploration: For each vertex, we explore its neighboring vertices (up,
down, left, right). If a neighboring vertex is not yet visited, it is added to
the queue and marked with the current vertex as its parent.

4. Termination: BFS continues until the exit (south-east corner) is found.
Once the exit is reached, the path is reconstructed by tracing back from
the exit to the start using the parent pointers.

5. Path Reconstruction: The path to the exit is constructed by following
the parent pointers from the exit back to the start. The path is then
reversed to give the solution from start to exit.

Algorithm Pseudocode:

function find_exit(start, maze):

initialize a queue and add the start vertex

while the queue is not empty:

current_vertex = dequeue

if current_vertex is the exit:

reconstruct path from exit to start using parent pointers

return the path

for each neighbor of current_vertex:

if the neighbor is not visited:

mark it visited and set its parent to current_vertex

enqueue the neighbor

2



Why BFS for Resolution?

• Shortest Path: BFS guarantees that the first time we reach the exit, it
is through the shortest path.

• Simplicity: The BFS algorithm is easy to implement and works well for
finding the shortest path in grid-like mazes.

• Efficiency: BFS explores the maze systematically and ensures that all
possible paths are explored in the shortest possible number of steps.

Conclusion

The combination of recursive division for maze generation and Breadth-
First Search (BFS) for maze resolution is a powerful and efficient solution
for this maze problem. The recursive division guarantees that the maze is well-
structured, with only one exit, while BFS ensures that the shortest path is found
in an optimal manner. These algorithms are chosen due to their simplicity,
efficiency, and suitability for this type of maze problem.

This LaTeX code will format your text with appropriate sections, enumera-
tions, and pseudocode for a well-structured document.

3


