Weekly report n°2

Secretary: Fauste LEBOEUF

October 11, 2024

1 Data structure

We decided to represent the maze by a graph. The graph is an array of
vertices whose structure is defined as follow:

struct vertex

{

unsigned int

id ;

// Pointers to the mneighbours of the vertex.

struct
struct
struct
struct

vertex
vertex
vertex
vertex

*top;
xleft ;
xbottom ;
xright ;

// Boolean to know if the wvertex is the
// entry point of the graph.
unsigned int

is_start ;

// Boolean to know if the wvertex is the
// exit of the graph.

unsigned int

=

2 Specification

is_end ;

We will use six functions to generate the maze according to the algorithm
described in the assignment:



Preconditions: None.
Postconditions: None.

Returns a pointer to the first element of the graph,
or NULL on error.

struct vertex xinit_graph (int const width, int const height ,
int id_start);

/ *

Preconditions: — width must be equal to the width
of graph.
— size must be equal to the size
of graph.

*
*
*
*
¥ Postconditions: If a wall has been added, graph
* has lost an edge.
* Otherwise, graph is not modified,
* or NULL.
*/
void add_wall(struct vertex xconst graph,

int const i, int const j,

int const width, int const size);

/*

* Preconditions: — width must be equal to the width
* of graph.

* — height must be equal to the height
* of graph.

¥ Postconditions: graph represents a maze randomly

* generated , or NULL.

*/
void generate_maze (struct vertex xconst graph,
int const width, int const height);



¥ Preconditions: — graph must be initialized.

* — width must be equal to the width

* of the orginal graph.

* — height must be equal to the height

* of the original graph.

* — first_vertex_id must be the first

* vertex id of graph.

* — cur_width must be the width of graph.
* — cur_height must be the height of graph.
*

Postconditions: graph represents a maze randomly generated.

*

/

void generate_maze_aux (struct vertex xconst graph,
int const width, int const height
int const first_vertex_id ,
int const cur_width, int const cur_height );

/*
¥ Preconditions: None.
¥ Postconditions: The memory allocated for graph by
x init_graph () is freed, or does nothing if graph is NULL.
*
/

void free_graph (struct vertex sxgraph);

/*
Preconditions: — step must be a positive integer.
Postconditions: None.

Returns an integer n equals to min + k * step (k>= 0)
such that n is between min and mazr included.

R O

*/

int random_int (int min, int max, int const step);

3 Tests

To test our data structure and maze generation algorithm, each team mem-
ber will be focusing on specific tasks:



Djakhar:

— Verify that each vertex’s neighbour is indeed the neighbour of the
current vertex (i.e. a cell does not have a non-adjacent cell has a
neighbour).

King:

— Verify that the vertices at the edges of the maze do not have
neighbours outside of the maze.

Mensanh:

— Test the functions with limit values.
— Test the maze generation algorithm.

— Verify the behaviour of the maze generation algorithm for extrem
dimensions.

Edgar:

— Test the maze generation algorithm with invalid data (wrong
types, negative values).

Fatima:

— Verify that the entry point exists.
— Verify that the exit is at the bottom right of the maze.
— Verify that the exit is unique.

Kian:

— Test the maze generation algorithm for different dimensions.
— Verify that the graph has the correct number of vertices and edges
to represent the maze.
Fauste:
— Verify that a 1 x 1 graph has a unique vertex and the maze
generation algorithm does not create any wall.

— Verify that each wall has a door.



