ow to discover what exactly it does

RECON 2014
Montreal

Outline

High-level overview of the ME
Low-level detalls

ME security and attacks
Dynamic Application Loader
Results

Future work

About myself

® Was interested in software reverse engineering for around
15 years

® Longtime IDA user
® Working for Hex-Rays since 2008

® Helping develop IDA and the decompiler (also doing
technical support, trainings etc.)

® Have an interest in embedded hacking (e.g. Kindle, Sony
Reader)

® Recently focusing on low-level PC research (BIOS, UEFI,
ME)

® Moderator of reddit.com/r/ReverseEngineering/

http://www.reddit.com/r/ReverseEngineering/

ME: High-level overview

® Management Engine (or Manageability Engine) is a
dedicated microcontroller on all recent Intel platforms

® |n first versions it was included in the network card, later
moved into the chipset (GMCH, then PCH, then MCH)

® Shares flash with the BIOS but is completely independent
from the main CPU

® Can be active even when the system is hibernating or
turned off (but connected to mains)

® Has a dedicated connection to the network interface; can
iIntercept or send any data without main CPU's knowledge

- T N

ME: High-level overview

="
P Micro-Controller
Graphics & Memory ‘bT:n?% 5 (Located in Graphics and Memory Controller Hub Firmware)
{ :a.n —
o i PP L 1 Intek® Active Management Technology Applications
{Asset Management. Third-Party Data Store, Remote Management, etc.)
Micro-Controller
Software Agenls DDR2
: s Admin Core Management
* Senvices Services Services Metwork
Dpﬂfating I A S {Configuration {Power Manager, {Event'Alerting Services
e Con * vaiaiusrlnin ACL Non-Volatile Manager, circuit- (HTTP, TCPIIP,

IF‘D ll'ﬂl“Ef Hub ‘\ LAN c“-iu-,o"er Hﬂ“w&l‘l‘lﬂ'g{ ate } Mamqq- ManWerl breaker control, LS. E‘td;':l

ke)) et) ete.)

Filters N Wired Wireless
1 : I
‘put-c-f- Out-of- I Management Engine Hardware Abstraction Layer |
atslial Kand Band |
ThreadX Kermel |
5 i
i E"fﬁ“,ﬁ";t 802.11
Flash — 1
‘\
“ SPI
* {sharabla)
* Flash
* Int:rfn:ct:as L;“.-..Dm”“ ME —®| (16Mbit32Mbit)
“ (IDE-R, SOL, (Qut-of-Band IIF Pﬂ"ﬂhﬂl’ﬂﬁ&.
* HECI) and Circul Crypto, NVM,
K PCI entities. . Breaker Filters) SMBUS... f———pr
* SMBus
\ To sensors
. y
\“
s, PHY

Credit: Intel 2009

ME: High-level overview

Communicating with the Host OS and network

Metwork
Host O5 ME Server
Intal® AMT Inlachlﬁl Hi.:n Routing telE AMT |n1;;ﬁ\ nz:.w
. E:. il' Apgplication Application Application Application
[| | |
SOAP SOAP
SHEJ:: HTTP HTTP
s s
TLs TCRIP TCRIP
| I_I_I
| TCPIP |
Host ME LA LA
HECI HEC! | | nriver Driver
Driver Driver
| |
HECI IMeetaca
LAN
Diri (=L il LAM Hardware
e L LAN Hardware

HECI (MEI): Host Embedded Controller Interface;
communication using a PCl memory-mapped area

® Network protocol is SOAP based; can be plain HTTP or
HTTPS

Léon GALL

ME: High-level overview

Some of the ME components

® Active Management Technology (AMT): remote
configuration, administration, provisioning, repair, KVM

o System Defense: lowest-level firewall/packet filter with
customizable rules

® |DE Redirection (IDE-R) and Serial-Over-LAN (SOL): boot
from a remote CD/HDD image to fix non-bootable or
iInfected OS, and control the PC console

® |dentity Protection: embedded one-time password (OTP)
token for two-factor authentication

® Protected Transaction Display: secure PIN entry not
visible to the host software

ME: High-level overview

Intel Anti-Theft

® PC can be locked or disabled if it fails to check-in with the
remote server at some predefined interval; if the server
signals that the PC is marked as stolen; or on delivery of a
"poison pill"

® Poison pill can be sent as an SMS if a 3G connection is
available

® Can notify disk encryption software to erase HDD
encryption keys

® Reactivation is possible using previously set up recovery
password or by using one-time password

.'IIII ;
) 2014 Igor S

ME: Low-level details

ME: Low-level details

Sources of information

® |ntel's whitepapers and other publications (e.g. patents)
® |ntel's official drivers and software

> HECI/MEI driver, management services, utilities

> AMT SDK, code samples

> Linux drivers and supporting software; coreboot
® BIOS updates for boards on Intel chipsets

> Even though ME firmware is usually not updateable
using normal means, it's still very often included in
the BIOS image

> Sometimes separate ME firmware updates are
available too

y ,
) 2014 Igor

10

ME firmware kits

Sources of information
¢ Intel's ME Firmware kits are not supposed to be distributed

to end users

® However, many vendors still put up the whole package

roF] Intel® Management Engine System Tools User Guide

ftp:/fme kristal o/ fSystem%%20Tools%20User%20Guide pdf

File Format: PDF/Adobe Acrobat - Quick View

System Tools User Guide for. Intel® Management Flash Image Tool (FITC) _....
.. 16. 3.1. System Reguirements .

Index of /Driver/Acer Aspire 4738/AutoRun/DRV/ntel Turbo Boost ...
110.138.195.161/0river/___/AutoRun/.. /Flash%20lmage%20Tool/

5Jan 2012 — ... Aspire 4738/AutoRun/DRV/Intel Turbo Boost Manageability Engine
Code/ MOD0O1D004C0O00MO00L Tools/ System Tools/Flash Image Tool/ ...

Gateway 7X4850 Intel IAMT [Opaiieep v.7.0.0.1144 ana Windows 7 ...
driver.ru/?aid=1026521210333254de 1030799365

v VAMT Intel 7.0.0.1144 W7x64/Tools/System Tools/Flash Image Toolfitc exe 157
2010-12-20 1746 IAMT Intel 7.0.0.1144 W7x64/Tools/System Tools/Flash ...

ACER Veriton M290 Intel iIAMT [paiisep v.7.0.0.1144 anA Windows 7
driver.ru/?aid=102438162288%5 cecd2ebB6acicad

... Tools/Flash Image Tool/fitc_exe 157 2011-02-22 11:42 IAMT _Intel 7.0.0.

1144 WTx86x64/Tools/System Tools/Flash Image Tool/fitc.ini 1481 2011-02-22 11:42

instead of just the drivers,
or forget to disable the
FTP listing

With a few picked keywords
you can find the good stuff :)

11

Intel FSP

Intel Firmware Support Package was released in 2013
Low-level initialization code from Intel for firmware writers
Freely downloadable from Intel's site

The package for HM76/QM77 includes ME firmware, tools
and documentation

Intel® 7 Series Family-
I|_1t|al® Management Engine _ _ _
Firmware 8.1 Documentation still contains

"confidential” markings :)
1.5MB Firmware Bring Up Guide

May 2013
| Revision 1.0

Intel Confidential

http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview

12

http://www.intel.com/content/www/us/en/intelligent-systems/intel-firmware-support-package/intel-fsp-overview

SPI flash layout

® The SPI flash is shared between BIOS,
ME and GbE

® For security, BIOS (and OS) should not
have access to ME region

® The chipset enforces this using
information in the Descriptor region

® The Descriptor region must be at the
lowest address of the flash and contain
addresses and sizes of other regions,
as well as their mutual access
permissions.

BIOS
Region 1

Intel® ME

Region 2

GbE
Region 3

Flash Descriptor
Region 0

13

ME region layout

® ME region itself is not monolithic

® |t consists of several partitions, and the table at the start

describes them
ME Region

| Partition table |

EFFS partition Partition types:
" Generic

EFFS

M Code

0141

14

ME code partition

® Code partitions have a header called "manifest"

® |t contains versioning info, number of code modules,
module header, and an RSA signature

Manifest header
RSA public key

RSA signature

Module header

Compressed
Huffman data

Module data - | RSA-signed data

Module data

ME core evolution

® |t seems there have been three generations of the
microcontroller core so far, and corresponding changes in
firmware layout

Core ARCTangent-A4 ARC 600(?) SPARC

Manifest tag $MAN $MN2 $MN2

Code compression None, LZMA None, LZMA, Huffman None, LZMA

® Following discussion covers mostly Gen 2: Intel 5 Series
(aka Ibex Peak) and later chipsets

16

ME code modules

Some common modules found in recent firmwares

KERNEL Scheduler, low-level APIs for other modules

HOSTCOMM Handles high-level protocols over HECI/MEI

DT Theft Deterrence Technology (Intel Anti-Theft)

JOM Dynamic Application Loader (DAL) — used to
implement ldentity Protection Technology (IPT)

17

ME: code in ROM

® To save flash space, various common routines are stored
In the on-chip ROM and are not present in the firmware

® They are used in the firmware modules by jumping to
hardcoded addresses

® This complicates reverse-engineering somewhat because
a lot of code is missing

® However, one of the ME images | found contained a new
partition | haven't seen before, named "ROMB"...

18

ME: ROM Bypass

® Apparently, the pre-release hardware allows to override
the on-chip ROM and boot using code in flash instead

® This is used to work around bugs in early silicon

Binary input file MNavigate to your Source Directory (as specified in
Section 2.1) and switch to the Firmware subdirectory. Choose

the ME FW binary image.
Note: You may choose to build the ME Region only. To do so,

Flash Image | Descriptor Region | Descriptor
Map parameter Number of Flash components must

be set to 0.
Note: Loading an ME FW binary image that contains ME ROM

_Bypass unlocks the Boot from Flash parameterin
Flash Image | Descriptor Region | PCH Straps |
PCH Strap 10.

ME boot from Flash false false (default) = No ME Region binary
(grayed out) loaded, or ME Region binary does not
contain ME ROM bypass imabe

Note: On BO and later PCH stepping

parts this setting should be set to
‘false’

19

ME: ROM Bypass

® [f this option is on, the first instruction of the ME region is
executed

® [t jumps to the code in ROMB partition

ROM Bypass Image

j 0x401000
Partition table

20

ME: ROM Bypass

By looking at the code in the ROMB region, the inner
workings of the boot ROM were discovered

The boot ROM exposes for other modules:
> common C functions (memcpy, memset, strcpy etc.)
> ThreadX RTOS routines
> Low-level hardware access APlIs

® |t does basic hardware init

It verifies signature of the FTPR partition, loads the BUP
module and jumps to it

Unfortunately, BUP and KERNEL employ Huffman

compression with unknown dictionary, so their code is not
available for analysis :(

. PN

21

ME: Security and attacks

22

ME: Security

® ME includes numerous security features

© Code signing: all code that is supposed to be running on the
ME is signed with RSA and is checked by the boot ROM

“During the design phase, a Firmware Signing Key (FWSK) public/private pair is
generated at a secure Intel Location, using the Intel Code Signing System. The
Private FWSK is stored securely and confidentially by Intel. Intel AMT ROM
includes a SHA-1 Hash of the public key, based on RSA, 2048 bit modulus
fixed. Each approved production firmware image is digitally signed by Intel with
the private FWSK. The public FWSK and the digital signature are appended to
the firmware image manifest.

At runtime, a secure boot sequence is accomplished by means of the boot ROM
verifying that the public FWSK on Flash is valid, based on the hash value in
ROM. The ROM validates the firmware image that corresponds to the manifest’s
digital signature through the use of the public FWSK, and if successful, the

system continues to boot from Flash code.”

From "Architecture Guide: Intel® Active Management Technology", 2009

Léon GALL

ME: Unified Memory Architecture (UMA) region

® ME requires some RAM (UMA) to put unpacked code and
runtime variables (MCU's own memory is too limited and
slow)

® This memory is reserved by BIOS on ME's request and
cannot be accessed by the host CPU once locked.

1812 RV Keserveaq,
11 RWO 0 Enable for Intel® ME memory region
Lock for Intel ME memory region base/mask. This bit is anly
10 RWO 0 cleared upon a reset. MESEGMASK and MESEGBASE cannot be
changed once this bit is set.
9:0 RV 0 Reserved

® A memory remapping attack was demonstrated by
Invisible Things Lab in 2009, but it doesn't work on newer
chipsets

® Cold boot attack might be possible, though...

ME: attacking UMA

® | decided to try and dump the UMA region since it
contains unpacked Huffman code and runtime data

® |dea #1: simply disable the code which sets the MESEG
ock bit in the BIOS

'some time spent reversing memory init routines...]
Patched out the code which sets the lock bit
Updated necessary checksums in the UEFI volume
Reflashed the firmware and rebooted

Result: dead board

Good thing | had another board and could restore the old
firmware using hotswap flashing...

. PN
R

25

ME: attacking UMA

® |dea #2: cold boot attack
® Quickly swap the DRAM sticks so that UMA content

remains in memory

SDRAM 1 OMA
SDRAM 2

SDRAM 2 OMA
SDRAM 1 | VA

Not accessible by CPU

First Boot: Let ME
unpack code into UMA

Not accessible by CPU

Second boot: after swapping,
Old UMA should be accessible

o Unfortunately, dumped memory contains only garbage...

26

ME: attacking UMA

® Tried lower-speed memory — did not help
® Bought professional grade freezing spray — did not help

e Eventually discovered that DDR3 used in my board can
employ memory scrambling

“The memory controller incorporates a DDR3 Data
Scrambling feature to minimize the impact of excessive di/dt
on the platform DDR3 VRs due to successive 1s and 0s on
the data bus. [...] As a result the memory controller uses a
data scrambling feature to create pseudo-random patterns on
the DDR3 data bus to reduce the impact of any excessive

di/dt.”

(from Intel Corporation Desktop 3rd Generation Intel® Core™ Processor
Family, Desktop Intel® Pentium® Processor Family, and Desktop Intel®
Celeron® Processor Family Datasheet)

27

ME: attacking UMA

|dea #3: use different UMA sizes across boots
® The required UMA size is a field in the $FPT header

The FPT is protected only by checksum — not signature —
so it's easy to change

|dea:

1) Flash FPT that requests 32MB, reboot. BIOS will reserve top
32MB but ME will use only 16 MB

2) Flash FPT that requests 16MB, reboot. BIOS will reserve top
16MB, so previously used 16MB will be accessible again

Unfortunately got garbage again. It seems that memory is

reinitialized with different scrambling seed between boots.

28

ME: attacking UMA

® |dea #4: disable memory scrambling

® Scrambling can be turned off using a BIOS setting on
some boards

Memory Scrambler

Values: Enabled, Disabled

Enables or disables Memory Scrambler support.
Scrambler Seed Generation
Values: Enabled, Disabled

Enables or disables the generation of a scrambler seed for security purposes. The memory scrambler scrambles the contents of

memary in the DIMMs so that they cannot be removed and read. When enabled, a scrambler seed is not generated. When
disabled, a scrambler seed is always generated.

® On my board the option is hidden but it's possible to

change it by editing the UEFI variable "Setup” direclty
(see my Breakpoint 2012 presentation)

® However, it is not enough — the memory is still garbage

29

ME: attacking UMA

|dea #5: ?

| still had some ideas to try but they require more time and
effort

So | started investigating code using other approaches
For example...

30

Server Platform Services

-~ On Intel's server boards, ME is present too
' However, it runs a different kind of firmware
' It's called Server Platform Services (SPS)

' It has a reduced set of modules, however it does include
BUP and KERNEL

- Good news #1: BUP module is not compressed!
- KERNEL is Huffman "compressed”, but...

- Good news #2: all blocks use trivial compression (I.e. no
compression)

S0 | now can investigate how these two modules work
' There are differences from desktop but it's a start

c) 2014 Igor .
©) g,‘a I O

31

Léon GALL

Léon GALL

Léon GALL

Léon GALL

JOM aka DAL

JOM is a module which appeared in ME 7.1

It implements what Intel calls "Dynamic Application Loader™
(DAL)

It allows to upload and run applications (applets) inside ME
dynamically

This feature is used to implement Intel Identity Protection
Technology (Intel IPT)

In theory, it allows a much easier way for running custom
code on the ME

Let's have a look at how it's implemented...

32

JOM aka DAL

® Some interesting strings from the binary:

Could not allocate an instance of
java.lang.OutOfMemoryError
linkerInternalCheckFile: JEFF format version not
supported

com.intel.crypto

com.trustedlogic.isdi

Starting VM Server...

® Looks like Java!

33

JOM aka DAL

® Apparently it's a Java VM implementation

® |n Intel ME drivers, there is a file "oath.dalp" with a Base64
blob

o After decoding, a familiar manifest header appears

® |t has a slightly different module header format, and a single
module named "Medal App"

® The module contains a chunk with signature "JEFF", which
is mentioned in the strings of JOM

® Strings in this JEFF chunk also point to it being Java code
® However, the opcode values look different from normal Java

® | was so sure it's a custom format, | spent quite a lot of time
reversing it from scratch

...
1

JOM aka DAL

® There was one string in the module...

.ascii "Invalid constant offset in the SLDC instruction”

® There is no such instruction in standard Java. Let's try
Google...

35

® Thern

.ascCi:

® Ther
Goo¢

GOnglE "sldc" opcode java

Web Images Maps Shopping More = Search tools

About 3,260 results (0.26 seconds)

roFl JavaBirthmarks-DetectingtheSoftware Theft——

se-naist jp/old/jbirth/papers/tamadalsieice pdf

oflavaprograms- Specifcally, WePrOPOSeJavabirthmarks tosupportthee 1sidC
(54} .uu 4 The adversary must be highly skllled in Java bytecode to modify a ...

pubs Sdiff docsitechnotes/guides/pack200
cr.openjdk_java.net/~ksrini/8007297/._/pack-spec_html.sdiff. html -

p= 5200 <p=Every bytecode instruction is contained by a class, called the 5201
<tt=sldc</tt> and 5196 <H=sldc_w=Mt=, as <ttraldc</tt> and <tt>aldc_w</tt>.

Crap shit head - SlideShare

www_slideshare net/shashgibbs88/crap-shit-head «

FUMDAMEMNTALS 11 3.1 JDK & JRE 11 3.2 Met Beans 6.8 11 3.3 Java compiled to
the bytecode instruction set and binary format defined in the Java Virtual 2) SLDC:
Software Development Life Cycle 3) JSP: Java Server Pages 4) DFD: ...

ror L2/02-042 - Unicode Caonsortium
www_unicode. org/L2/L2002/02042-jeff-spec_pdf «

Java is a registered trademark of Sun Microsystems, Inc. in the United States and in
other ... The VMConstUtf8 structures are referred by the sldc bytecode.

Browse - Project Kenai
https://kenai.com/bugzilla/describecomponents_cqi

bwshop: bw. bytecodeviewer: View Java ByteCode. bytest: Testing
developerdocs: Documentation hub for developers used for the S5LDC - CMM compliant.

[VRTLEJEFF storage furmaD

. '.L:ity.ac.uh-’=HIDuHiHMBE...EIe"ITDraﬂSpecsEDDEMarch?.pdfv

Mar 7, 2002 - Java 15 a registered trademark of Sun Microsystems, Inc. in the United
States and in other countries. 4.2 .10 The wide <opcode> Opcodes .

36

JEFF File Format

Turns out the JEFF format is a standard

Was proposed in 2001 by the now-defunct J Consortium
Has been adopted as an ISO standard (ISO/IEC 20970)
Draft specification is still available in a few places
Optimized for embedded applications

Combines several classes in one file, in a form which is
ready for execution

Shared constant pool also reduces size
® Introduces several new opcodes
® Supports native methods defined by the implementation

y ,
) 2014 Igor

37

JEFF File Format

® | made a dumper/disassembler in Python based on the spec

® Dumped code in oath.dalp and the internal JEFF in the
firmware

® No obfuscation was used by Intel, which is nice

® Most basic Java classes are implemented in bytecode, with
a few native helpers
® There are classes for:
o Cryptography
o Ul elements (dialogs, buttons, labels etc.)
o Flash storage access
o Implementing loadable applets

38

JEFF File Format

® Fragment of a class implementation (wit

Class com.intel.util.IntelApplet
private:
/* exeC */ boolean m_invokeCommandInProcess;
/* 0x00 */ OutputBufferView m outputBuffer;
/* oxeD */ boolean m_outputBufferTooSmall;
/* 0xe4 */ OutputValueView m_outputValue;
/* 0x08 */ byte[] m_sessionld;
public:
void <init>();
final int getResponseBufferSize();
final int getSessionld(byte[], int);
final int getSessionldLength();
final String getUUID();
final abstract int invokeCommand(int, byte[]);
int onClose();
final void onCloseSession();
final int onCommand(int, CommandParameters);
int onInit(byte[]);
final int onOpenSession(CommandParameters);
final void sendAsynchMessage(byte[], int, int);
final void setResponse(byte[], int, int);
final void setResponseCode(int);

nout bytecode)

39

IPT applets

ne applet interface seems to be rather simple
ne OATH applet implementation looks like this:

package com.intel.dal.ipt.framework;

public class AppletImpl extends com.intel.util.IntelApplet
{

final int invokeCommand(int, byte[])

{
.

int onClose()

{

} e
int onInit(byte[])

40

IPT applets

* Unfortunately, éven'ifl'create my own applets, |'can't run

o Still, there may be vulnerabilities in the protocol, which is
pretty complicated

® Let's have a look at how it works...

41

Léon GALL

Léon GALL

IPT communication

Intel provides several DLLs with high-level APIls which are
usable from C/C++, Java, or .NET applications

These DLLs send requests to the JHI service, using COM or
TCP/IP (depending on the driver version)

The service serializes requests and sends them over
HECI/MEI to the ME

ME dispatches the requests to JOM
JOM parses the requests and passes them to the applet

Reply undergoes the opposite conversion and is eventually
sent back to the application

Because arbitrary buffers can be sent and received, there is
a potential for out-of-bounds memory read or write

42

Trusted Execution Environment

® From the strings inside JOM, it's apparent that Intel is using
a Trusted Execution Environment (TEE) provided by Trusted
Logic Mobility (now Trustonic), called "Trusted Foundations"

I High-level architecture

Open to Protection of

- ! TEE

malware coit i it =) gzzr:iﬁ':heenngtli::tim Administration
e.g. “Jailbreaking” @ 7 - - -

(e.g g"/ TSH

= Device integrity and
management

= Corporate service
= Sensitive user data

Main OS Environment “‘ R
| | T rm o m
=

Applications l 'L I

| | |

TEE Connector

Trusted Applications Q u

Trusted Foundations™
(Trusted Execution Environment OS)

Operating System

Source:
Trusted Foundations flyer

JUSLIUOAIAUT UOINDaX paisﬁu_ '

43

Trusted Execution Environment

® Trusted Foundations is also used in several smartphones
® Implemented there using ARM's TrustZone

® Due to GPL, source code of drivers which communicate with
Trusted Foundations is made available

® The protocol is not the same as what Intel uses

® For example, TrustZone communications employ shared
memory, while ME/JOM only talks over HECI/MEI

o Still, there are some common parts, so it helps in reverse
engineering

.'IIII ;
) 2014 Igor S

44

Trusted Execution Environment

® There is a TEE specification released by the GlobalPlatform
association (Trusted Logic Mobililty/Trustonic is a member)

® Describes overall architecture, client APl and internal API
(for services running inside TEE)

® Again, it does not exactly match what runs in the ME but is
still a useful reference

http://www.globalplatform.org/specificationsdevice.asp

45

http://www.globalplatform.org/specificationsdevice.asp

Results

® | still have not managed to run my own rootkit on the ME
® But I'm getting a more complete picture of how ME works

® The code of boot ROM, BUP and KERNEL modules has
been discovered

® This allowed me to map many APls used in other modules

e JEFF dumper is a good starting point for investigating
DAL/IPT applets

® ARC support was released with IDA 6.4 and improved in IDA
6.5

46

Future work

® Dynamic Application Loader

» Make a JEFF to .class converter, or maybe a direct JEFF
decompiler

© Reverse and document the host communication protocol
o Linux IPT client?

® EFFS parsing and modifying
» Most of the ME state is stored there
> If we can modify flash, we can modify EFFS
o Critical variables are protected from tampering but the
majority isn't
» Complicated format because of flash wear leveling

47

Future work

o

® Huffman compression

» Used in newer firmwares for compressing the kernel and
some other modules

> Apparently the dictionary is hardcoded in silicon

> There is some progress with ME 6.x:
http://io.smashthestack.org:84/me/

> Newer versions use a different dictionary :(
® ME < Host protocols
> Most modules use different message formats

> A lot of undocumented messages; some modules seem to
be not mentioned anywhere

» Some client software has very verbose debugging
messages In their binaries...

> Anti-Theft is probably a good target

i I,r . . F
=

48

http://io.smashthestack.org:84/me/

Future work

® BIOS RE

> In early boot stages ME accepts some messages which
are refused later

> Reversing BIOS modules that talk to ME is a good source
of info

> Some messages can be sent only during BIOS boot

» UEFITool by Nikolaj Schiej helps in editing UEFI images
https://github.com/NikolajSchlej/UEFITool

> Coreboot has support for ME on some boards
® Simulation and fuzzing

> Open Virtual Platform (www.ovpworld.org) has modules
for ARC600 and ARC700 (ARCompact-based)

> Supposedly easy to extend to emulate custom hardware
> Debugging and fuzzing should be possible

. PN

49

https://github.com/NikolajSchlej/UEFITool
http://www.ovpworld.org/

Future work

e Bay Trail/TXE

» In Bay Trail (Atom-based SoC), a new variation of ME is
used

> Called Trusted Execution Engine (TXE), codename SEC
o Instead of ARC, uses SPARC core(!)

» No Huffman compression, only LZMA(!!)

» S0, all code (except Boot ROM) is available

> Available KERNEL code should help recovering APIs for
ARC firmwares too

» SPARC emulators are available so the code can be
emulated/fuzzed/debugged

50

References and links

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT _Implementation_and_Reference Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
https://noggin.intel.com/technology-journal/2008/124/intel®-vpro ™-technology
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf
http://me.bios.io/
http://www.uberwall.org/bin/download/download/102/lacon12_intel amt.pdf

51

http://software.intel.com/en-us/articles/architecture-guide-intel-active-management-technology/
http://software.intel.com/sites/manageability/AMT_Implementation_and_Reference_Guide/
http://theinvisiblethings.blogspot.com/2009/08/vegas-toys-part-i-ring-3-tools.html
https://noggin.intel.com/technology-journal/2008/124/intel%C2%AE-vpro%E2%84%A2-technology
http://web.it.kth.se/~maguire/DEGREE-PROJECT-REPORTS/100402-Vassilios_Ververis-with-cover.pdf
http://www.stewin.org/papers/dimvap15-stewin.pdf
http://www.stewin.org/techreports/pstewin_spring2011.pdf
http://www.stewin.org/slides/pstewin-SPRING6-EvaluatingRing-3Rootkits.pdf
http://flashrom.org/trac/flashrom/browser/trunk/Documentation/mysteries_intel.txt
http://review.coreboot.org/gitweb?p=coreboot.git;a=blob;f=src/southbridge/intel/bd82x6x/me.c
http://download.intel.com/technology/product/DCMI/DCMI-HI_1_0.pdf
http://me.bios.io/
http://www.uberwall.org/bin/download/download/102/lacon12_intel_amt.pdf

Thank you!

Questions?

igor@hex-rays.com
skochinsky@gmail.com

52

mailto:igor@hex-rays.com
mailto:skochinsky@gmail.com

	Slide 1
	Slide 2
	Slide 3
	Slide 4
	Slide 5
	Slide 6
	Slide 7
	Slide 8
	Slide 9
	Slide 10
	Slide 11
	Slide 12
	Slide 13
	Slide 14
	Slide 15
	Slide 16
	Slide 17
	Slide 18
	Slide 19
	Slide 20
	Slide 21
	Slide 22
	Slide 23
	Slide 24
	Slide 25
	Slide 26
	Slide 27
	Slide 28
	Slide 29
	Slide 30
	Slide 31
	Slide 32
	Slide 33
	Slide 34
	Slide 35
	Slide 36
	Slide 37
	Slide 38
	Slide 39
	Slide 40
	Slide 41
	Slide 42
	Slide 43
	Slide 44
	Slide 45
	Slide 46
	Slide 47
	Slide 48
	Slide 49
	Slide 50
	Slide 51
	Slide 52

