
AdaCore Tech Paper February 2023

NVIDIA:
Using RecordFlux and SPARK to 
Implement SPDM for Secure Computing

TECH PAPER

https://www.adacore.com


February 2023AdaCore Technical Paper

NVIDIA: Using RecordFlux and SPARK to 
Implement SPDM for Secure Computing
Executive Summary
One of the basic requirements for enterprise platform security is device attestation: 
trustworthy evidence of a device’s identity and security properties. The industry standard 
Security Protocol and Data Model (SPDM) addresses this need, defining message formats 
and session behaviors that device suppliers can implement for attestation. 

AdaCore partnered with NVIDIA in a project that has implemented a subset of the SPDM Version 
1.1.0 specification; the resulting library will be integrated into the firmware of microcontrollers and 
microprocessors that NVIDIA designs. AdaCore’s RecordFlux toolset was used to formally specify the 
message structure and protocol behaviors in RecordFlux’s Domain Specific Language (DSL) and to 
generate source code in the mathematically analyzable SPARK subset of Ada. AdaCore’s SPARK Pro 
toolset was then used to prove memory safety (no buffer underflow / overflow), the absence of integer 
overflow, and other integrity properties of the generated code, as well as specific functional properties 
in several critical components. The SPARK code was subsequently compiled by AdaCore’s GNAT Pro 
Ada tool suites targeted to the RISC-V and Arm architectures.

The SPDM project has expanded NVIDIA’s usage of the Ada/SPARK technology and has shown the 
benefits of using the RecordFlux and SPARK Pro tool suites to design and implement complex high-
assurance code for mission-critical applications. The project gave NVIDIA higher confidence in integrity 
properties of the resulting firmware than would have been achieved using traditional manual methods 
or an SPDM technology based on a language with less extensive built-in checking. And using the 
RecordFlux formalism to capture SPDM semantics resulted in a precise and unambiguous specification, 
avoiding potential misunderstandings of natural language descriptions.

SPDM
As stated in its Introduction section, “The Security Protocol and Data Model (SPDM) Specification 
defines messages, data objects, and sequences for performing message exchanges over a variety 
of transport and physical media. The description of message exchanges includes authentication 
of hardware identities, measurements for firmware identities and session key exchange protocols 
to enable confidentiality and integrity protected data communication. The SPDM allows efficient 
access to low-level security capabilities and operations.” The standard was developed and is 
being maintained by DMTF (dmtf.org), a not-for-profit association comprising major players in 
the device and telecommunications industries. DMTF creates open manageability standards for 
IT infrastructure.

SPDM messages are exchanged between two endpoints, known as a Requester and a Responder, 
following a specific sequential protocol. The flow of messages is shown in the SPDM standard, 
from which the accompanying figure is derived, and comprises several kinds of messages:

Léon GALL



February 2023AdaCore Technical Paper

Capability discovery and 
negotiation
•	 The GET_VERSION / VERSION exchange 

establishes the major SPDM version to be 
used for subsequent messages.

•	 The GET_CAPABILITIES / CAPABILITIES 
exchange allows a Requester to discover the 
Responder’s SPDM capabilities (for example, 
support for optional message exchanges).

•	 The NEGOTIATE_ALGORITHMS / 
ALGORITHMS exchange allows the Requester 
and Responder to agree on the cryptographic 
algorithms to be used. 

Responder identity 
authentication, if supported / 
necessary
•	 The GET_DIGESTS / DIGESTS exchange allows 

the Requester to retrieve hashes of the 
Responder’s certificate chains; these hash 
values (digests) can be used to determine 
whether the certificate chains have changed.

•	 The GET_CERTIFICATE / CERTIFICATE exchange 
allows the Requester to retrieve one or more 
certificate chains from the Responder, to 
establish trust in the Responder’s identity.

•	 The CHALLENGE / CHALLENGE_AUTH 
exchange allows the Requester to verify 
that the Responder knows the private key 
associated with a certificate chain. 

Firmware measurements, 
if supported
•	 The GET_MEASUREMENTS / MEASUREMENTS 

exchange allows the Requester to determine 
the configuration or other characteristics of 
the Responder, for example whether debug 
restrictions are in place. 

Key agreement for secure channel establishment, if supported
•	 The KEY_EXCHANGE / KEY_EXCHANGE_RSP message pair is used to authenticate the Responder (or 

both parties), decide on cryptographic parameters, and establish shared keying data.

•	 The FINISH / FINISH_RSP exchange completes the handshake initiated by a KEY_EXCHANGE message.

The SPDM standard defines the detailed binary structure for each kind of message, specifying 
the size and interpretation of each field. The format is complex, with some messages containing 
interdependent fields and/or fields that are conditionally present.

VERSION

Responder

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If supported

If supported

If supported

If necessary
CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

GET_MEASUREMENTS

MEASUREMENTS

KEY_EXCHANGE

KEY_EXCHANGE_RSP

Mutual Authentication

FINISH

FINISH_RSP

Application Data
Secure Session

Requester

GET_CERTIFICATE



February 2023AdaCore Technical Paper

RecordFlux
The AdaCore RecordFlux technology consists of 
a Domain-Specific Language (DSL) for precisely 
defining the structure of binary messages, and a 
toolset for generating formally verifiable code for 
parsers, message generators, and protocol sessions. 
The produced source code is in the SPARK language, 
an Ada subset that is amenable to mathematical 
verification analysis by AdaCore’s SPARK Pro toolset. 
SPARK Pro can prove a range of program properties, 
ranging from valid information flow and memory 
safety, up to full functional correctness.

A simple but representative example to illustrate the 
RecordFlux DSL notation is a TLV (“Tag-Length-Value”) 
message, which has two valid formats:

A structure with three components
•	 An 8-bit Tag field with value 1, indicating that two 

fields immediately follow,

•	 A 16-bit Length field, and

•	 A Value field (the payload), whose length (in 8-bit 
bytes) is specified by the Length field.

A structure with one component
•	 An 8-bit Tag field with value 3, indicating that no 

further fields are present.

A message with any other content in its Tag field is 
invalid.

The structure of messages is often non-linear because 
of optional fields. For this reason the RecordFlux DSL 
message syntax uses a graph-based representation (a 
directed acyclic graph). The order of fields is defined by 
then clauses, which are also used to state conditions 
and properties for the following field. 

The TLV structure is specified as follows in RecordFlux, 
using an Ada-like notation. The valid Tag field contents 
are represented mnemonically by enumeration values 
Msg_Data (1) and Msg_Error (3).

TLV messages can carry Value fields of different types, 
and this flexibility is reflected in the special RecordFlux 
type Opaque. The actual type for a specific message 
will be specified in application code that generates 
or processes the message. The interpretation of an 
opaque field can also be specified in the RecordFlux 
language using a separate message type and a 
RecordFlux feature known as refinement.

Tag = 1

Tag = 3 Length

Tag

Value

The message structure can be 
depicted graphically:

Léon GALL

Léon GALL

Léon GALL



February 2023AdaCore Technical Paper

package TLV is

    type Tag_Type is (Msg_Data => 1, Msg_Error => 3) with Size => 8;
   type Length_Type is range 0 .. (2 ** 16) – 1 with Size => 16;

   type Raw is
      message
             Length : Length_Type
                           then Value
              with Size => Length * 8;
         Value : Opaque;
      end message;

   type Message_Type is
      message
         Tag : Tag_Type
            then Length
               if Tag = Msg_Data
            then null
               if Tag = Msg_Error;
         Length : Length_Type
            then Value
               with Size => Length * 8;
         Value : Opaque;
      end message;
end TLV;

Message processing sessions can typically be represented by a state machine with well-defined 
actions and transitions for each state. For the TLV example, assume that valid messages (i.e., those 
with Tag = Msg_Data) are processed by simply retransmitting the raw data that the message 
contains. RecordFlux uses Ada’s syntax for generic templates to model this session behavior, 
reflecting the generic nature of sessions: the user must define the semantics of the formal functions 
and connect the channels when integrating the code that was generated for the session.



February 2023AdaCore Tecnical Paper

with TLV;
package TLV_Responder is
   generic
      Network : Channel with Readable, Writable;
      with function Plat_Create_Response
         (Message : TLV::Message_Type) return TLV::Raw;
   session TLV_Session is
      Request  : TLV::Message_Type;
      Response : TLV::Message_Type;
   begin
      state Idle is
      begin
         Network’Read(Request);
      transition
         goto Prepare_Response
            if Request.Tag = TLV::Msg_Data
         goto Send_Error
      end Idle;

      state Prepare_Response is
         Raw : TLV::Raw;
      begin
         Raw := Plat_Create_Response (Request);
         Response := TLV::Message_Type’(Tag    => TLV::Msg_Data,
                                        Length => Raw.Length,
                                        Value  => Raw.Value);
      transition
         goto Send_Response
      exception
         goto null
      	 end Prepare_Response;

      state Send_Response is
      begin
         Network’Write (Response);
      transition
         goto Idle
      end Send_Response;

      state Send_Error is
      begin
         Network’Write(Request);
      transition
         goto null
      end Send_Error;
   end TLV_Session;
end TLV_Responder;

The RecordFlux toolset can be used to generate Ada/SPARK source code from the specifications. 
This source code is then available to applications that need to process TLV messages and prove 
properties of the resulting code.



February 2023AdaCore Technical Paper

The Challenge
A modern enterprise platform is typically composed of a heterogeneous set of both reprogrammable 
and fixed-logic components and presents a rich target environment for malevolent actors. Device 
suppliers need to anticipate and thwart potential threats such as message tampering and confidentiality 
breaching.  

A prerequisite for platform security is a secure authentication mechanism to establish trust 
between devices servicing requests for data (“Requesters”) and devices responding to such requests 
(“Responders”). The Security Platform and Data Model (SPDM) specification addresses this need, but 
the message formats and message exchange protocols are complex. NVIDIA’s challenge: implement 
a chosen subset of SPDM functionality, with high confidence that the implementation is provably 
correct (for example, knowing that their application is memory safe and would never raise a run-
time exception), while staying within tight device storage and run-time memory constraints for the 
generated code. Achieving a high assurance level is critical, since the devices involved in attestation 
are roots of trust. They need to be bug free in order to provide confidence in the measurements that 
they report. 

The Decision
NVIDIA has been using AdaCore’s SPARK language and toolset to develop ultra-high reliability 
firmware in other contexts (see https://www.adacore.com/case-studies for more information), and 
their success in those efforts gave them a natural incentive to use the SPARK technology to implement 
SPDM. However, the complexities of the SPDM message formats, for example the interdependencies 
among message fields, are not easily modeled in the data definition facilities of a general-purpose 
language. Higher-level abstraction constructs in a  domain-specific language oriented towards the 
specialized requirements of message communication would make the SPDM implementation more 
straightforward to develop and maintain, and allow for more rigorous verification.

AdaCore’s RecordFlux product fulfills this need:

•	 It defines a DSL that can precisely express the structure of complex messages with interdependent 
and varying-size fields, as well as the logic of requester/responder protocols.

•	 It provides tools to generate SPARK code for generating and/or parsing such messages and for the 
protocol behavior (a finite-state machine).

Security properties of the resulting code can then be formally verified by the SPARK toolset. A benefit of 
RecordFlux is thus to make the power of SPARK’s formal-methods-based verification more accessible 
in more use cases    

Although other SPDM implementations are available (for example, OpenSPDM), NVIDIA wanted a 
technology with a more secure foundation, especially with respect to the programming language. All 
these considerations led them to choose the RecordFlux and SPARK approach.

https://www.adacore.com/case-studies
Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL



February 2023AdaCore Technical Paper

The Project
The SPDM implementation for this project consisted of a number of tasks:  

Architecture, Testbed & Integration
This phase of the project created a high-level architecture for the SPDM protocol implementation, 
defined the required interfaces, and set up a testbed to validate interoperability with OpenSPDM. 
It also integrated the resulting responder framework into the transport layer and implemented a 
mapping from session IDs to SPDM protocol instances.

SPDM Formalization
The structure of SPDM messages and the dynamic behavior of an SPDM responder were formalized 
in the RecordFlux DSL. The supported messages included capability discovery and negotiation, key 
exchange, and session termination.

Validation and Proof
The code generated from both the Architecture, Testbed & Integration task and the SPDM Formalization 
task were proven by the SPARK Pro toolset to be free of run-time errors, and thus verifiably free of any 
buffer overrun/underrun, integer overflow, or dereferencing of null pointers. Further, for conditionally 
structured messages, all field accesses were proved to be valid. The test tool was validated against 
an OpenSPDM responder to ensure that a complete key exchange and session establishment were 
possible. Additionally, the code size for the protocol implementation was verified to be within a 
specified limit (35kB when compiled standalone on a RISC-V 64-bit target).

Attestation
The SPDM RecordFlux model was extended to support attestation, for example with the formalization 
of the GET_DIGESTS, GET_CERTIFICATE, and GET_MEASUREMENTS messages and responses.

Session Key Update
The SPDM message and session models were extended to support the key update protocol.

As part of the joint project, AdaCore made a number of enhancements to RecordFlux based on SPDM-
specific requirements and NVIDIA feedback: 

•	 RecordFlux’s Domain Specific Language was extended to support a more generalized message 
structure.

•	 The code generator was extended to handle the various SPDM message types and to ensure that the 
resulting SPARK code could be proved automatically for absence of run-time errors. Thus memory 
safety is assured (all buffer accesses are guaranteed to be within range), and “wraparound” integer 
overflow will not occur. Since these properties are proved statically, run-time code does not need 
to be generated (and indeed is not generated) to enforce these checks. 

•	 The allocation scheme for session variables was changed, to avoid the need for dynamic allocation 
(thus better supporting the intended bare metal target environment and avoiding the need to 
demonstrate absence of heap exhaustion).

Léon GALL



The Results
To both NVIDIA and AdaCore, the project demonstrated that RecordFlux and SPARK are  appropriate 
technologies for implementing high-assurance, remote communication protocols, and SPDM in 
particular. Several factors stand out:

•	 RecordFlux’s Domain-Specific Language has the expressiveness and precision 
needed to capture the complexities of the SPDM message structure and protocol 
sessions. The resulting specification serves as a “single source of truth” and prevents 
errors that can arise from misunderstandings of natural language descriptions of 
syntax and semantics.

•	 The SPARK code generated by RecordFlux was amenable to analysis by the SPARK 
Pro toolset to achieve several levels of assurance. For example, SPARK Pro proved 
that the code for the dynamic behavior of the SPDM responder for the implemented 
messages was memory safe and free of other run-time errors, and also proved 
specific security properties of the message structure code. The SPDM message 
specifications comprised around 3000 lines of code, from which 135K lines of 
provable SPARK code were generated. 

•	 Code compactness is critical in the embedded applications where NVIDIA’s firmware 
will be used, and the project demonstrated that RecordFlux can be competitive with 
C while allowing much higher confidence in the code’s correctness. The code for the 
protocol implementation was less than 35KB on a RISC-V 64-bit target. 

•	 AdaCore’s responsive and helpful customer support is one of the company’s 
hallmarks, and this project was no exception. AdaCore’s engineers worked with the 
NVIDIA team to ensure that any questions concerning RecordFlux or SPARK were 
addressed promptly and thoroughly.  

“We are very pleased with the results of our SPDM project with AdaCore,” said Ron Koo, Senior System 
Software Engineer at NVIDIA. “We wanted a tool that would allow us to implement SPDM in SPARK and 
to prove important security properties, but to prove them at a higher level than the SPARK code itself. 
RecordFlux certainly facilitated that and resulted in a robust implementation, and we look forward to 
using it on other projects in the future.”  

“Our goal for RecordFlux from the outset has been to leverage formal verification and the SPARK 
language to address the vulnerabilities that communication protocols and complex data formats can 
bring,” said Alex Senier, RecordFlux team lead. “The SPDM project with NVIDIA shows that this goal has 
been met. The RecordFlux DSL allows domain experts to precisely specify a protocol, and the SPARK 
toolset can formally prove a range of security properties for the generated code. In short, RecordFlux 
and SPARK can be a real game changer for highly trustworthy protocol implementations.”

February 2023AdaCore Technical Paper



AdaCore Technical Paper February 2023

adacore.com

For more information
For details on SPDM: 

•	 DMTF, Security Protocol and Data Model (SPDM) Architecture White Paper; DSP2058, Version 1.0.0; 
2020-09-04.

	 https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.0.0_1.pdf

•	 DMTF, Security Protocol and Data Model (SPDM)  Specification; DSP0274, Version 1.1.0; 2020-07-15.
	 https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf

A public version of the SPDM implementation, together with the validation platform, is available at 
https://github.com/AdaCore/spdm-recordflux

For information about RecordFlux see 
https://adacore.com/recordflux

For information on SPARK see 
https://docs.adacore.com/spark2014-docs/html/ug/

https://www.adacore.com/documentation
https://www.adacore.com/documentation
https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.0.0_1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://docs.adacore.com/spark2014-docs/html/ug/

