
1

Benchmarking the Security Protocol and Data
Model (SPDM) for component authentication

Renan C. A. Alves, Bruno C. Albertini, Marcos A. Simplicio Jr

Abstract—Efforts to secure computing systems via software traditionally focus on the operating system and application levels. In
contrast, the Security Protocol and Data Model (SPDM) tackles firmware level security challenges, which are much harder (if at all
possible) to detect with regular protection software. SPDM includes key features like enabling peripheral authentication, authenticated
hardware measurements retrieval, and secure session establishment. Since SPDM is a relatively recent proposal, there is a lack of
studies evaluating its performance impact on real-world applications. In this article, we address this gap by: (1) implementing the
protocol on a simple virtual device, and then investigating the overhead introduced by each SDPM message; and (2) creating an
SPDM-capable virtual hard drive based on VirtIO, and comparing the resulting read/write performance with a regular, unsecured
implementation. Our results suggest that SPDM bootstrap time takes the order of tens of milliseconds, while the toll of introducing
SPDM on hard drive communication highly depends on specific workload patterns. For example, for mixed random read/write
operations, the slowdown is negligible in comparison to the baseline unsecured setup. Conversely, for sequential read or write
operations, the data encryption process becomes the bottleneck, reducing the performance indicators by several orders of magnitude.

Index Terms—security, hardware, SPDM, benchmark

✦

1 INTRODUCTION

MODERN computing devices are commonly built using
several components from different manufacturers.

This creates complex supply chains that usually end with
an integrator, responsible for connecting off-the-shelf third-
party components in an assembly line. After assembly, de-
vices are tested and then shipped to warehouses, eventually
reaching the end user’s facilities. subsequently, the device
components may undergo additional modifications, e.g., by
means of firmware updates.

At every stage of the supply chain, there is a risk that
malicious entities may inconspicuously tamper with or even
substitute components [1], [2]. The goals of such attacks may
vary. For example, they may consist in eavesdropping sen-
sitive data stored in volatile or non-volatile memory, as well
as passing through video, audio or network components.
They may also involve modifying the default behavior of
components to to enforce built-in obsolescence or impose
some kind of censorship.

Although it may seem that such attacks at the hard-
ware/firmware level belong to the realm of fiction, the
existence of successful proof-of-concept implementations
indicate otherwise. For example, a vulnerability in the re-
mote firmware update functionality of a family of print-
ers allowed arbitrary code to be injected into the printer
firmware [1]. The authors then developed a self-replicating
malware capable of eavesdropping on data and performing
network reconnaissance. Another attack, this time targeted
at USB firmware, enabled a device (e.g., a thumb drive)
to impersonate a different device type (e.g. a keyboard)
[3]. Even more concerning is the fact that evidence of
firmware tampering has also been found outside the halls
of academia. In 2015, for example, hard drives from various

• The authors are with Universidade de São Paulo, Brazil.

manufacturers had their firmware altered in such a manner
that the modified code could be used to retrieve data even
from encrypted partitions [4].

Protecting against such hardware-level tampering at-
tacks is a challenging task. In particular, the usual protection
techniques that operate at the operating system level (e.g.,
antivirus software) or techniques that act at the infras-
tructure level (e.g., firewalls) are oblivious to such threats.
Aiming to overcome this issue, the Security Protocol and
Data Model (SPDM) [5] was recently proposed by the DMTF
(Distributed Management Task Force) to address such low-
level security challenges. SPDM’s main goals are to allow
components to authenticate one another, to provide mea-
surements of their internal state, and to securely exchange
session keys. Firmware measurements enable system com-
ponents to be verified, ensuring they have not been victim of
tampering, while establishing sessions keys avoids passive
eavesdropping by malicious components attempting to steal
data.

Albeit promising, SPDM is a relatively recent proposal,
so its actual impacts on system performance have not yet
been thoroughly evaluated in the literature. This article
aims to close this gap by measuring the overhead added
by SPDM’s security layer, assessing how it could impact
the end-users’ experience and identifying bottlenecks that
might be optimized in the protocol. Specifically, we quantify
the overhead added by the security layer to size the impact
on end-user experience, and to identify protocol bottlenecks
that might be optimized, using an emulated environment.
The resulting contributions are twofold: (1) we evaluate the
overhead of each individual phase of the SPDM protocol ex-
ecution on an extremely simple SPDM-enabled component,
a random number generator (Section 3); and (2) we build
an SPDM-enabled hard drive and assess the performance
impact on userspace-perceived reading and writing speeds

ar
X

iv
:2

30
7.

06
45

6v
1 

 [
cs

.C
R

] 
 1

2 
Ju

l 2
02

3

Léon GALL

Léon GALL



2

(Section 4). All experiments build upon the virtualization
capabilities of the QEMU emulator to implement our proof-
of-concept devices and run the performance tests. For easy
reproducibility, and also because the SPDM-enabled arti-
facts developed as part of this work may be of independent
interest, the corresponding source code is publicly avail-
able at https://github.com/rcaalves/spdm-benchmark. In
summary, our results show that SPDM certificate-based
bootstrapping procedure takes around 66ms. Meanwhile,
using SPDM to secure hard drive application data can
greatly reduce the maximum transfer rate on sequential
operations, but the impact was negligible on randomized
mixed read/write workloads.

The rest of this manuscript is organized as follows.
Section 2 summarizes SPDM’s key aspects. We study the
individual overhead of each SPDM message in Section 3,
where we describe our methods and results. Section 4 con-
tains specification and results regarding our SPDM-enabled
hard drive. Finally, we discuss related work in Section 5,
and present closing remarks in Section 6.

2 SPDM
This section summarizes basic concepts and workflow of
SPDM in its version 1.1 [5].

The SPDM is a proposed standard for secure inter-
communication among hardware components. It follows a
requester-responder paradigm, and focuses on defining a
set of useful operations and message formats that enable
mutual authentication and the establishment of secure chan-
nels over an insecure medium. At the same time, it aims
to be agnostic to the physical medium and encapsulation
approach employed for conveying those messages.

The SPDM standard defines three pairs of mandatory
messages, 14 pairs of facultative messages, and additional
messages to handle errors. A set of those messages are
related to the core SPDM functions, such as device au-
thentication, measurement retrieval, and secure session es-
tablishment. The other messages serve the purpose of re-
porting available resources, stating which optional features
are present, negotiating cryptographic algorithms to be em-
ployed, and maintaining an active communication session.
Figure 1 gives an overview of the expected message flow,
highlighting which messages are mandatory. Since each
individual message is evaluated in our experiments, we
briefly describe them in what follows.

The first pair of messages are GET VERSION and VER-
SION. They are employed to settle on the SPDM version to
be used. The protocol proceeds only if at least one of the
versions advertised by the responder is supported by the
requester. Next, the requester inquires the responder about
its capabilities, aiming to discover which optional messages
are supported (messages GET CAPABILITIES and CAPABIL-
ITIES). The last pair of mandatory messages is NEGOTI-
ATE ALGORITHMS and ALGORITHMS. They are exchanged
so requester and responder can agree on the set of crypto-
graphic algorithms they will use henceforth, throughout the
protocol execution. These mandatory messages are expected
to present low overhead, since they have a slim payload and
their processing does not involve any compute-intensive
operation.

The next set of messages serves the purpose of re-
trieving certificates. The GET DIGEST/DIGEST message pair
enables the requester to check whether any of the respon-
der certificates has been previously fetched and cached.
If that is not the case, certificates are retrieved via the
GET CERTIFICATE/CERTIFICATE message pair. After obtain-
ing the responder’s certificate, the requester may challenge
the responder to prove that it is the rightful owner of
the corresponding public/private keys through the CHAL-
LENGE/CHALLENG AUTH message pair. In this process,
the responder may also indicate in its CHALLENG AUTH
response that it would like to perform a mutual authen-
tication, as long as this feature is supported by both
responder and requester. Mutual authentication follows
the same procedure employed when authenticating the
responder toward the requester (i.e., with the messages
for fetching digests, requesting certificate, and issuing a
challenge), but reversing the roles of each communicat-
ing component. Since the responder typically does not
send asynchronous messages to the requester, though,
encapsulated messages are used instead: the requester
sends a GET ENCAPSULATED REQUEST message to start
the communication; the responder then answers with a
ENCAPSULATED REQUEST message, which triggers a DE-
LIVER ENCAPSULATED RESPONSE reply by the requester;
finally, the responder acknowledges the reception of this lat-
ter message by means of a ENCAPSULATED RESPONSE ACK
message, which may itself contain another encapsulated
request if necessary.

A measurement may represent firmware, software, or
some configuration data of an endpoint that helps to
ensure that it is not counterfeit. The requester sends
GET MEASUREMENTS message to request measurements,
which is answered by a MEASUREMENTS message. The
requester usually demands the responder to sign MEASURE-
MENTS messages, although such a signature may also be
omitted.

The requester can also issue a KEY EXCHANGE mes-
sage aiming to initiate a secure handshake for estab-
lishing a shared secret key. The responder then an-
swers with a KEY EXCHANGE RSP message. The hand-
shake is finalized by a FINISH/FINISH RSP message pair,
when the secret key computed by both endpoints is
confirmed and bound to the corresponding secure ses-
sion established between them. These messages rely on
the responder being provisioned with at least one cer-
tificate chain considered valid by the requester. Alterna-
tively, if a pre-shared key is used instead of certificates,
the messages above are replaced by their PSK counter-
parts, i.e., PSK KEY EXCHANGE, PSK KEY EXCHANGE RSP,
PSK FINISH, and PSK FINISH RSP.

After a session is established, the underlying keys can be
updated with the KEY UPDATE and KEY UPDATE ACK mes-
sages. After a session is established, the underlying keys can
be updated with the KEY UPDATE and KEY UPDATE ACK
messages; both requester and responder may initiate this
key update process. Also, if a session timeout period has
been configured, HEARTBEAT/HEARTBEAT ACK messages
can be used to keep the session alive even in the ab-
sence of regular traffic. When the session must be termi-
nated, though, this can be accomplished by means of the

https://github.com/rcaalves/spdm-benchmark
Léon GALL



3

Fig. 1. SPDM message flow. Extracted from [5].

END SESSION/END SESSION ACK messages.
Finally, exceptions during the protocol execution can

be flagged by ERROR messages, such as INVALIDREQUEST,
BUSY, and DECRYPTERROR.

3 SPDM OVERHEAD ASSESSMENT

The goal of this experiment is to assess the overhead intro-
duced by each phase of the SPDM message flow. To this end,
we developed a random number generator (RNG) device
that supports two operation modes: 1) secure mode, which
follows the SPDM specification, and 2) clear-text mode,
without any SPDM-related security capabilities.

3.1 Method

We used a virtualized experimental setup based on the
QEMU emulation software [6]. The virtual machine run
by QEMU contains an instance of our RNG device, which
implements an SPDM responder.

The RNG was designed as a PCI device with a memory-
mapped input/output (MMIO) region to send and receive
SPDM messages, as well as to exchange control information.
After initializing, the RNG waits until a device driver writes
a request message to the MMIO region, and then indicates

that the message is ready by writing to a control register. Af-
ter reading the message, the RNG device sends an interrupt
signal to announce that the response can be read from the
MMIO region.

Non-SPDM transactions were used as a baseline for
estimating the overhead introduced by SPDM to this simple
procedure. These transactions occur over specific memory
region addresses, distinct from the region used for SPDM
transactions.

We implemented an SPDM requester as a device driver
for our RNG on a Linux-based operating system. This
device driver is built upon the userspace I/O system (UIO).
Figure 2 depicts a schematic of our setup. We note that, at
least in principle, SPDM should be oblivious to the oper-
ating system. Nonetheless, the setup described provides a
controlled and malleable environment, suitable for yielding
meaningful performance results from our prototype imple-
mentation.

Fig. 2. System architecture

In our experiments, the interaction between the RNG
device and its device driver was conducted following five
steps: 1) SPDM local initialization (memory allocation, li-
brary configuration); 2) SPDM connection, comprising ver-
sion, capabilities, and algorithms negotiation; 3) SPDM
authentication, including digest, certificate, and challenge
messages; 4) measurement retrieval; and 5) application
phase.

We analyzed the measurement messages in two ways:
retrieving each measurement individually and retrieving
all of them at once. In the first case, the requester first
inquires about the total number of measurements the re-
sponder holds before retrieving each one individually, while
requiring a signature only for the last one. Either way,
the responder was configured to hold 5 different measure-
ments, following the DMTF measurement block specifica-
tion (SPDM specification v1.1.0 [5], Section 10.11.1.1). Each
block contains 128 bytes of dummy data.

The application phase is also divided in five steps: 1) the
endpoints agree on a shared key; 2) a heartbeat message is
transmitted; 3) the session key is updated; 4) the requester
asks for a random number from the responder; and 5) the
session is concluded. The session establishment process was
tested both in the pre-shared key (PSK) and in the certificate-
based settings.

We used the kernel’s performance event infrastructure
API to extract performance indicators [7], allowing us to as-

Léon GALL



4

sess each message individually. We focused on two metrics
provided by the perf API: number of cycles, and total CPU
time. CPU time provides a tangible sense of how long a task
takes to finish. However, it depends on the underlying hard-
ware and it can be deceiving in an emulated environment.
The number of cycles, on the other hand, is a more generic
metric in comparison with CPU clock time measurements,
although it remains platform dependent. Furthermore, we
configured perf to exclude from the count any event that
occurs in kernel space, at the hypervisor, or at the guest
machine (for responder only). It is also worth mentioning
that the perf API does not give perfect measurements, since
the results provided include some overhead introduced by
itself; this influence is, however, observed mostly on short
measurements.

SPDM capability was provided by the libspdm open
source library [8]. For better reproducibility, libspdm
compile-time and execution-time parameters used in the
experiment are listed in Table 1.

TABLE 1
libspdm parameters

Parameter Value

SPDM protocol version 1.1
libspdm version commit dc48779

libspdm build options x64, release
Underlying crypto library MbedTLS

Requester signature algorithm TPM ALG RSAPSS 3072
Responder signature algorithm TPM ECC NIST P384
Measurement hash algorithm TPM ALG SHA384

DHE algorithm SECP 384 R1
AEAD algorithm AES 256 GCM

Key scheduling algorithm As defined by SDPM v1.1
Mutual authentication enabled

As emulation environment, we used QEMU ver-
sion 4.1 [6]. A QEMU virtual machine is specified by
command-line options: hard drives, CPU, network cards,
along with other options. The chosen guest operating sys-
tem is based on qemu_x86_64_defconfig preset config-
uration from Buildroot1 version 2020.02.9, which contains
Linux Kernel version 4.19. Also for better reproducibility,
the exact QEMU command-line options used in the experi-
ment are listed below:

• -enable-kvm: enables KVM (Kernel-based Virtual
Machine), which enhances virtual machine perfor-
mance. Needed so the guest kernel’s performance event
infrastructure is granted access to hardware counters;

• -cpu qemu64,pmu=on: selects emulated CPU model
and enables Performance Monitoring Unit (PMU),
needed to access performance counters;

• -device spdm: attaches an SPDM RNG device to the
virtual machine;

• -kernel bzImage: selects the kernel booted by the
virtual machine. We used Linux Kernel version 4.19
from Buildroot;

• -drive file=rootfs.ext2,if=ide,format=raw:
indicates the root file system used in the VM,

1. Available at https://buildroot.org/

using IDE interface, and raw format. We used the root
file system from Buildroot;

• -append "console=ttyS0 rootwait root=/dev/sda":
kernel command-line options. Sets the default console
output, waits until root device is ready, and sets the
root file system partition.

• -m 1024: sets the amount of RAM at the virtual ma-
chine, in megabytes

The host system ran a Linux-based system on an Intel
i7-10700KF processor, with 3800MHz clock, 8 Cores, 16 log-
ical processors, and 32 GB of RAM. Ideally, the CPU clock
should be constant while performing benchmarks. Hence,
aiming to approach this ideal scenario, the following options
were disabled at the machine BIOS configuration menu:
turbo boost, speed step, speed shift, hyper threading, and
CPU C states.

Each of execution step was performed 100 times, aiming
to obtain statistical confidence. The graphs shown in Sec-
tions 3.2 and 3.3 present the average value of all runs along
with 95% confidence intervals.

3.2 Results: requester
Requester results are presented in Figure 3, for both met-
rics hereby covered: cycle count and execution time. As
expected, most of the overhead was due to messages related
to the authentication process.

Fig. 3. Requester execution time and number of cycles.

Figure 3 shows that the most time consuming messages
are GetCertificate and KeyExchange, taking respec-
tively 17.4 and 13.5ms, or 47.9 and 45.9 million cycles on
average. The GetCertificate procedure is expected to be
slow since (1) it may require several messages to finish, and
(2) by the end of it, the retrieved certificate must be verified
for correctness, which requires a few signature verifications.
KeyExchange, in turn, involves the generation of a sym-
metric key pair by means of a Diffie-Hellman key exchange.
Also, our analysis considers that the communication parties
engage in mutual authentication, which can be considered a
worst case scenario in terms of performance.

The next most time consuming messages are
GetMeasurements and Challenge, both of which
take around 23.5 million of cycles to execute. The reason

https://buildroot.org/
Léon GALL

Léon GALL



5

is that, in both cases, this overhead refers essentially to
their underlying signature verification procedure, so it
is reasonable for them to take roughly the same amount
of time. Interestingly, tough, we noticed that retrieving
measurements all at once is slightly faster than retrieving
measurements one by one. Specifically, the time taken in
the former case is 7.9ms, against 9.0ms in the latter. This
represents a time gain of 11.9%, while the number of cycles
is reduced by 2.8%.

The usage of Pre Shared Keys (PSK), on the other hand,
considerably reduces the burden of establishing session
keys. The precise difference is that KeyExchangePSK takes
only 1.0ms (4.3 × 105 cycles), which is only a fraction of
the 13.5ms (4.6 × 107 cycles) observed in its asymmetric
counterpart. Also, using a PSK setting allows components
to forego GetCertificate and Challenge messages,
further speeding up the process.

All other messages take from 161 up to 738us on aver-
age, depending on their underlying complexity, so they are
unlikely to become bottlenecks in practice. Conversely, we
notice that the task of loading the certificate from the disk
can take a significant amount of time: 1.5ms, or 3.6 × 106

cycles, on average.
Once a secure session is established, we were able to

retrieve a random number from the SPDM-enabled RNG
device in 415us (1.6 × 105 cycles). Conversely, in our
SPDM-free baseline execution the same operation took 63us
(3.2× 104 cycles) on average. This means that SPDM led to
a 6.4-fold increased in terms of time, or a 4.8-fold increase
in number of cycles. This result is not surprising, though,
when we take into account the remarkable simplicity of the
device evaluated in our tests. After all, our simple RNG was
designed to be extremely fast, so even cryptographic oper-
ations that are quite lightweight in absolute numbers, like
symmetric encryption, become comparatively expensive.

3.3 Results: responder

Figure 4 shows metrics extracted from the Responder. As
shown in this figure, KeyExchange is the most expensive
message to process, taking 10.1ms, or 3.8 × 107 cycles.
As expected, though, adopting a PSK setting reduces the
KeyExchange overhead to only 52us or 1.8× 105 cycles.

In comparison with the requester, the responder handles
GetCertificate messages faster than KeyExchange.
The reason behind this behavior is that most of the cryp-
tographic processing of GetCertificate remains at the
requester side. At the responder, GetCertificate takes
17us, or 4.2× 104 cycles.

Similarly to the requester, GetMeasurements and
Challenge are nearly tied as the second most time con-
suming operations at the responder, taking approximately
13 million cycles or 3.5ms. Once again, retrieving measure-
ments all at once was slightly faster than retrieving one by
one. More precisely, those operations take respectively 3.5
and 3.6ms, which means a 1.5% gain in terms of time costs
(or a 1.1% reduction in the number of cycles).

The largest overhead observed at the responder, how-
ever, was the time to load certificates from the disk, which
took 13.8ms or 5.2 × 107 cycles. The discrepancy between
responder and requester is caused by essentially by our

Fig. 4. Responder execution time and number of cycles.

configuration, where each party uses a different signature
algorithm. More precisely, the responder uses a signature
algorithm based on elliptic curves, which takes longer to
verify than the RSA-based signatures generated by the
requester.

Processing a random number request without SPDM
took the responder 1.8us, or 533 cycles. Adding the SDPM
layer increases this cost to 13.8us, or 4.2 × 104 cycles. The
processing of all other messages took from 6.8us to 58us (or
1.5× 104 to 2.1× 105 cycles), adding a moderate amount of
overhead to the protocol.

4 HARD DRIVE USE CASE

This experiment was designed to assess the impact SPDM
poses on system performance from a user perspective.
Among the possible peripherals typically found in comput-
ing systems, we chose to secure the communication between
CPU and hard drive, both due to its importance and to the
availability of tools for conducting such performance tests.
Specifically, we compared an SPDM-equipped hard drive to
a regular, unsecured one, considering as metrics: boot time,
read speeds, and write speed, under various workloads.

4.1 Implementation details
Due to the lack of off-the-shelf SPDM-enabled hardware,
we once again resorted to emulation. One more time, we
used QEMU as emulation software, since it is equipped
with a variety of open source virtual devices, including hard
drives. After evaluating the available options, we chose to
work with the virtio_blk hard drive. The guest operating
system, in turn, is a custom Buildroot-based Linux distri-
bution. Its kernel contains a native virtio_blk driver,
compatible with QEMU’s virtio_blk hard disk. Both
driver and hard disk were then modified to incorporate
SPDM security functionalities, as provided by libspdm.

In short, the interaction between kernel driver and vir-
tual device is as follows: 1) the operating systems sends
read/write requests2 to the driver queue (queue_request

2. There are other kinds of operations, but we focus on reading and
writing for illustrative purposes

Léon GALL



6

function); 2) the request is executed and transferred from
the guest virtual machine’s kernel space to the virtual disk’s
request handler, triggering the handle_request function;
3) the request is forwarded to the host’s disk; 4) QEMU
receives the request results from the host OS (rw_complete
callback function); 5) QEMU forwards the results to the
virtio_blk driver, activating the request_done func-
tion; 6) the guest kernel is informed that the I/O operation
is complete. The diagram in Figure 5 illustrates these steps.

Fig. 5. virtio_blk driver and virtual hardware interaction: 1) Guest
operating system request, 2) Driver request to virtual hardware, 3)
Request forwarded to host, 4) Request result at virtual hardware, 5)
Request result at driver, 6) Request finished

The aforementioned interaction was adapted to follow
the SPDM workflow. In the adaptation, the driver fills the
role of the SPDM requester, while the hard drive takes
the role of SPDM responder. Requester and responder are
required to bootstrap the SPDM protocol before heading
into the application phase, in which read/write requests are
encrypted.

The virtio_blk hard drive initializes internal SPDM
variables and loads certificates during the virtual machine
initialization (in the realize function). After calling this
function, the hard drive is ready to process incoming SPDM
messages.

The kernel driver performs a similar initialization when
a new virtio_blk device is detected, using the probe
function. At that point, not only are local variables initial-
ized, but the whole SPDM bootstrap procedure also takes
place. As a result, all SPDM messages, from GET VERSION to
KEY EXCHANGE, are exchanged at this moment. All SPDM
messages are encoded similarly to regular read/write re-
quests, but using a special operation code. By the end of
probe function, driver and hard disk obtain a symmetric
key they can use for encrypting application data.

Incoming write requests are now encrypted as part of
the queue_request function in the kernel driver, and de-
crypted at the handle_request function when it reaches
the virtual disk. Analogously, a read request is encrypted
after the data is retrieved from the host by means of the
rw_complete function (on QEMU), and decrypted by the
kernel driver as part of the request_done function.

Within both kernel and QEMU, SPDM functionalities are
provided by libspdm using the same parameters employed
in Section 3.1, as summarized in Table 1. Minor adjustments
were needed to deal with stack overflow issues when calling

some libspdm functions, though, caused by the limited
stack space available within the Linux kernel.

4.2 Method
In our experiments, we used a few widely employed tools
and benchmarking utilities to assess hard drive perfor-
mance: dd, hdparm, ioping, bonnie++, fio, which are
further discussed separately at the end of this section. All
tests were executed on a QEMU virtual machine, on a sepa-
rately attached hard drive using the virtio_blk interface.
Once again, the following CPU attributes were disabled at
the machine BIOS configuration menu: turbo boost, speed
step, speed shift, hyper threading, and CPU C states. For
each tool, two batches of experiments were executed: 1) a
baseline setting, with the unmodified device and driver; and
2) an SPDM-enabled setting, with our modified implemen-
tations. In both scenarios, the following QEMU command
line parameters were used:

• -enable-kvm: enables KVM (Kernel-based Virtual
Machine), which enhances virtual machine perfor-
mance;

• -cpu qemu64: for selecting the emulated CPU model;
• -kernel bzImage: selects the kernel booted by the

virtual machine. We used Linux Kernel version 4.19
from Buildroot;

• -drive file=rootfs.ext2,if=ide,format=raw:
indicates the root file system used in the VM,
using IDE interface, and raw format. We used the root
file system from Buildroot;

• -append "console=ttyS0 rootwait root=/dev/sda":
kernel command-line options. Sets the default console
output, waits until root device is ready, and sets the
root file system partition;

• -m 1024: virtual machine RAM, in megabytes;
• -drive file=benchmarkdisk,if=virtio,format=raw:

appends a virtio-based additional hard drive, which is
the target of our experiments.

All experiments were conducted to reach statistical sig-
nificance. Some of the tools used provide statistical data,
while others that do not were run multiple times and
had their outcomes summarized manually by the research
team to achieve this goal. The usage, metrics provided, and
output processing for the five tools employed are described
in what follows.

4.2.1 dd (from BusyBox v1.31.1)
this is a commonplace utility found on Unix-like operating
systems. Its primary usage is to transfer raw data from one
destination to another.

In our experiments, we used dd to test write speed.
Specifically, we read data from /dev/zero, which is a fast
source of dummy data, and wrote it to a file on the target
disk.

We tested writing 2 gigabytes of data to the disk accord-
ing to two approaches: in small blocks of 4KB each, or in
512MB-long blocks. In all cases, we enforced that the data
was physically written on the device before the commands
returned with the conv=fsync command line option. The
write speed is calculated by the quotient between the total
amount of data written and the time it takes to complete the

Léon GALL



7

operation. We used the time command to measure the exe-
cution time with dd. For each block size, the results hereby
presented correspond to the average for 10 repetitions of the
writing procedure.

4.2.2 hdparm (from BusyBox v1.31.1)
this command line tool is also commonly found in Linux
systems. Besides using it to set and read hard drive param-
eters, we also explores its -t option switch, which provides
buffered reading speed estimates. The tests with this tool
were run a total of 10 times.

4.2.3 ioping v0.9
this is a tool for monitoring disk latency. It works similarly
to the well known tool from the network domain ping,
i.e., by sending short requests to the disk and measuring
how long they take to be fulfilled. We used the default
parameters while testing both reading and writing latency,
executing a total of 10 pings for each operation.

4.2.4 bonnie++ v1.04
this is a purpose-built benchmarking toolkit for hard drives.
It automatically performs write, rewrite, and read tests.
The metrics extracted from this tool were read and write
speed measured in kB/s. The main command line options
employed were:

• -x 10 runs the benchmark 10 times;
• -s 2G specifies total amount of read/write data to 2

gigabytes;
• -n 0 disables file creation test, which is of little interest

to our scenario because since this relates mostly to the
file system;

• -f skips per-character tests, since our goal was to test
HD behavior that is close to common system usage;

• -b specifies unbuffered writes,
• -D uses the O_DIRECT flag, which attempts to perform

requests synchronously.

4.2.5 fio v3.23
this is a highly customizable benchmarking tool for hard
drives. Its main goal is to enable the creation of a workload
as close as possible to the desired test case. Among the
large set of metrics provided by this tool, we focused on
I/O operations per second (iops). The main command line
options used were:

• --size=<size> sets the portion of the disk that will
be used to perform the tests. We used 2 GB in all
experiments,

• --io_size=<size> total amount of data used in each
I/O transaction. We used 5 GB in all experiments,

• --rw=<option> the type of I/O pattern. Common
values are read (sequential reads), write (sequential
writes), randread (random reads), and randrw (ran-
dom reads and writes mixed),

• --blocksize=<size> the size of each individual
operation. We used 1024 KB for sequential operation
patterns and 4 KB for random operation patterns,

• --fsync=<n> issues a synchronization command at
every <n> writes. We configured <n> as 10,000 for se-
quential operation patterns and 1 for random operation
patterns.

The aforementioned set of command line options yields
four different tests performed with the fio tool: 1) sequen-
tial reads with 1024 KB blocks; 2) sequential writes with 1024
KB blocks; 3) random reads with 4 KB blocks; and 4) mixed
reads and writes with 4 KB blocks.

4.2.6 boot time
contrary to the other metrics hereby evaluated, we did not
use any specialized tool to measure the system boot time.
Instead, we modified the guest’s initialization scripts to
log the system uptime as the last step of the initializing
process. The system uptime was obtained from reading
/proc/uptime, a file that counts the seconds elapsed from
the moment the kernel takes control of the CPU, yielding a
precision of hundredths of a second. We collected a total of
15 boot times.

4.3 Experimental Results

This section presents and discusses the results obtained
from each of the benchmark tools used.

4.3.1 dd

Fig. 6. Measuring data rate of an SPDM-enabled hard disk: dd

Figure 6 shows the results obtained from the dd com-
mand. This experiment assesses the speed of writing data
sequentially, which reduces the number of seek operations
executed during the test. Hence, besides providing insights
on SPDM’s impact over disk writing speed when such
workloads are prevalent, it also serves as baseline for sce-
narios where random disk accesses are more common.

In general, writing small blocks tends to be slightly
slower than writing large blocks, which was observed in our
results (≈1% slower). In both cases, though, SPDM caused
a ≈68% slowdown in writing speed.

4.3.2 hdparm

Quoting its manual, the hdparm test provides “an indication
of how fast the drive can sustain sequential data reads under
Linux, without any filesystem overhead.”. Without SPDM, the
average read speed observed was 3.9GB/s, fairly close to
the nominal 6GB/s speed of the hard drive, considering the
virtualization overhead. Introducing SPDM, though, drasti-
cally decreases the value indicated by hdparm to 28kB/s,
which translates to a 99.3% speed degradation.

Léon GALL

Léon GALL



8

4.3.3 ioping

Figure 7 shows read and write latency results according to
ioping. Focusing on average results only, the introduction
of SPDM increased the reading latency by 208%, while it
decreased writing latency by 39%. However, the obtained
confidence intervals in both cases were very large, making
it hard to draw statistically relevant conclusions with this
tool.

Fig. 7. Measuring latency of an SPDM-enabled hard disk: ioping

4.3.4 bonnie++

The results from bonnie++ (Figure 8) indicate a harsh
loss of performance when SPDM is introduced. The tests
performed by this tool consist of reading and writing 200Mb
files to the disk. The writing portion is somewhat similar
to the one performed by the dd writing test, but spread
across multiple files. However, the numbers show a deeper
performance chasm than what was observed with dd: the
writing speed drops from 115MB/s to 23MB/s (a 79.8%
reduction). The loss of reading performance is even more
significant: from 2.0GB/s to only 28MB/s. It makes sense
that both reading and writing speed drop to the same order
of magnitude, since the system bottleneck is the same in
both tests – the processing cost of encrypting/decrypting
every transaction.

Fig. 8. Measuring data rate of an SPDM-enabled hard disk: Bonnie++

4.3.5 fio

Results from the fio tool are presented in Figure 9, where
the unit of measure is input/output operations per second

(iops). The sequential tests (i.e., those labeled ”sequential
read” and ”sequential write”) consider large blocks while
requesting synchronization sparsely. In this case, the pat-
tern observed is similar to the one obtained with dd and
bonnie++: there is a significant loss of performance, with
the number of iops in the SPDM-enabled disk being less
than 1% of the baseline value.

Fig. 9. Measuring transaction rate of an SPDM-enabled hard disk: fio

The performance degradation becomes less prominent
when randomness is introduced. For these tests, the block
size was 4kB, and requests to synchronize data were sent
after every operation. When performing random read-only
tests, the performance drops to 25.0% of the baseline value.
Mixing random reading and random writing (in Figure 9,
label ”random rw read” refers to read speed, and label
”random rw write”, refers to read speed) yields virtually the
same level of iops: introducing SPDM causes a reduction
of approximately 1.3% in both cases, but the standard
deviation width prevents us from attesting statistical dif-
ference. We conjecture that the reason behind this trend is
the bottleneck shifting from the cryptographic operations
to the physical disk operations, namely the frequent seek
operations to address the random request locations.

4.3.6 Boot time
During OS initialization, the SPDM-enabled HD driver per-
forms all SPDM bootstrapping procedures, including load-
ing certificates and establishing a symmetric key. Our test
shows that these procedures increase OS boot time by 66ms
(3.48s to 3.55s), which resonates with the results presented
in Section 3.

4.3.7 Summary
Table 2 summarizes all numeric values discussed in this
section.

5 RELATED WORK

SPDM is a fairly new standard, so its impact and benefits
have not been thoroughly evaluated in the literature. Nev-
ertheless, since SPDM’s goal is to secure a system from early
boot until OS runtime, it relates to other approaches that fo-
cus on pre-OS stages. In particular, SPDM is somewhat close

Léon GALL



9

TABLE 2
Hard drive benchmarks numeric results

Average
W/ SPDM

Standard
Deviation

Average
w/o SPDM

Standard
Deviation

dd small
blocks [kB/s] 4.66E+04 466 1.49E+05 1.27E+04

dd big
blocks [kB/s] 4.71E+04 1.01E+03 1.47E+05 1.86E+04

ioping read
latency [us] 234 12.0 76.0 4.00

ioping write
latency [us] 1.19E+04 5.98E+03 1.95E+04 1.24E+04

hdparm read
speed [kB/s] 2.81E+04 126 3.93E+06 7.29E+05

bonnie read
speed [kB/s] 2.83E+04 131 2.02E+06 2.89E+04

bonnie write
speed [kB/s] 2.32E+04 30.1 1.15E+05 4.22E+03

fio sequential
read [iops] 27.0 0.315 5.52E+03 86.2

fio sequential
write [iops] 26.9 0.892 2.74E+03 1.43E+03

fio random
read [iops] 5.06E+03 15.6 2.02E+04 1.60E+02

fio random
rw read [iops] 22.9 8.63 23.2 8.90

fio random
rw write [iops] 23.0 2.70 23.3 2.75

boot time [s] 3.55 1.04 3.48 1.04

to techniques often called “secure boot” or “trusted boot”,
whose goal is to ensure that only legitimate initialization
firmware and bootloaders are executed.

The literature includes a number of studies on secure
boot performance. For example, Profentzas et. al [9] evaluate
the overhead of software-based and hardware-based secure
boot on embedded platforms, namely, raspberry pi and
beaglebone. Their study shows that the secured system
presents an increased boot time ranging from 4% to 36%,
depending on the technique and algorithms employed.

In a similar fashion, Khalid et. al [10] proposed a trusted
boot architecture for embedded systems based on an inde-
pendent security processor. Their design was implemented
on FPGAs, and their experiments showed that their secured
boot process increases boot time by 25%, considering a
Linux system customized for their needs.

The study by Yin et. al [11] brought attention to failure-
prone NAND flash chips, commonly used to store boot-
loaders in embedded platform. The authors propose a re-
dundancy scheme that verifies the integrity of bootloader
firmware code and falls back to an alternative copy in case
of checksum mismatch. Their experiments show that total
boot time is increased by 65% if the bootloader is intact.
Otherwise, it is increased by 255%, since the backup code
has to be copied and verified once again.

Kumar et. al [12] implemented a secure boot design
based on post-quantum cryptography (PQC). Their main
concern is that PQC algorithms require more computing
resources than classic algorithms, which led them to create
a custom FPGA implementation. Their experiments show
that their implementation of the chosen PQC algorithm is at
least 10 and at most 30 times slower than the baseline elliptic
curve algorithm, depending on the level of parallelism.

Contrasting with the previous studies, Dasari and Madi-
pagda [13] stands out for being one of the few works in
the literature that include an analysis of SPDM. Specifically,
the authors propose an architecture to detect component

tampering in end products, producing a birth certificate
comprising the platform as a whole. They use SPDM as
part of their solution to retrieve firmware hashes (mea-
surements) from the end product individual components.
However, their solution is based on a older version of
SPDM, which did not yet support session key establishment.
Consequently, the solution does not prevent passive snif-
fers from eavesdropping sensitive information exchanged
among components. At the same time, and contrary to this
work, there is no evaluation of the impact brought by SPDM
on application level performance.

When considering the particular scenario of protecting
communications from/to hard disks, this works shares a
relationship with studies covering disk encryption tech-
nologies. Examples include works that focus on the energy
consumption of full disk encryption technologies [14], on
the impact of different cryptographic algorithms [15], or
on specific types of devices [16], [17], [18]. There are also
more holistic studies, like [19], where architectures includ-
ing secure boot and hard drive encryption mechanisms are
proposed (in this particular case, for mobile devices). Like
the present study, such works give insights on how en-
cryption impacts communications with hard disks, covering
similar metrics. The similarity ends there, though. After
all, SPDM’s secure sessions are meant to protect in-transit
messages, not only the actual data written to or read from
the disk. Therefore, SPDM cannot be used as an alternative
to disk encryption, since all encrypted data sent to the disk
is decrypted upon reception. Also, if disk encryption tools
are employed together with SPDM, the protocol remains
oblivious to the fact that it is protecting payloads that are
already in encrypted form.

All in all, we note that the aforementioned studies do
not tackle the impact of SPDM, and its corresponding run-
time security between components, at the application level.
Therefore, their results are not directly comparable to the
experiments presented herein. To the best of our knowledge,
this is the first work to assess the impact of SPDM’s security
overhead on userspace metrics.

6 FINAL REMARKS

The Security Protocol and Data Model (SPDM) aims at pro-
viding standardized ways for component (mutual) authenti-
cation, firmware integrity check, and secure communication
establishment.

Although these functionalities are important to increase
the security level of modern computing systems, it is ex-
pected to bring performance penalties. Our goal in this
paper is to assess the magnitude of SPDM’s performance
impact. To the best of our knowledge, this is the first study
that takes on this endeavor.

In summary, our results show that the overhead in-
troduced by the most time-consuming SPDM message is
17.4ms (47.9 million cycles), while the fastest messages take
only a few microseconds. According to our experiments, the
typical SPDM bootstrap takes approximately 50ms to run.
Regarding the hard drive benchmarks, we noticed that the
specific workload greatly influences the final outcomes.On
sequential read or write operations, data encryption be-
comes the bottleneck, and heavily affects performance.

Léon GALL

Léon GALL



10

On sequential read or write operations, data encryption
becomes the bottleneck, and heavily affects performance
(e.g., reading speed dropped from 2.0GB/s to 28MB/s in
one run of the benchmark). That is not the case, though,
for workloads that are mainly comprised of random read
and write operations scattered throughout the disk. For such
workloads, we found no significant performance differences
between the secured system and the baseline system, since
the bottleneck is the physical movement of disk heads and
switching between reading and writing modes.

As future work, we intend to explore further the per-
formance impacts of deploying SPDM in modern systems.
This includes integrating SPDM with other classes of com-
monplace devices, such as network cards, and evaluating
the protocol’s overhead at earlier stages of the boot process.

ACKNOWLEDGMENT

The authors would like to thank Hewlett Packard Enterprise
for supporting this project. FAPESP 2020/09850-0.

REFERENCES

[1] A. Cui, M. Costello, and S. J. Stolfo, “When firmware modifications
attack: A case study of embedded exploitation,” in Network and
Distributed System Security Symposium (NDSS’13). The Internet
Society, 2013.

[2] D. Brown, T. Walker III, J. Blanco, R. Ives, H. Ngo, J. Shey, and
R. Rakvic, “Detecting firmware modification on solid state drives
via current draw analysis,” Computers & Security, vol. 102, p.
102149, 2021.

[3] B.-C. Choi, S.-H. Lee, J.-C. Na, and J.-H. Lee, “Secure firmware
validation and update for consumer devices in home networking,”
IEEE Transactions on Consumer Electronics, vol. 62, no. 1, pp. 39–44,
2016.

[4] J. Menn, “NSA Can Hide Spyware in Hard-Disk
Firmware,” https://www.vox.com/2015/2/17/11559082/
nsa-can-hide-spyware-in-hard-disk-firmware, accessed: 2021-12-
16.

[5] DMTF, “DSP0274: Security protocol and data model (SPDM)
specification, v.1.1.0,” Distributed Management Task Force, Tech.
Rep., Jul 2020, www.dmtf.org/sites/default/files/standards/
documents/DSP0274 1.1.0.pdf.

[6] QEMU, “QEMU - a generic and open source machine emulator
and virtualizer,” https://www.qemu.org/.

[7] J. Kukunas, “Chapter 8 - perf,” in Power and Performance.
Boston: Morgan Kaufmann, 2015, pp. 137–165. [Online].
Available: https://www.sciencedirect.com/science/article/pii/
B9780128007266000082

[8] DMTF, “libspdm is a sample implementation that follows
the DMTF SPDM specification,” https://github.com/DMTF/
libspdm/.

[9] C. Profentzas, M. Günes, Y. Nikolakopoulos, O. Landsiedel, and
M. Almgren, “Performance of secure boot in embedded systems,”
in 2019 15th International Conference on Distributed Computing in
Sensor Systems (DCOSS), 2019, pp. 198–204.

[10] O. Khalid, C. Rolfes, and A. Ibing, “On implementing trusted boot
for embedded systems,” in 2013 IEEE International Symposium on
Hardware-Oriented Security and Trust (HOST), 2013, pp. 75–80.

[11] H. Yin, H. Dai, and Z. Jia, “Verification-based multi-backup
firmware architecture, an assurance of trusted boot process for the
embedded systems,” in 2011IEEE 10th International Conference on
Trust, Security and Privacy in Computing and Communications, 2011,
pp. 1188–1195.

[12] V. B. Y. Kumar, N. Gupta, A. Chattopadhyay, M. Kasper, C. Krauß,
and R. Niederhagen, “Post-quantum secure boot,” in 2020 Design,
Automation Test in Europe Conference Exhibition (DATE), 2020, pp.
1582–1585.

[13] S. Dasari and V. Madipadga, “Aegis: A framework to detect
compromised components in the supply chain of information
technology infrastructure,” in 2020 International Workshop on Big
Data and Information Security (IWBIS), 2020, pp. 159–164.

[14] A. Fujimoto, P. Peterson, and P. Reiher, “Comparing the power
of full disk encryption alternatives,” in 2012 International Green
Computing Conference (IGCC). IEEE, 2012, pp. 1–6.

[15] M. Brož, M. Patočka, and V. Matyáš, “Practical cryptographic data
integrity protection with full disk encryption,” in IFIP International
Conference on ICT Systems Security and Privacy Protection. Springer,
2018, pp. 79–93.

[16] M. Petschick, “Full disk encryption on unmanaged flash devices,”
Master’s thesis, Technische Universität Berlin, Germany, 2011.

[17] B. Bosen, “Full drive encryption with Samsung solid state drives,”
Trusted Strategies LLC, Tech. Rep., 2010.

[18] ——, “FDE performance comparison - hardware versus software
full drive encryption,” Trusted Strategies LLC, Tech. Rep., 2010.

[19] R. Mayrhofer, “An architecture for secure mobile devices,”
Security and Communication Networks, vol. 8, no. 10, pp. 1958–1970,
2015. [Online]. Available: https://onlinelibrary.wiley.com/doi/
abs/10.1002/sec.1028

Renan C. A. Alves received the B.Sc. degree
in electrical engineering with emphasis on com-
puter and digital systems, the M.Sc. degree, and
PhD from the Universidade de São Paulo, Brazil,
in 2011 and 2014, and 2020, respectively, where
he is currently a post-doc and part-time profes-
sor. His main research interests include proto-
col modeling, performance analysis, internet of
things, and cybersecurity.

Bruno C. Albertini Graduated in Computer En-
gineering from the Federal University of Rio
Grande (2005), master’s degree (2007) and PhD
in Computer Science from the State University of
Campinas (2012) in the area of Computer Archi-
tecture. He currently holds the position of Profes-
sor at the Department of Computer Engineering
and Digital Systems (PCS) of the Polytechnic
School of the University of São Paulo (EPUSP).
Has experience in Computer Engineering, with
emphasis on Hardware, working mainly on the

following topics: hardware simulation, computational reflection, platform-
based hardware design, computer architecture, wireless sensor net-
works, embedded systems, cryptohardware and AI in hardware. He
joined LAA (Laboratory of Agricultural Automation) and BioComp in
2014, and has since applied his research to the environment, biodiver-
sity and agriculture.

Marcos A. Simplicio Jr. is an Associate Profes-
sor at Escola Politecnica, Universidade de Sao
Paulo (USP). He has a Master degree (2006)
in Engineering conferred by the Ecole Centrale
des Arts et Manufactures (Ecole Centrale Paris),
France, and received his Computer Engineering
PhD from USP in 2010. His main research in-
terests are cryptography, cybersecurity, and dis-
tributed systems.

https://www.vox.com/2015/2/17/11559082/nsa-can-hide-spyware-in-hard-disk-firmware
https://www.vox.com/2015/2/17/11559082/nsa-can-hide-spyware-in-hard-disk-firmware
www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://www.qemu.org/
https://www.sciencedirect.com/science/article/pii/B9780128007266000082
https://www.sciencedirect.com/science/article/pii/B9780128007266000082
https://github.com/DMTF/libspdm/
https://github.com/DMTF/libspdm/
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1028
https://onlinelibrary.wiley.com/doi/abs/10.1002/sec.1028

	Introduction
	SPDM
	SPDM overhead assessment
	Method
	Results: requester
	Results: responder

	Hard drive use case
	Implementation details
	Method
	dd (from BusyBox v1.31.1)
	hdparm (from BusyBox v1.31.1)
	ioping v0.9
	bonnie++ v1.04
	fio v3.23
	boot time

	Experimental Results
	dd
	hdparm
	ioping
	bonnie++
	fio
	Boot time
	Summary


	Related Work
	Final remarks
	References
	Biographies
	Renan C. A. Alves
	Bruno C. Albertini
	Marcos A. Simplicio Jr.


