Summary of Securing hard drives with the Security Protocol and Data
Model (SPDM)

The goal of this article is to demonstrate a working prototype of an SDPM-enabled hard drive,
evaluating its protected communication with the operating system. To assess the overhead
introduced by SPDM (version 1.1.0) in the scenario, they tested their solution against an
unmodified, unsecured hard disk on an emulated environment.

Project design

Securing the communication between the operating system and a peripheral essentially
requires altering the device’s firmware and writing a matching device driver.

In order to provide a proof-of-concept, they used a virtualized environment with QEMU in a
standard Linux box as the host OS, a customized Linux distribution (based on Buildroot) as the
guest OS and the virtio disk.

Implementations details

SPDM integration

To implement the functionalities, they used libspdm. Since the kernel has a reduced stack
space, the library had to be modified to address this limitation.

The device driver was modified to encrypt/decrypt the write/read requests payload using the
symmetric keys established with SPDM. Moreover, a header had to be included to indicate an
SPDM encrypted message. Additionally, the size of a single request from the block layer would
often exceed the maximum limit allowed by the libspdm API. This issue was addressed by
repacking the original requests into smaller requests of adequate size and encoding pure
SPDM messages with a special request type.

Corner cases

At both endpoints, libspdm internally maintains a monotonically increasing 64-bit counter that
is used as a nonce. Hence, message decryption would fail whenever the order of messages
sent/received differed from the encryption order. To address this issue, they modified the
counter’s behavior by relying on the fact that the 16 least significant bits of this 64-bit counter
are placed at the message header, using it directly while keeping track of 16-bit overflows (to
ensure the nonce’s non-repeatable nature).

In addition, the request repackaging strategy at the device driver level has increased the load
on an internal data pool used to allocate new requests. So, when the pool is depleted and the
device driver attempts to allocate a new request, the underlying request allocation function
attempts to execute the pending requests. If the next pending request is the one that triggered
the new allocation (due to the repackaging strategy), a loop is created, eventually leading to a
stack overflow. To address this issue, they have increased the capacity of the default data pool.



Experiment results

The experiments involved measuring the time taken to copy files of different sizes to/from a
partition on a virtio disk equipped with SPDM. For reference, the same procedures were
performed on an unmodified virtio disk.
The files were filled with random data, for sizes varying from 5KiB, 10KiB, 50Kib, up to 100MiB,
and each configuration was executed 30 times, each time after clearing the system cache.
The results are:
e The impact of SPDM security is negligible for small file sizes (up to 5k). This implies
other overheads (e.g., physically moving disk heads) are predominant in this setting.
e The gap between the secured an unsecured system begins to be noticeable for
medium-sized files.
e The performance of the secured hard disk degrades as file size increases, reaching up
to 7 times slower transference procedure.
e Virtio to virtio transactions show the largest performance drop, since the data must be
encrypted twice in that case: from disk to OS, and then from OS to disk.

[NO_SPDM] - from virtio
[SPDM] - from virtio
[NO_SPDM] - to virtio
[SPDM] - to virtio
[NO SPDM] - virtio to virtio
[SPDM] - virtio to virtio

INIRIN

1064

Time [us]

105 S SR -~ -

5k 10k 50k 100k 500k 1M 5M 10M 50M 100M
File size

Fig. 2. Time to copy files of varying sizes in different settings



