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Abstract—Outsourcing chip production is common among 
semiconductor vendors to cope with the increasing demand for 
integrated circuits. This has resulted in several security issues 
in the chip supply chain, including hardware trojans, intellec­
tual property theft, and overproduction. Zero-trust presents a 
promising solution for ensuring the authenticity of Integrated 
Circuits (ICs), particularly in critical systems where adversary 
attacks can cause significant losses or damage. The Security 
Protocol and Data Model (SPDM) is a reliable protocol that 
uses certificates to ensure the authenticity of ICs. Based on this 
protocol, the presented paper proposes a chip-to-chip zero-trust 
security architecture that aims to verify the authenticity of any 
connected peripheral before its use. The contributions include 
an overview of the proposed architecture, implementation and 
formal verification of the SPDM protocol, and analysis of the 
challenges encountered during the implementation and execution.

Index Terms—Zero-trust, SPDM, Formal verification, 
SSL/TLS, Chip-to-chip communication.

I . I n t r o d u c t i o n

The world is becoming increasingly more connected at a 
staggering rate with the advancement of embedded systems, 
which are the main corps of the Internet of Things (IoT), 
connected cars, drones, smart homes, and industrial control 
systems. Embedded systems are usually based on Integrated 
Circuits (ICs) produced by third parties in regions with low 
production costs. In practice, the state-of-the-art foundries of 
today are considered untrusted entities in the IC supply chain, 
which raises some serious concerns about the trustworthiness 
of the fabricated ICs or devices [1]. Relying on untrusted 
fabrication requires a careful assessment of associated threats. 
For instance, any IP part of the system is inevitably shared 
with the untrusted foundry. Besides the obvious risks of IP 
theft, reverse engineering, and overproduction, the same IP 
can be modified by inserting a backdoor or a hardware Trojan
[2], At the same time, malicious actors are discovering more 
innovative ways to penetrate embedded systems through the 
software supply chains that build them.

New security architectures are just starting to catch up to 
these new threats. In the last couple of years, several new 
IoT-specific standards have emerged for protecting individual
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IoT devices, such as the Platform Security Architecture (PSA)
[3] and the Security Evaluation Standard for IoT Platforms
[4] , PSA, developed by Arm, aims to provide a hardware- 
based isolation execution environment. It offers threat mod­
els, security analysis, and hardware/firmware specifications 
to create a secure foundation for IoT systems. On the other 
hand, the Security Evaluation Standard for IoT Platforms sets 
forth guidelines for evaluating the security of IoT platforms, 
ensuring they meet certain criteria. This standard helps man­
ufacturers and developers assess the security features and 
robustness of their products, fostering a higher level of trust 
among users and stakeholders.

Different alternatives to combat the threats of untrusted 
fabrication are proposed, such as Trojan detection [5], ob­
fuscation [6], and logic locking [7]. These last circuit-level 
strategies require modifications to the circuit that would render 
an adversary less capable of making sense of the IP. Some 
authors propose the reliance on trusted fabrication using split­
chip solutions followed by chip-to-chip authentication [8]. 
These countermeasures fail at some level to provide entire 
secure systems. At the same time, the cybersecurity and silicon 
industries have recently proposed zero-trust architectures for 
protecting distributed infrastructure at a more granular level, 
especially with the next generation of open-source hardware 
that will surely expose a much larger attack surface to a 
more devastating physical world impact. The zero-trust model 
promises more protection in the chip supply chains [9]. The 
silicon industry aims to use this model to prevent the system 
hardware from communicating with any device that does 
not authenticate itself. This means that manipulations in the 
foundry or through the supply chain should be excluded. 
Furthermore, combining zero-trust security principles with 
existing embedded systems security approaches could help set 
the stage for this more robust approach to end-to-end security 
for the next wave of embedded systems [10]. Intel supports 
this model by sharing its vision and core principles towards 
“A Zero-Trust Approach to Architecting Silicon” [11],

In [12], a framework known as DRLGENCERT has been 
introduced, showcasing the utilization of deep reinforcement 
learning for automating the testing of certificate verification. 
DRLGENCERT functions by utilizing conventional certifi­
cates as input and producing novel certificates capable of 
efficiently highlighting discrepancies. This approach leverages 
deep reinforcement learning to make insightful choices during
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certificate generation, informed by prior modifications, thereby 
enhancing the overall process.

In [13], the communication between an IoT ESP32 em­
bedded system and an IoT Cloud is secured using MQTTS 
protocol with SSL/TLS certificates. The study focuses on the 
correctness of the encryption approach without reporting any 
details about the used algorithms. An architecture is proposed 
in [14], enabling IoT devices to authenticate data and notarize 
within the Ethereum blockchain. The work builds upon this 
concept by devising a robust hardware-software platform that 
empowers lightweight devices, such as IoT sensors, to orches­
trate this process. Within this architecture, these devices hold 
a confidential key with their corresponding public address. 
As transactions are generated, they are seamlessly signed and 
dispatched to the blockchain network.

This study introduces a Chip-to-Chip Zero-Trust Architec­
ture (C2CZTA) that is designed to ensure secure commu­
nication between two chips and includes a mechanism for 
verifying the authenticity of these peripherals. The foundation 
of C2CZTA relies on a zero-trust processor that executes 
the Security Protocol and Data Model (SPDM) protocol, 
incorporating multiple cryptographic engines for enhanced 
security. The primary contributions of this work encompass the 
compilation, optimization, and testing of the SPDM protocol. 
These contributions include an architectural overview, the 
implementation and rigorous formal verification of the SPDM 
protocol, and an exhaustive analysis of the implementation 
and execution challenges. Furthermore, the study encompasses 
the practical implementation of SPDM I2C communication, 
leveraging Raspberry Pi devices as the experimental platform.

The rest of the paper is organized as follows: Section 2 
describes the proposed methods, including a general overview 
and the embedded implementation of the architecture. Section 
3 presents and discusses the obtained experimental results. 
Finally, Section 4 concludes the paper and suggests future 
research directions.

II. M e t h o d s  

A. Architecture Overview
In this study, we propose a C2CZTA to secure communica­

tion between two chips, a requester and a responder. It should 
be noted that the responder represents an external peripheral, 
which can be an active (integrated processor) or a passive 
device. The responder must be authenticated to communicate 
with the requester; otherwise, no data exchange occurs.

Figure 1 illustrates a general overview of the proposed 
C2CZTA. The architecture is composed of four blocks:

1) Zero-Trust Processing (ZTP): This functionality is re­
sponsible for carrying out the zero-trust process and 
serves as the interface between the requester and the 
responder. Different protocols were investigated for this 
purpose including the PCIE ШE [15] and the SPDM 
[16]. The SPDM was chosen for this study because it 
supports non-PCIe interconnects.

2) Zero-Trust Management (ZTM): It determines whether 
the ZTP is permitted to communicate with the connected

Interface connection:
1. I2C
2. SPI
3. CAN
4. USB

*-------- ► Internal Data exchange ---------- ► SPDM message exchanges

Fig. 1. Functional partitioning of zero-trust operation.

peripheral. This unit utilizes event-based scheduling. 
During the initialization phase and before initiating 
data exchange, the responder sends its certificate to the 
requester’s ZTM to verify its validity. For instance, zero­
trust activities must be logged and communicated to 
report a verification failure or success.

3) Certificate and Secret Storage (CSS): It enables saving 
certificates and private keys, which should be stored 
efficiently and securely in an on-chip flash memory.

4) Certificate Management Unit (CMU): It enables cer­
tificate management, such as revocation, updates, and 
notifications about certificate changes to other chips.

The C2CZTA can communicate with external peripherals 
using various interfacing protocols such as the I2C, SPI, 
USB, and CAN. The scope of this paper is to implement 
the selected authentication protocol as well as to manage the 
newly plugged devices. We only focus on implementing the 
ZTP block and CMU mechanism.

Ɓ. Zero-Trust Processing Mechanism
1) Description o f the SPDM protocol: The SPDM protocol 

defines messaging formats, data objects, and sequences for se­
cure communication between devices across various transport 
and physical media [16]. The SPDM includes cryptographic 
engines for hashing, digital signature, and verification. Further­
more, post-quantum cryptographic algorithms have recently 
been integrated into the SPDM protocol to make it quantum- 
resistant [17].

2) Formal verification o f the SPDM protocol: The valida­
tion of a security protocol is critical before implementation. 
Ideally, a security protocol should only be integrated into 
hardware systems if it passes all formal verification tests. 
There are a variety of existing tools and methods for the 
formal verification of security protocols. In this work we 
use Automatic Verification of Internet Security Protocols and 
Applications (AVISPA) to verify the SPDM protocol for the 
proposed C2CZTA [18]. AVISPA is a formal verification tool 
with a push-button interface widely used by the research com­
munity. It consists of various backends; however, we employ 
an On-the-Fly Model Checker (OFMC) for verification. As 
described previously, the protocol includes two chips, which 
are also termed agents. Therefore, the tests are conducted for 
multiple sessions, i.e., when both chips are authorized and 
when one is not, with the unauthorized chip imitating an 
intruder. The tool supports a Dolev-Yao intruder, in which
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the intruder has complete control of the network and can 
intercept any communication but cannot decrypt the data 
unless it possesses cryptographic keys. Figure 2 depicts the 
overall structure of the implemented formal verification. Three 
sessions are created within the environment, and the secrecy 
and authentication goals for various messages and keys are 
set. Furthermore, the intruder’s knowledge is also defined by 
the environment. An illegal chip behaves as an intruder in our 
model. The test results demonstrate that SPDM is a secure 
protocol that can be embedded in hardware. For a more in­
depth understanding of the formal verification process applied 
to the SPDM, refer to [19].

---------*■ SPDM message exchanges (transitions)

Fig. 2. An overview of implemented formal verification using AVISPA

3) Embedded implementation o f SPDM protocol: As an 
illustration, the proposed architecture will be integrated into 
a drone to allow its flight controller to communicate only 
with a trusted GPS through the I2C interface. GPS modules 
are getting higher relevance for drone operation due to their 
role in remote identification [20], [21]. Figure 3 presents an 
overview of the prototyping environment as implemented. It 
consists of two Raspberry PI boards connected through the 
I2C bus; one configured as a requester (master) and the other 
as a responder (slave). The SPDM code is available on GitHub 
as an open-source library [22], The current version of the 
library does not support any hardware interface. It only allows 
for the interconnection of the requester and responder via an 
internal socket on the same platform. The scripts are written 
to route communication through the I2C interface rather than 
the internal socket. The developed code was integrated into 
the SPDM library and made available to the community.

C. Certificate Management Unit Mechanism
Fig. 4 presents the different scenarios of the ZTM to deal 

with the plugged peripherals upon request from the ZTP. The 
ZTM mechanism, during the SPDM protocol’s initialization 
phase, validates the certificates of the plugged peripherals. 
If a peripheral’s certificate is verified, ZTM permits the ZTP 
to establish a communication session. This ensures that even 
genuine peripherals lacking proper certificates are banned from

R equ ester R esp o n d er

Fig. 3. Prototyping environment.

communication with the requester. To address this issue, a 
certification mechanism is proposed within the CMU unit 
to authenticate unidentified peripherals by the application 
administrator. The ZTM initiates a certification request to 
the CMU via a local agent (Domain Validation Certificate: 
DVC) or through a third party for approval (Extended Valida­
tion Certificate: EVC). The plugged non-certified peripherals 
should contain some information, such as the peripheral’s man­
ufacturing information and the Unified Identifier (UID). This 
information is transmitted over the Internet to the EVC, which 
generates and sends back corresponding certificates. Local 
certification can be carried out by the system administrator 
using tools like OpenSSL [23] or EmbedTLS [24] libraries. 
These libraries enable the generation of the key parameters, the 
creation, revocation, and update of certificates, the calculation 
of message digests, and the signing and verifying operations.

Requester (chip 1)

ZTPj : Send certification N o
request (CR) to CSS

Extended Validation 
Certification (EVC)

Domain Validation 
Certification (DVC)

CMU: applied rules 
defined by the admin

CMU: EmbedTLS 
s to g 

certificates

Communication via 
SPDM protocol

CSS: Update and 
send certificate to 

the responder

Fig. 4. Scenarios to certify genuine peripherals.
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I I I .  R e s u l t s  a n d  d i s c u s s i o n  

A. Formal Verification o f SPDM Protocol
Several attack scenarios such as replay attacks were tested 

to demonstrate the protocol’s security and ability to ensure 
zero-trust communication between two chips. AVISPA’s results 
indicate that the SPDM protocol is resistant to these attacks 
and allows for secure communication and authentication.

Ɓ. Performance Evaluation
The implementation of SPDM on Raspberry PI using I2C 

communication has encountered several issues, beginning with 
the lack of support for Raspberry PI to function as a slave. 
The Raspberry PI Broadcom chip BCM27ll only supports 
I2C master communication, creating a problem when using 
the Raspberry PI as a slave. One library available that can 
operate the Raspberry PI as a slave is the Pigpio library [25]. 
This library employs a FIFO buffer filled by the slave and 
emptied by the master. The issue is that the master does not 
receive the data correctly after multiple read requests; clearing 
the FIFO buffer before appending the data will ensure that the 
master receives the data in the correct order.

Table I showcases the implementation latency during the 
different stages of the SPDM protocol, with varying buffer 
sizes. The run time of the authentication procedure is around 
30 seconds. The authentication procedure includes sharing 
the certificates, getting the user measurements, establishing a 
shared key, and initiating secure communications. The results 
show that the latency time greatly increases with an increase 
in the buffer size, as due to the hardware bug, for the master 
device to read one byte of data correctly, it needs to manually 
clear the buffer by sending read requests times the size of the 
buffer used.

TABLE I
Latency (in second) of the different blocks of the SPDM

PROTOCOL.

Stage Buffer Size
8 16 32 64 128 256 512

Tnitial Communication 2.13 2.15 2.19 2.28 2.48 2.84 3.48
Get Digest 0.73 0.76 0.81 0.93 1.18 1.67 2.47
Get Certificate 3.49 4.06 5.08 7.48 12.05 21.89 40.79
Challenge 10.39 10.48 10.62 10.97 11.62 13.07 15.23
Key_Exchange 11.84 11.96 12.18 12.66 13.59 15.53 19.09
Finish 0.70 0.71 0.71 0.72 0.74 0.77 0.85
Total 29.28 30.12 31.59 35.04 41.66 55.77 81.91

Table II summarizes the throughput results for different 
sizes of the buffer. It shows that an increased buffer size 
significantly decreases the read and write throughput. The 
decrease in throughput when the buffer size increase is also 
due to the hardware bug, which was the same issue that 
impacted the latency analysis of the Implementation.

Unfortunately, the Pigpio library does not contain a function 
to clear the FIFO buffer. The only way to do this is to perform 
512 read accesses since the default size of the buffer is 512 
bytes. Therefore, whenever a master needs to read a single 
byte, it must send 512 read requests to clear the buffer. The 
solution to this delay is to reduce the buffer size to 8 bytes 
or less so that instead of reading 512 bytes of data each

TABLE ∏
Throughput (Byte/Sec).

Operation Buffer Size
8 īδ  32 54 Ī28 255 5Ī2^^

Write
Read

617 553 471 341 223 132 74 
1670 1272 908 524 289 153 80

time to receive 1 byte of data correctly, the master will only 
need to read 8 bytes first before receiving the correct data. 
This resolves the issue of clearing the buffer but imposes the 
restriction that the master can only read 1 byte at a time, 
significantly reducing the communication speed. Moreover, the 
data should always be appended to the FIFO buffer before the 
master initiates the read request, introducing another delay.

Concerning the certification process of the non-certified 
and genuine peripherals, it is important to be sure about the 
manufacturer and UID information. The system administrator 
must consider peripheral UID cloning as one of the major 
impediments. By authorizing the connection of non-certified 
peripherals, the system administrator assumes responsibility.

C. Benchmarking the Complete Framework
Table IΠ compares the proposed system with other em­

bedded authentication protocol implementations. It presents 
various evaluation criteria, including the security domain, 
focus, methodology, protocol/model, and evaluation platform.

The proposed work focuses on securing the chip supply 
chain at the hardware layer, addressing issues such as hard­
ware trojans, intellectual property theft, and overproduction. It 
introduces C2CZTA that verifies the authenticity of connected 
peripherals, mitigating risks associated with compromised or 
counterfeit chips. The work utilizes the SPDM protocol for 
authentication, specifically designed for the hardware layer’s 
security requirements. The Raspberry Pi evaluation platform 
based on ARM architecture demonstrates the practicality of 
implementing C2CZTA in real-world scenarios using widely 
available embedded systems. In contrast, the works presented 
in [12]-[14] concentrate on certificate verification, generation, 
or data certification on the blockchain.

The C2CZTA offers notable security enhancements for chip 
communication. However, integrating C2CZTA into existing 
systems or devices might be challenging due to compatibility 
issues with legacy hardware or software. Furthermore, latency 
in authentication and increased resource consumption might 
affect system performance. These limitations can be managed 
through careful design and optimization.

IV. C o n c l u s i o n

In this study, we proposed a C2CZTA to secure the commu­
nications between chips. The proposed architecture incorpo­
rates the SPDM protocol, which enables data communications 
with confidentiality and integrity protection. Using AVISPA 
tools, SPDM is subjected to formal verification to determine 
the protocol’s correctness and resilience to various attack 
scenarios. As a case study, the protocol is implemented on 
two Raspberry PI to demonstrate that the two platforms can
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TABLE Ш
Comparison of the proposed system with other embedded authentication protocols implementation.

Criteria The proposed work [12] [13] [14]
Security Domain 
Focus
Methodology 
Proto col/Model 
Evaluation platform

Hardware layer 
Chip supply chain 

Chip-to-chip zero-trust architecture 
SPDM

Raspberry PI based on ARM

Transport layer
Certificate verification in SSL/TLS 

Deep reinforcement learning 
SSL/TLS

Laptop based on Intel

Transport layer
Certificate generation in SSL/TLS 
Automated certificate generation 

SSL/TLS 
ESP32

Application, transport, and network layers 
Data certification and notarization on blockchain 

Etheгeum blockchain 
data certification on blockchain 

ARM Cortex-M4

communicate once the certificates are validated. A certification 
mechanism is established to generate new credentials for new 
genuine and non-certified peripherals.

Our future work will focus on developing an embedded 
system-on-chip (SoC) based on a RISC-V processor that in­
tegrates the various blocks of the proposed architecture. Also, 
light-weight accelerators for traditional and post-quantum 
cryptographic algorithms will be considered [26] to speed up 
the authentication and secure communication between chips 
for the zero-trust era.
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