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Abstract—In modern computing systems, it is usually hard to
defend against attacks made against the low level communication
between hardware components. In this work, we address this
issue by adapting a hard disk controller and a corresponding de-
vice driver to communicate securely using the recently proposed
Secure Protocol and Data Model (SPDM). Essentially, SPDM
standardizes authentication of hardware components, besides
enabling the establishment of secure communication channels
among them. To assess the overhead introduced by SPDM in this
scenario, we tested our solution against an unmodified, unsecured
hard disk on an emulated environment. Our experiments show
that, while SPDM can make the task of copying a large up to
7× slower, the transference of small files is virtually unaffected.

Index Terms—hardware, security, SPDM

I. INTRODUCTION

Hardware level attacks are hard to detect, since they bypass

protective measures acting at operating system level (e.g., an-

tivirus software) and infrastructure level (e.g., firewalls). Such

attacks usually involve altering the firmware controlling the

hardware. For example, a USB flash drive can be programmed

to mimic a keyboard, and then input commands at will [1].

Also, hard drive firmware can be modified to leak arbitrary

data pieces even if partitions are encrypted [2].

The Secure protocol and Data Model (SPDM) addresses

hardware-level security in multiple manners. First, it enables

mutual authentication among components. Second, each end-

point may provide measurements that help verifying if the

device’s current state is as expected. Examples of measure-

ments include firmware, hardware configuration, and other

parameters. Finally, since its version 1.1.0, SPDM allows

components to establishment of session keys for encrypting

and authenticating exchanged application data [3].

Our goal in this article is to demonstrate a working proto-

type of an SDPM-enabled hard drive, evaluating its protected

communication with the operating system. Specifically, we

present our general design (Section II), implementation details

(Section III) and experimental data (Section IV). Closing

remarks are then presented in Sec. V.

II. PROJECT DESIGN

Securing the communication between the operating system

and a peripheral (e.g., a hard drive) essentially requires altering

the device’s firmware and writing a matching device driver.

During system boot process, the endpoints should run

the SDPM protocol to authenticate each other and establish

Fig. 1. Secured communication between operating system and hard drive

symmetric keys that are used to secure application data. In our

scenario, application data is comprised of read/write requests

issued by the kernel and the corresponding responses from the

device.

Considering the goal of providing a proof-of-concept im-

plementation, we resorted to a virtualized environment, rather

than crafting a customized hardware. The main software

employed to build the desired environment is QEMU, an

open source emulator/virtualizer. We ran QEMU in a standard

Linux box as the host OS, while we ran a customized Linux

distribution (based on Buildroot) as the guest OS. Among the

hard drives QEMU can emulate, we chose the virtio disk

due to its widely available documentation and simplicity.

Figure 1 illustrates the system architecture, including the

secured communication between OS and virtual disk. Notice

that the goal is to secure in-transit data, which protects against

attacks at the communication bus but, by itself, does not store

encrypted data in the disk.

III. IMPLEMENTATIONS DETAILS

This section covers implementation details, including a brief

introduction to the Linux block I/O system, how SPDM was

thereby integrated, and specific implementation challenges.

A. Linux block I/O

Due to the layered nature of the Linux kernel, the task

of reading and writing from a disk is spread across the file

system, a general block layer, and the specific block device

driver. Put simply, file systems deal with where the data is

(e.g., whether it is cached, and how it is scattered through-

out the disk). The block layer is a bridge between the file

system and device driver, taking care of request queuing and

request scheduling. Finally, the block device driver executes

the requests that were organized by the block layer.

A request is represented by a complex data structure, whose

definition spans across over 100 lines of code. Nonetheless,

the main components used at the device driver layer are the
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target disk sector, a pointer to the actual data, the data size,

and the request type.

B. SPDM integration

We use libspdm open source library to implement SPDM

functionalities. The library’s build system had to be modified

to provide adequate binaries to be linked with the Linux kernel.

Also, since the kernel has a reduced stack space, the library

had to be modified to address this limitation.

The device driver was modified to encrypt/decrypt the

write/read requests payload using the symmetric keys estab-

lished with SPDM. First, a header had to be included to

indicate an SPDM encrypted message. Additionally, the size

of a single request from the block layer would often exceed

the maximum limit allowed by the libspdm API. This

issue was addressed by repacking the original requests into

smaller requests of adequate size, and encoding pure SPDM

messages with a special request type. The code is available at

https://github.com/rcaalves/spdm-hd-demo.

C. Corner cases

During the test phase, we noticed that some messages

encrypted by the device driver were failing to be decrypted

at the disk controller. At both endpoints, libspdm inter-

nally maintains a monotonically increasing 64-bit counter

that is used as a nonce. Hence, message decryption would

fail whenever the order of messages sent/received differed

from the encryption order. To address this issue, we modified

the counter’s behavior: we build upon the fact that the 16

least significant bits of this 64-bit counter is placed at the

message header, using it directly while keeping track of 16-

bit overflows (to ensure the nonce’s non-repeatable nature).

Also, the strategy of repacking requests at the device driver

increased the load on a internal data pool used to allocate

new requests. As a result, whenever the pool is exhausted and

the device driver attempts to allocate a new a request, the

underlying request allocation function tries to execute pending

requests. However if the next pending request is actually the

request that triggered the new allocation (due to the repacking

strategy), a loop is created, ultimately leading to a stack

overflow. As a straightforward approach to address this issue,

we increased the capacity of the default data pool.

IV. EXPERIMENT RESULTS

The experiments presented in this section consist of mea-

suring how long it takes to copy files of different sizes from/to

a partition on an SPDM-enabled virtio disk partition. As

baseline, the same procedures were executed on a unmodified

virtio disk. Comparing both, we can estimate the performance

impact of securing OS-device communication with SPDM.

The files were filled with random data, for sizes varying

from 5KiB, 10KiB, 50Kib, up to 100MiB. They were then

copied using the standard cp Linux command line tool,

whereas the duration was measured by the gettimeofday
C function. Each configuration was executed 30 times, each

time after clearing the system cache, to achieve statistical

significance.

Figure 2 shows our experimental results. The impact of

SPDM security is negligible for small file sizes (up to 5k),

as sometimes we obtained smaller average copy times for the

secured system. This implies other overheads (e.g., physically

moving disk heads) are predominant in this setting.

Conversely, for medium-sized files the gap between the se-

cured an unsecured systems begins to be noticeable, although

not statistically evident. On average, copying files from 100k

to 500k was 32% slower. The performance of the secured hard

disk degrades as file size increases, reaching up to 7 times

slower transference procedure. It is also interesting to notice

that virtio to virtio transactions show the largest performance

drop, since the data has to be encrypted twice in that case:

from disk to OS, and then from OS to disk.

Fig. 2. Time to copy files of varying sizes in different settings

V. FINAL REMARKS

Securing the communication between internal components

is a key mechanism to avoid attacks targeted at electronics

supply chains. In this paper, we showcase how the SPDM

standard can be used to secure the communication between

an operating system and a hard drive controller firmware.

For our setup, we modify a device driver and a virtual

hardware, integrating them with the libspdm open source

library. Our experiments show that file copying performance

may drop up to 7 times on large files, although this overhead

remains negligible for small files.
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