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Abstract—Outsourcing chip production is common among
semiconductor vendors to cope with the increasing demand for
integrated circuits. This has resulted in several security issues
in the chip supply chain, including hardware trojans, intellec-
tual property theft, and overproduction. Zero-trust presents a
promising solution for ensuring the authenticity of Integrated
Circuits (ICs), particularly in critical systems where adversary
attacks can cause significant losses or damage. The Security
Protocol and Data Model (SPDM) is a reliable protocol that
uses certificates to ensure the authenticity of ICs. Based on this
protocol, the presented paper proposes a chip-to-chip zero-trust
security architecture that aims to verify the authenticity of any
connected peripheral before its use. The contributions include
an overview of the proposed architecture, implementation and
formal verification of the SPDM protocol, and analysis of the
challenges encountered during the implementation and execution.

Index Terms—Zero-trust, SPDM, Formal verification,
SSL/TLS, Chip-to-chip communication.

I. INTRODUCTION

The world is becoming increasingly more connected at a
staggering rate with the advancement of embedded systems,
which are the main corps of the Internet of Things (IoT),
connected cars, drones, smart homes, and industrial control
systems. Embedded systems are usually based on Integrated
Circuits (ICs) produced by third parties in regions with low
production costs. In practice, the state-of-the-art foundries of
today are considered untrusted entities in the IC supply chain,
which raises some serious concerns about the trustworthiness
of the fabricated ICs or devices [1]. Relying on untrusted
fabrication requires a careful assessment of associated threats.
For instance, any IP part of the system is inevitably shared
with the untrusted foundry. Besides the obvious risks of IP
theft, reverse engineering, and overproduction, the same IP
can be modified by inserting a backdoor or a hardware Trojan
[2]. At the same time, malicious actors are discovering more
innovative ways to penetrate embedded systems through the
software supply chains that build them.

New security architectures are just starting to catch up to
these new threats. In the last couple of years, several new
IoT-specific standards have emerged for protecting individual
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IoT devices, such as the Platform Security Architecture (PSA)
[3] and the Security Evaluation Standard for IoT Platforms
[4]. PSA, developed by Arm, aims to provide a hardware-
based isolation execution environment. It offers threat mod-
els, security analysis, and hardware/firmware specifications
to create a secure foundation for IoT systems. On the other
hand, the Security Evaluation Standard for IoT Platforms sets
forth guidelines for evaluating the security of IoT platforms,
ensuring they meet certain criteria. This standard helps man-
ufacturers and developers assess the security features and
robustness of their products, fostering a higher level of trust
among users and stakeholders.

Different alternatives to combat the threats of untrusted
fabrication are proposed, such as Trojan detection [5], ob-
fuscation [6], and logic locking [7]. These last circuit-level
strategies require modifications to the circuit that would render
an adversary less capable of making sense of the IP. Some
authors propose the reliance on trusted fabrication using split-
chip solutions followed by chip-to-chip authentication [8].
These countermeasures fail at some level to provide entire
secure systems. At the same time, the cybersecurity and silicon
industries have recently proposed zero-trust architectures for
protecting distributed infrastructure at a more granular level,
especially with the next generation of open-source hardware
that will surely expose a much larger attack surface to a
more devastating physical world impact. The zero-trust model
promises more protection in the chip supply chains [9]. The
silicon industry aims to use this model to prevent the system
hardware from communicating with any device that does
not authenticate itself. This means that manipulations in the
foundry or through the supply chain should be excluded.
Furthermore, combining zero-trust security principles with
existing embedded systems security approaches could help set
the stage for this more robust approach to end-to-end security
for the next wave of embedded systems [10]. Intel supports
this model by sharing its vision and core principles towards
“A Zero-Trust Approach to Architecting Silicon™ [11].

In [12], a framework known as DRLGENCERT has been
introduced, showcasing the utilization of deep reinforcement
learning for automating the testing of certificate verification.
DRLGENCERT functions by utilizing conventional certifi-
cates as input and producing novel certificates capable of
efficiently highlighting discrepancies. This approach leverages
deep reinforcement learning to make insightful choices during
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certificate generation, informed by prior modifications, thereby
enhancing the overall process.

In [13], the communication between an IoT ESP32 em-
bedded system and an IoT Cloud is secured using MQTTS
protocol with SSL/TLS certificates. The study focuses on the
correctness of the encryption approach without reporting any
details about the used algorithms. An architecture is proposed
in [14], enabling IoT devices to authenticate data and notarize
within the Ethereum blockchain. The work builds upon this
concept by devising a robust hardware-software platform that
empowers lightweight devices, such as IoT sensors, to orches-
trate this process. Within this architecture, these devices hold
a confidential key with their corresponding public address.
As transactions are generated, they are seamlessly signed and
dispatched to the blockchain network.

This study introduces a Chip-to-Chip Zero-Trust Architec-
ture (C2CZTA) that is designed to ensure secure commu-
nication between two chips and includes a mechanism for
verifying the authenticity of these peripherals. The foundation
of C2CZTA relies on a zero-trust processor that executes
the Security Protocol and Data Model (SPDM) protocol,
incorporating multiple cryptographic engines for enhanced
security. The primary contributions of this work encompass the
compilation, optimization, and testing of the SPDM protocol.
These contributions include an architectural overview, the
implementation and rigorous formal verification of the SPDM
protocol, and an exhaustive analysis of the implementation
and execution challenges. Furthermore, the study encompasses
the practical implementation of SPDM I2C communication,
leveraging Raspberry Pi devices as the experimental platform.

The rest of the paper is organized as follows: Section 2
describes the proposed methods, including a general overview
and the embedded implementation of the architecture. Section
3 presents and discusses the obtained experimental results.
Finally, Section 4 concludes the paper and suggests future
research directions.

II. METHODS
A. Architecture Overview

In this study, we propose a C2CZTA to secure communica-
tion between two chips, a requester and a responder. It should
be noted that the responder represents an external peripheral,
which can be an active (integrated processor) or a passive
device. The responder must be authenticated to communicate
with the requester; otherwise, no data exchange occurs.

Figure 1 illustrates a general overview of the proposed
C2CZTA. The architecture is composed of four blocks:

1) Zero-Trust Processing (ZTP): This functionality is re-
sponsible for carrying out the zero-trust process and
serves as the interface between the requester and the
responder. Different protocols were investigated for this
purpose including the PCIE IDE [15] and the SPDM
[16]. The SPDM was chosen for this study because it
supports non-PCle interconnects.

2) Zero-Trust Management (ZTM): It determines whether
the ZTP is permitted to communicate with the connected

Chip1 (requester) Chip2 (responder)
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T ‘ T
b Interface connection: |
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4. USB

«----» Internal Data

SPDM

Fig. 1. Functional partitioning of zero-trust operation.

peripheral. This unit utilizes event-based scheduling.
During the initialization phase and before initiating
data exchange, the responder sends its certificate to the
requester’s ZTM to verify its validity. For instance, zero-
trust activities must be logged and communicated to
report a verification failure or success.

3) Certificate and Secret Storage (CSS): It enables saving
certificates and private keys, which should be stored
efficiently and securely in an on-chip flash memory.

4) Certificate Management Unit (CMU): It enables cer-
tificate management, such as revocation, updates, and
notifications about certificate changes to other chips.

The C2CZTA can communicate with external peripherals
using various interfacing protocols such as the 12C, SPI,
USB, and CAN. The scope of this paper is to implement
the selected authentication protocol as well as to manage the
newly plugged devices. We only focus on implementing the
ZTP block and CMU mechanism.

B. Zero-Trust Processing Mechanism

1) Description of the SPDM protocol: The SPDM protocol
defines messaging formats, data objects, and sequences for se-
cure communication between devices across various transport
and physical media [16]. The SPDM includes cryptographic
engines for hashing, digital signature, and verification. Further-
more, post-quantum cryptographic algorithms have recently
been integrated into the SPDM protocol to make it quantum-
resistant [17].

2) Formal verification of the SPDM protocol: The valida-
tion of a security protocol is critical before implementation.
Ideally, a security protocol should only be integrated into
hardware systems if it passes all formal verification tests.
There are a variety of existing tools and methods for the
formal verification of security protocols. In this work we
use Automatic Verification of Internet Security Protocols and
Applications (AVISPA) to verify the SPDM protocol for the
proposed C2CZTA [18]. AVISPA is a formal verification tool
with a push-button interface widely used by the research com-
munity. It consists of various backends; however, we employ
an On-the-Fly Model Checker (OFMC) for verification. As
described previously, the protocol includes two chips, which
are also termed agents. Therefore, the tests are conducted for
multiple sessions, i.e., when both chips are authorized and
when one is not, with the unauthorized chip imitating an
intruder. The tool supports a Dolev-Yao intruder, in which
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the intruder has complete control of the network and can
intercept any communication but cannot decrypt the data
unless it possesses cryptographic keys. Figure 2 depicts the
overall structure of the implemented formal verification. Three
sessions are created within the environment, and the secrecy
and authentication goals for various messages and keys are
set. Furthermore, the intruder’s knowledge is also defined by
the environment. An illegal chip behaves as an intruder in our
model. The test results demonstrate that SPDM is a secure
protocol that can be embedded in hardware. For a more in-
depth understanding of the formal verification process applied
to the SPDM, refer to [19].

Environment Goals Intruder’s
Secrecy, Authentication Knowledge
|
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Fig. 2. An overview of implemented formal verification using AVISPA

3) Embedded implementation of SPDM protocol: As an
illustration, the proposed architecture will be integrated into
a drone to allow its flight controller to communicate only
with a trusted GPS through the 12C interface. GPS modules
are getting higher relevance for drone operation due to their
role in remote identification [20], [21]. Figure 3 presents an
overview of the prototyping environment as implemented. It
consists of two Raspberry PI boards connected through the
I2C bus; one configured as a requester (master) and the other
as a responder (slave). The SPDM code is available on GitHub
as an open-source library [22]. The current version of the
library does not support any hardware interface. It only allows
for the interconnection of the requester and responder via an
internal socket on the same platform. The scripts are written
to route communication through the I2C interface rather than
the internal socket. The developed code was integrated into
the SPDM library and made available to the community.

C. Certificate Management Unit Mechanism

Fig. 4 presents the different scenarios of the ZTM to deal
with the plugged peripherals upon request from the ZTP. The
ZTM mechanism, during the SPDM protocol’s initialization
phase, validates the certificates of the plugged peripherals.
If a peripheral’s certificate is verified, ZTM permits the ZTP
to establish a communication session. This ensures that even
genuine peripherals lacking proper certificates are banned from

Requester

Responder

Fig. 3. Prototyping environment.

communication with the requester. To address this issue, a
certification mechanism is proposed within the CMU unit
to authenticate unidentified peripherals by the application
administrator. The ZTM initiates a certification request to
the CMU via a local agent (Domain Validation Certificate:
DVC) or through a third party for approval (Extended Valida-
tion Certificate: EVC). The plugged non-certified peripherals
should contain some information, such as the peripheral’s man-
ufacturing information and the Unified Identifier (UID). This
information is transmitted over the Internet to the EVC, which
generates and sends back corresponding certificates. Local
certification can be carried out by the system administrator
using tools like OpenSSL [23] or EmbedTLS [24] libraries.
These libraries enable the generation of the key parameters, the
creation, revocation, and update of certificates, the calculation
of message digests, and the signing and verifying operations.

ZTP, of Chip2
(Responder)

o

Requester (chip 1)

ZTP;: Send certification
request (CR) to CSS

Extended Validation Domain Validation
Certification (EVC) Certification (DVC)

CSS: Update and
CSS: send CR to the CMU: applied rules send certificate to
defined by the admin the responder

CMU: EmbedTLS
commands to generate
certificates
1

Fig. 4. Scenarios to certify genuine peripherals.
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ITI. RESULTS AND DISCUSSION
A. Formal Verification of SPDM Protocol

Several attack scenarios such as replay attacks were tested
to demonstrate the protocol’s security and ability to ensure
zero-trust communication between two chips. AVISPA’s results
indicate that the SPDM protocol is resistant to these attacks
and allows for secure communication and authentication.

B. Performance Evaluation

The implementation of SPDM on Raspberry PI using 12C
communication has encountered several issues, beginning with
the lack of support for Raspberry PI to function as a slave.
The Raspberry PI Broadcom chip BCM2711 only supports
I2C master communication, creating a problem when using
the Raspberry PI as a slave. One library available that can
operate the Raspberry PI as a slave is the Pigpio library [25].
This library employs a FIFO buffer filled by the slave and
emptied by the master. The issue is that the master does not
receive the data correctly after multiple read requests; clearing
the FIFO buffer before appending the data will ensure that the
master receives the data in the correct order.

Table I showcases the implementation latency during the
different stages of the SPDM protocol, with varying buffer
sizes. The run time of the authentication procedure is around
30 seconds. The authentication procedure includes sharing
the certificates, getting the user measurements, establishing a
shared key, and initiating secure communications. The results
show that the latency time greatly increases with an increase
in the buffer size, as due to the hardware bug, for the master
device to read one byte of data correctly, it needs to manually
clear the buffer by sending read requests times the size of the
buffer used.

TABLE I
LATENCY (IN SECOND) OF THE DIFFERENT BLOCKS OF THE SPDM
PROTOCOL.

Stage Buffer Size

8 16 3 6 128 25 512
Tnitial Communication | 2.13 215 219 228 248 284 348
Get_Digest 073 076 081 093 LI8 167 247
Get_Certificate 349 406 508 748 1205 2189 4079
Challenge 1039 1048 1062 1097 1162 1307 1523
Key_Exchange 1184 1196 1218 1266 1359 1553 19.09
Finish 070 071 071 072 074 077 085
Total 2928 30.12 3159 3504 4166 5577 8191
Table II summarizes the throughput results for different

sizes of the buffer. It shows that an increased buffer size
significantly decreases the read and write throughput. The
decrease in throughput when the buffer size increase is also
due to the hardware bug, which was the same issue that
impacted the latency analysis of the Implementation.
Unfortunately, the Pigpio library does not contain a function
to clear the FIFO buffer. The only way to do this is to perform
512 read accesses since the default size of the buffer is 512
bytes. Therefore, whenever a master needs to read a single
byte, it must send 512 read requests to clear the buffer. The
solution to this delay is to reduce the buffer size to 8 bytes
or less so that instead of reading 512 bytes of data each

TABLE II
THROUGHPUT (BYTE/SEC).
. Buffer Size
Operation | —g——g——35 67 138 75 312
Write 617 553 471 341 223 132 74
Read 1670 1272 908 524 289 153 80

time to receive 1 byte of data correctly, the master will only
need to read 8 bytes first before receiving the correct data.
This resolves the issue of clearing the buffer but imposes the
restriction that the master can only read 1 byte at a time,
significantly reducing the communication speed. Moreover, the
data should always be appended to the FIFO buffer before the
master initiates the read request, introducing another delay.
Concerning the certification process of the non-certified
and genuine peripherals, it is important to be sure about the
manufacturer and UID information. The system administrator
must consider peripheral UID cloning as one of the major
impediments. By authorizing the connection of non-certified
peripherals, the system administrator assumes responsibility.

C. Benchmarking the Complete Framework

Table III compares the proposed system with other em-
bedded authentication protocol implementations. It presents
various evaluation criteria, including the security domain,
focus, methodology, protocol/model, and evaluation platform.

The proposed work focuses on securing the chip supply
chain at the hardware layer, addressing issues such as hard-
ware trojans, intellectual property theft, and overproduction. It
introduces C2CZTA that verifies the authenticity of connected
peripherals, mitigating risks associated with compromised or
counterfeit chips. The work utilizes the SPDM protocol for
authentication, specifically designed for the hardware layer’s
security requirements. The Raspberry Pi evaluation platform
based on ARM architecture demonstrates the practicality of
implementing C2CZTA in real-world scenarios using widely
available embedded systems. In contrast, the works presented
in [12]-{14] concentrate on certificate verification, generation,
or data certification on the blockchain.

The C2CZTA offers notable security enhancements for chip
communication. However, integrating C2CZTA into existing
systems or devices might be challenging due to compatibility
issues with legacy hardware or software. Furthermore, latency
in authentication and increased resource consumption might
affect system performance. These limitations can be managed
through careful design and optimization.

IV. CONCLUSION

In this study, we proposed a C2CZTA to secure the commu-
nications between chips. The proposed architecture incorpo-
rates the SPDM protocol, which enables data communications
with confidentiality and integrity protection. Using AVISPA
tools, SPDM is subjected to formal verification to determine
the protocol’s correctness and resilience to various attack
scenarios. As a case study, the protocol is implemented on
two Raspberry PI to demonstrate that the two platforms can
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TABLE III
COMPARISON OF THE PROPOSED SYSTEM WITH OTHER EMBEDDED AUTHENTICATION PROTOCOLS IMPLEMENTATION.

Criteria

The proposed work [12]

[13] [14]

Security Domain
Focus

Methodology
Protocol/Model
Evaluation platform

Hardware layer
Chip supply chain
Chip-to-chip zero-trust architecture
SPDM

Transport layer

Deep reinforcement learning
SSL/TLS

Raspberry PI based on ARM Laptop based on Intel

Certificate verification in SSL/TLS

Transport layer
Certificate generation in SSL/TLS
Automated certificate generation
SSL/TLS
ESP32

Application, transport, and network layers
Data certification and notarization on blockchain
Ethereum blockchain
data certification on blockchain
ARM Cortex-M4

communicate once the certificates are validated. A certification
mechanism is established to generate new credentials for new
genuine and non-certified peripherals.

Our future work will focus on developing an embedded
system-on-chip (SoC) based on a RISC-V processor that in-
tegrates the various blocks of the proposed architecture. Also,
light-weight accelerators for traditional and post-quantum
cryptographic algorithms will be considered [26] to speed up
the authentication and secure communication between chips
for the zero-trust era.
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