Note-taking of Benchmarking the Security Protocol and Data Model

(SPDM) for component authentication, Renan C. A. Alves, Bruno C. Albertini,
Marcos A. Simplicio Jr

Introduction

At every stage of the supply chain, there is a risk that malicious entities may
inconspicuously tamper with or substitute components.

The usual protection techniques that operate at the operating system level (e.g.,
antivirus software) or techniques that act at the infrastructure level (e.g., firewalls) are
oblivious to such threats.

SPDM was recently proposed to address such low-level security challenges.

Firmware measurements enable system components to be verified, ensuring they have
not been victim of tampering, while establishing sessions keys avoids passive
eavesdropping by malicious components attempting to steal data.

Since SPDM is a relatively recent proposal, there is a lack of studies evaluating its
performance impact on real-world applications.
https://github.com/rcaalves/spdm-benchmark

The goal of this paper is to assess the overhead introduced by each phase of the SPDM
message flow, in an emulated environment.

SPDM overhead assessment

They used a Random Number Generator (RNG) device.

Each of execution step was performed 100 times, aiming to obtain statistical
confidence.

As expected, most of the overhead was due to messages related to the authentication
process.

The GetCertificate procedure is expected to be slow since:

o it may require several messages to finish

o bythe end of it, the retrieved certificate must be verified for correctness, which
requires a few signature verifications.

KeyExchange, in turn, involves the generation of a symmetric key pair by means of a
Diffie-Hellman key exchange.

o The usage of Pre-Shared Keys (PSK) considerably reduces the burden of
establishing session keys.

Retrieving measurements all at once is slightly faster than retrieving measurements
one by one.
SPDM led to a 6.4-fold increase in terms of time.

o RNG was designed to be extremely fast, so even cryptographic operations that
are quite lightweight in absolute numbers, like symmetric encryption, become
comparatively expensive.

The responder handles GetCertificate messages faster than KeyExchange. The reason
behind this behavior is that most of the cryptographic processing of GetCertificate
remains at the requester side.

o The largest overhead observed at the responder, however, was the time to load
certificates from the disk.


https://github.com/rcaalves/spdm-benchmark

Hard drive use case

The driver fills the role of the SPDM requester, while the hard drive takes the role of
SPDM responder.
They used a few widely employed tools and benchmarking utilities to assess hard drive
performance: dd, hdparm, ioping, bonnie++, fio.
dd: SPDM caused a =68% slowdown in writing speed.
hdparm: provides “an indication of how fast the drive can sustain sequential data reads
under Linux, without any filesystem overhead.”
o Without SPDM, average read speed observed was 3.9 GB/s.
o With SPDM, average read speed observed was 28 kB/s, which translates to a
99.3% speed degradation.
ioping: confidence intervals were very large, making it hard to draw statistically
relevant conclusions.
bonnie++: both reading and writing speed drop to the same order of magnitude, since
the system bottleneck is the same in both tests: the processing cost of
encrypting/decrypting every transaction.
fio: performance degradation becomes less prominent when randomness is
introduced.
o Bottleneck shifting from the cryptographic operations to the physical disk
operations, (frequent seek operations to address the random request
locations).



