
1 Document Identifier: DSP0274

2 Date: 2023-06-28

3 Version: 1.3.0

4 Security Protocol and Data Model (SPDM)
Specification

5 Supersedes: 1.2.1

6 Document Class: Normative

7 Document Status: Published

8 Document Language: en-US

9 DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems

management and interoperability. Members and non-members may reproduce DMTF specifications and

documents, provided that correct attribution is given. As DMTF specifications may be revised from time to

time, the particular version and release date should always be noted.

10 Implementation of certain elements of this standard or proposed standard may be subject to third-party

patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations

to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,

or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate

identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,

in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or

identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation

thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party

implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner

or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is

withdrawn or modified after publication, and shall be indemnified and held harmless by any party

implementing the standard from any and all claims of infringement by a patent owner for such

implementations.

11 For information about patents held by third parties which have notified DMTF that, in their opinion, such

patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/

policies/disclosures.

12 This document’s normative language is English. Translation into other languages is permitted.

Copyright Notice

Copyright © 2023 DMTF. All rights reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

2 Published Version 1.3.0

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

13 CONTENTS

1 Foreword . 9

1.1 Acknowledgments . 9

2 Introduction. 11

2.1 Advice . 11

2.2 Conventions . 11

2.2.1 Document conventions . 11

2.2.2 Reserved and unassigned values . 11

2.2.3 Byte ordering . 11

2.2.3.1 Hash byte order. 12

2.2.3.2 Encoded ASN.1 byte order . 12

2.2.3.3 Octet string byte order. 12

2.2.3.4 Signature byte order . 12

2.2.3.4.1 ECDSA signatures byte order. 13

2.2.3.4.2 SM2 signatures byte order . 13

2.2.4 SPDM data type conventions . 13

2.2.4.1 SPDM data types . 13

2.2.4.2 Integers . 13

2.2.5 Version encoding . 14

2.2.6 Notations . 15

2.2.7 Text or string encoding . 16

2.2.8 Deprecated material . 16

3 Scope . 18

4 Normative references . 19

5 Terms and definitions . 21

6 Symbols and abbreviated terms. 26

7 SPDM message exchanges . 27

7.1 Security capability discovery and negotiation . 27

7.2 Identity authentication . 27

7.2.1 Identity provisioning. 28

7.2.1.1 Certificate models . 28

7.2.1.1.1 Device certificate model . 29

7.2.1.1.2 Alias certificate model . 29

7.2.1.1.3 Generic certificate model . 30

7.2.2 Raw public keys. 31

7.2.3 Runtime authentication . 31

7.3 Firmware and configuration measurement . 31

7.4 Secure sessions. 32

7.5 Mutual authentication overview . 32

7.6 Multiple asymmetric key support . 32

7.7 Custom environments . 33

7.8 Notification overview . 33

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 3

8 SPDM messaging protocol . 34

8.1 SPDM connection model . 36

8.2 SPDM bits-to-bytes mapping . 36

8.3 Generic SPDM message format . 37

8.3.1 SPDM version . 38

8.4 SPDM request codes . 38

8.5 SPDM response codes . 41

8.6 SPDM request and response code issuance allowance . 43

8.7 Concurrent SPDM message processing . 45

8.8 Requirements for Requesters . 45

8.9 Requirements for Responders . 46

8.10 Transcript and transcript hash calculation rules. 46

9 Timing requirements. 47

9.1 Timing measurements . 47

9.2 Timing parameters . 47

9.3 Timing specification table. 48

10 SPDM messages . 55

10.1 Capability discovery and negotiation . 55

10.1.1 Negotiated state preamble . 55

10.2 GET_VERSION request and VERSION response messages . 56

10.3 GET_CAPABILITIES request and CAPABILITIES response messages 59

10.3.1 Supported algorithms block . 72

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages. 72

10.4.1 Connection behavior after VCA . 88

10.4.2 Multiple asymmetric key negotiation . 88

10.4.3 Multiple asymmetric key use for Responder authentication . 88

10.4.4 Multiple asymmetric key use for Requester authentication . 89

10.4.5 Multiple asymmetric key connection . 89

10.5 Responder identity authentication . 90

10.6 Requester identity authentication. 92

10.6.1 Certificates and certificate chains . 92

10.7 GET_DIGESTS request and DIGESTS response messages . 93

10.8 GET_CERTIFICATE request and CERTIFICATE response messages . 98

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

messages . 101

10.8.2 SPDM certificate requirements and recommendations . 101

10.8.2.1 Extended Key Usage authentication OIDs . 104

10.8.2.2 SPDM Non-Critical Certificate Extension OID. 105

10.8.2.2.1 Hardware identity OID . 105

10.8.2.2.2 Mutable certificate OID . 106

10.9 CHALLENGE request and CHALLENGE_AUTH response messages 106

10.9.1 CHALLENGE_AUTH signature generation . 109

10.9.2 CHALLENGE_AUTH signature verification . 110

Security Protocol and Data Model (SPDM) Specification DSP0274

4 Published Version 1.3.0

10.9.2.1 Request ordering and message transcript computation rules for M1 and M2. 111

10.9.3 Basic mutual authentication. 113

10.9.3.1 Mutual authentication message transcript. 114

10.10 Firmware and other measurements . 115

10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages 116

10.11.1 Measurement block . 121

10.11.1.1 DMTF specification for the Measurement field of a measurement block. 122

10.11.1.1.1 Measurement manifest . 122

10.11.1.1.2 Hash-extend measurements . 122

10.11.1.2 Device mode field of a measurement block. 125

10.11.1.3 Manifest format for a measurement block . 126

10.11.2 MEASUREMENTS signature generation. 127

10.11.3 MEASUREMENTS signature verification. 128

10.12 ERROR response message. 129

10.12.1 Standards body or vendor-defined header . 136

10.13 RESPOND_IF_READY request message format . 137

10.14 VENDOR_DEFINED_REQUEST request message . 138

10.15 VENDOR_DEFINED_RESPONSE response message . 139

10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF

specifications . 140

10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages. 140

10.16.1 Session-based mutual authentication . 148

10.16.1.1 Specify Requester certificate for session-based mutual authentication 149

10.17 FINISH request and FINISH_RSP response messages . 149

10.17.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE. 151

10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages. 154

10.19 PSK_FINISH request and PSK_FINISH_RSP response messages . 161

10.20 HEARTBEAT request and HEARTBEAT_ACK response messages . 162

10.20.1 Heartbeat additional information . 163

10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages 163

10.21.1 Session key update synchronization . 165

10.21.2 KEY_UPDATE transport allowances . 167

10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response

messages. 170

10.22.1 Encapsulated request flow . 170

10.22.2 Optimized encapsulated request flow . 170

10.22.3 Triggering GET_ENCAPSULATED_REQUEST . 174

10.22.4 Additional constraints . 175

10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK

response messages. 175

10.23.1 Additional information . 177

10.23.2 Allowance for encapsulated requests . 178

10.23.3 Certain error handling in encapsulated flows . 178

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 5

10.23.3.1 Response not ready . 178

10.23.3.2 Timeouts . 179

10.24 END_SESSION request and END_SESSION_ACK response messages 179

10.25 Certificate provisioning. 181

10.25.1 GET_CSR request and CSR response messages . 181

10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages. 184

10.26 Large SPDM message transfer mechanism . 186

10.26.1 CHUNK_SEND request and CHUNK_SEND_ACK response message 186

10.26.2 CHUNK_GET request and CHUNK_RESPONSE response message 189

10.26.3 Additional chunk transfer requirements . 192

10.27 Key configuration . 193

10.27.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response. 193

10.27.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response. 197

10.27.3 Key pair ID modification error handling . 199

10.28 Event mechanism . 200

10.28.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES

response message . 202

10.28.1.1 Event group format additional information . 205

10.28.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response

message . 205

10.28.2.1 Additional subscription list information . 207

10.28.3 SEND_EVENT request and EVENT_ACK response message. 207

10.28.4 Event Instance ID . 210

10.29 GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages 210

10.29.1 ENDPOINT_INFO signature generation . 214

10.29.2 ENDPOINT_INFO signature verification . 214

10.30 Measurement extension log mechanism . 215

10.30.1 GET_MEASUREMENT_EXTENSION_LOG request and

MEASUREMENT_EXTENSION_LOG response messages . 216

10.30.2 DMTF Measurement Extension Log Format . 218

10.30.3 Example: Verifying Measurement Extension Log Against Hash-Extend Measurement . 219

11 Session . 222

11.1 Session handshake phase . 222

11.2 Application phase . 223

11.3 Session termination phase . 223

11.4 Simultaneous active sessions . 223

11.5 Records and session ID . 224

12 Key schedule . 225

12.1 DHE secret computation . 227

12.2 Transcript hash in key derivation . 227

12.3 TH1 definition. 228

12.4 TH2 definition. 228

12.5 Key schedule major secrets . 229

Security Protocol and Data Model (SPDM) Specification DSP0274

6 Published Version 1.3.0

12.5.1 Request-direction handshake secret . 229

12.5.2 Response-direction handshake secret . 229

12.5.3 Requester-direction data secret . 229

12.5.4 Responder-direction data secret . 229

12.6 Encryption key and IV derivation . 230

12.7 finished_key derivation . 230

12.8 Deriving additional keys from the Export Master Secret . 231

12.9 Major secrets update . 231

13 Application data . 232

13.1 Nonce derivation . 232

14 General opaque data format . 233

15 Signature generation . 235

15.1 Signing algorithms in extensions . 236

15.2 RSA and ECDSA signing algorithms . 236

15.3 EdDSA signing algorithms . 237

15.3.1 Ed25519 sign. 237

15.3.2 Ed448 sign. 237

15.4 SM2 signing algorithm . 237

15.5 Signature algorithm references . 237

16 Signature verification . 239

16.1 Signature verification algorithms in extensions . 239

16.2 RSA and ECDSA signature verification algorithms . 240

16.3 EdDSA signature verification algorithms . 240

16.3.1 Ed25519 verify. 240

16.3.2 Ed448 verify. 240

16.4 SM2 signature verification algorithm . 241

17 General ordering rules . 242

18 DMTF event types . 243

18.1 Event type details. 243

18.1.1 Event Lost . 243

18.1.2 Measurement changed event . 244

18.1.3 Measurement pre-update event . 245

18.1.4 Certificate changed event . 246

19 ANNEX A (informative) TLS 1.3 . 248

20 ANNEX B (informative) Device certificate example . 249

21 ANNEX C (informative) OID reference. 251

22 ANNEX D (informative) variable name reference. 252

23 ANNEX E (informative) change log . 254

23.1 Version 1.0.0 (2019-10-16) . 254

23.2 Version 1.1.0 (2020-07-15) . 254

23.3 Version 1.2.0 (2021-11-01). 254

23.4 Version 1.3.0 (2023-04-05) . 257

23.5 Version 1.3.0 (Updated 2023-06-28) . 262

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 7

24 Bibliography . 263

Security Protocol and Data Model (SPDM) Specification DSP0274

8 Published Version 1.3.0

14 1 Foreword

15 The Security Protocols and Data Models (SPDM) Working Group of the DMTF prepared the Security Protocol and Data

Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry members that promotes

enterprise and systems management and interoperability. For information about the DMTF, see DMTF.

16 This version supersedes version 1.2 and its errata versions. For a list of the changes, see ANNEX E (informative)

change log.

17 IMPORTANT NOTE

18 This specification document with a publication date of June 28, 2023 supersedes the document published on May 10,

2023. Both documents are DSP0274 version 1.3.0. The copy dated June 28, 2023 contains editorial fixes to the

RequestResponseCode field values in the following tables:

• Table 113 — SUBSCRIBE_EVENT_TYPES request message format RequestResponseCode changed from 0xEF to

0xF0 .

• Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format RequestResponseCode changed from

0x6F to 0x70 .

• Table 116 — SEND_EVENT request message format RequestResponseCode changed from 0xF0 to 0xF1 .

• Table 118 — EVENT_ACK response message format RequestResponseCode changed from 0x70 to 0x71 .

19 These RequestResponseCode changes match the values enumerated in Table 4 — SPDM request codes and Table 5

— SPDM response codes in the document published on May 10, 2023.

20 1.1 Acknowledgments

21 The DMTF acknowledges the following individuals for their contributions to this document:

22 Contributors:

• Richelle Ahlvers — Broadcom Inc.

• Jeff Andersen — Google

• Lee Ballard — Dell Technologies

• Steven Bellock — NVIDIA Corporation

• Heng Cai — Alibaba Group

• Patrick Caporale — Lenovo

• Yu-Yuan Chen — Intel Corporation

• Andrew Draper — Intel Corporation

• Nigel Edwards — Hewlett Packard Enterprise

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 9

https://www.dmtf.org/

• Daniil Egranov — Arm Limited

• Philip Hawkes — Qualcomm Inc.

• Brett Henning — Broadcom Inc.

• Jeff Hilland — Hewlett Packard Enterprise

• Yi Hou — Microchip

• Guerney Hunt — IBM

• Yuval Itkin — NVIDIA Corporation

• Theo Koulouris — Hewlett Packard Enterprise

• Raghupathy Krishnamurthy — NVIDIA Corporation

• Benjamin Lei — Lenovo

• Luis Luciani — Hewlett Packard Enterprise

• Masoud Manoo — Lenovo

• Donald Matthews — Advanced Micro Devices, Inc.

• Mahesh Natu — Intel Corporation

• Chandra Nelogal — Dell Technologies

• Edward Newman — Hewlett Packard Enterprise

• Alexander Novitskiy — Intel Corporation

• Jim Panian — Qualcomm Inc.

• Scott Phuong — Cisco Systems Inc., Axiado Corporation

• Jeffrey Plank — Microchip

• Viswanath Ponnuru — Dell Technologies

• Lohith Rangappa — Marvell Technology, Inc.

• Xiaoyu Ruan — Intel Corporation

• Nitin Sarangdhar — Intel Corporation

• Vidya Satyamsetti — Google

• Hemal Shah — Broadcom Inc.

• Yoni Shternhell — Western Digital Technologies, Inc.

• Srikanth Varadarajan — Intel Corporation

• Peng Xiao — Alibaba Group

• Qing Yang — Alibaba Group

• Jiewen Yao — Intel Corporation

Security Protocol and Data Model (SPDM) Specification DSP0274

10 Published Version 1.3.0

23 2 Introduction

24 The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for

performing message exchanges over a variety of transport and physical media. The description of message

exchanges includes authentication and provisioning of hardware identities, measurement for firmware identities,

session key exchange protocols to enable confidentiality with integrity-protected data communication, and other

related capabilities. The SPDM enables efficient access to low-level security capabilities and operations. Other

mechanisms, including non-DMTF-defined mechanisms, can use the SPDM.

25 2.1 Advice

26 The authors recommend readers visit tutorial and education materials under Security Protocols and Data Models and

Platform Management Communications Infrastructure (PMCI) on the DMTF website prior to or during the reading of

this specification to help understand this specification.

27 2.2 Conventions

28 The following conventions apply to all SPDM specifications.

29 2.2.1 Document conventions

• Document titles appear in italics.

• The first occurrence of each important term appears in italics with a link to its definition.

• ABNF rules appear in a monospaced font.

30 2.2.2 Reserved and unassigned values

31 Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric ranges

are reserved for future definition by the DMTF.

32 Unless otherwise specified, field values marked as Reserved shall be written as zero (0), ignored when read, not

modified, and not interpreted as an error if not zero, and used in transcript hash calculations as is.

33 2.2.3 Byte ordering

34 Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit

fields is little endian (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more

significant bytes).

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 11

https://www.dmtf.org/standards/spdm
https://www.dmtf.org/standards/pmci

35 2.2.3.1 Hash byte order

36 For fields or values containing a digest or hash, SPDM preserves the byte order of the digest as the specification of a

given hash algorithm defines. SPDM views these digests, simply, as a string of octets where the first byte is the

leftmost byte of the digest, the second byte is the second leftmost byte, the third byte is the third leftmost byte, and

this pattern continues until the last byte of the digest. Thus, the byte order for SPDM digests or hashes is: the first

byte is placed at the lowest offset in the field or value, the second byte is placed at the second lowest offset, the third

byte is placed at the third lowest offset in the field or value and this pattern continues until the last byte.

37 For example, in FIPS 180-4, a SHA 256 hash is the concatenation of eight 32-bit words where each word is in big

endian order, but the order of words does not have any endianness associated with it. SPDM simply views this 256-bit

digest as a string of octets that is 32 bytes in size where the first byte is the value at H0[31:24] of the final digest, the

second byte is the value at H0[23:16], the third byte is the value at H0[15:8], the fourth byte is the value at H0[7:0], the

fifth bytes is the value at H1[31:24], and this pattern continues until the last byte, which is the value at H7[7:0], where

the FIPS 180-4 specification defines H0, H1, and H7.

38 2.2.3.2 Encoded ASN.1 byte order

39 For fields or values containing DER, CER, or BER encoded data, SPDM preserves the byte order as described in X.690

specification. SPDM views a DER, CER, or BER encoded data as simply a string of octets where the first byte is the

leftmost byte of Figure 1 or Figure 2 in the X.690 specification, the second byte is the second leftmost byte, the third

byte is the third leftmost byte, and this pattern continues until the last byte. The first byte is also called either the

Identifier octet or the Leading identifier octet. The X.690 specification defines Figure 1, Figure 2, and identifier octets.

When populating a DER, CER, or BER encoded data in SPDM fields, the first byte is placed in the lowest address, the

second byte is placed in the second lowest offset, the third byte is placed in the third lowest offset in the field or

value and this pattern continues until the last byte.

40 2.2.3.3 Octet string byte order

41 A string of octets is conventionally written from left to right. Also by convention, byte zero of the octet string shall be

the leftmost byte of the octet, byte 1 of the octet string shall be the second leftmost byte of the octet, and this

pattern shall continue until the very last byte. When placing an octet string into an SPDM field, the ith byte of the

octet string shall be placed in the ith offset of that field.

42 For example, if placing an octet stream consisting of “0xAA 0xCB 0x9F 0xD8” into DMTFSpecMeasurementValue field,

then offset 0 (the lowest offset) of DMTFSpecMeasurementValue will contain 0xAA, offset 1 of

DMTFSpecMeasurementValue will contain 0xCB, offset 2 of DMTFSpecMeasurementValue will contain 0x9F, and offset

3 of DMTFSpecMeasurementValue will contain 0xD8.

43 2.2.3.4 Signature byte order

44 For fields or values containing a signature, SPDM attempts to preserve the byte order of the signature as the

specification of a given signature algorithm defines. Most signature specifications define a string of octets as the

Security Protocol and Data Model (SPDM) Specification DSP0274

12 Published Version 1.3.0

format of the signature, and others may explicitly state the endianness such as in the specification for Edwards-Curve

Digital Signature Algorithm. Unless otherwise specified, the byte order of a signature for a given signature algorithm

shall be octet string byte order.

45 2.2.3.4.1 ECDSA signatures byte order

46 FIPS PUB 186-5 defines r , s , and ECDSA signature to be (r, s) , where r and s are just integers. For ECDSA

signatures, excluding SM2, in SPDM, the signature shall be the concatenation of r and s . The size of r shall be

the size of the selected curve. Likewise, the size of s shall be the size of the selected curve. See BaseAsymAlgo in

NEGOTIATE_ALGORITHMS for the size of r and s . The byte order for r and s shall be big-endian order. When

placing ECDSA signatures into an SPDM signature field, r shall come first, followed by s .

47 2.2.3.4.2 SM2 signatures byte order

48 GB/T 32918.2-2016 defines r and s and SM2 signatures to be (r, s) , where r and s are just integers. The size

of r and s shall each be 32 bytes. To form an SM2 signature, r and s shall be converted to an octet stream

according to GB/T 32918.2-2016 and GB/T 32918.1-2016 with a target length of 32 bytes. Let the resulting octet

string of r and s be called SM2_R and SM2_S respectively. The final SM2 signature shall be the concatenation of

SM2_R and SM2_S . When placing SM2 signatures into an SPDM signature field, the SM2 signature byte order shall

be octet string byte order.

49 2.2.4 SPDM data type conventions

50 2.2.4.1 SPDM data types

51 Table 1 — SPDM data types lists the abbreviations and descriptions for common data types that SPDM message

fields and data structure definitions use. These definitions follow DSP0240.

52 Table 1 — SPDM data types

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version encoding defines the encoding of the version number.

bitfield8 Byte with 8-bit fields.

bitfield16 Two-byte word with 16-bit fields.

53 2.2.4.2 Integers

54 Unless noted otherwise, integers shall be unsigned.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 13

55 2.2.5 Version encoding

56 The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major

Major version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification breaks backward compatibility.

Minor

Minor version field in the

SPDMVersion field in the SPDM

message header.

Protocol modification maintains backward compatibility.

57 EXAMPLE:

58 Version 3.7 → 0x37

59 Version 1.0 → 0x10

60 Version 1.2 → 0x12

61 An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 or other

previous minor versions. Whether an endpoint supports inter-operation with previous minor versions of the SPDM

specification is an implementation-specific decision.

62 An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and

shall not attempt to communicate beyond GET_VERSION .

63 This specification considers two minor versions to be interoperable when it is possible for an implementation that is

conformant to a higher minor version number to also communicate with an implementation that is conformant to a

lower minor version number with minimal differences in operation. In such a case, the following rules apply:

• Both endpoints shall use the same lower version number in the SPDMVersion field for all messages.

• Functionality shall be limited to what the lower minor version of the SPDM specification defines.

• Computations and other operations between different minor versions of the Secured Messages using SPDM

specification should remain the same, unless security issues of lower minor versions are fixed in higher minor

versions and the fixes require change in computations or other operations. These differences are dependent on

the value in the SPDMVersion field in the message.

• In a newer minor version of the SPDM specification, a given message can be longer, bit fields and enumerations

can contain new values, and reserved fields can gain functionality. Existing numeric and bit fields retain their

existing definitions.

64 For details on the version agreement process, see GET_VERSION request and VERSION response messages. The

detailed version encoding that the VERSION response message returns contains an additional byte that indicates

specification bug fixes or development versions. See Table 9 — Successful VERSION response message format.

Security Protocol and Data Model (SPDM) Specification DSP0274

14 Published Version 1.3.0

65 2.2.6 Notations

66 SPDM specifications use the following notations:

Notation Description

Concatenate()

The concatenation function Concatenate(a, b, ..., z) ,

where the first entry occupies the least-significant bits and the

last entry occupies the most-significant bits.

M:N

In field descriptions, this notation typically represents a range

of byte offsets starting from byte M and continuing to and

including byte N (M ≤ N).

The lowest offset is on the left. The highest offset is on the

right.

[4]

Square brackets around a number typically indicate a bit

offset.

Bit offsets are zero-based values. That is, the least significant

bit ([LSb]) offset = 0.

[M:N]

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant

bit is on the right.

1b
A lowercase b after a number consisting of 0 s and 1 s

indicates that the number is in binary format.

0x12A Hexadecimal, as indicated by the leading 0x .

N+ Variable-length byte range that starts at byte offset N.

{ Payload }

Used mostly in figures, this notation indicates that the payload

specified in the enclosing curly brackets is encrypted and/or

authenticated by the keys derived from one or more major

secrets. The specific secret used is described throughout this

specification. For example, { HEARTBEAT } shows that the

Heartbeat message is encrypted and/or authenticated by the

keys derived from one or more major secrets.

{ Payload }::[[SX]]

Used mostly in figures, this notation indicates that the payload

specified in the enclosing curly brackets is encrypted and/or

authenticated by the keys derived from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the

Heartbeat message is encrypted and/or authenticated by the

keys derived from major secret S2 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 15

Notation Description

[${message_name}] . ${field_name}

Used to indicate a field in a message.

• ${message_name} is the name of the request or response

message.

• ${field_name} is the name of the field in the request or

response message. An asterisk (*) instead of a field

name means all fields in that message except for any

conditional fields that are empty (as for example

KEY_EXCHANGE . OpaqueData).

67 2.2.7 Text or string encoding

68 When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of

contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset, and the last byte of

the array is at the highest offset. The order of characters in the array shall be such that the leftmost character of the

string is placed at the first byte in the array, the second leftmost character is placed in the second byte, and so forth

until the last character is placed in the last byte.

69 Each byte in the array shall be the numeric value that represents that character, as ASCII — ISO/IEC 646:1991 defines.

70 Table 2 — “spdm” encoding example shows an encoding example of the string “spdm”:

71 Table 2 — “spdm” encoding example

Offset Character Value

0 s 0x73

1 p 0x70

2 d 0x64

3 m 0x6D

72 2.2.8 Deprecated material

73 Deprecated material is not recommended for use in new development efforts. Existing and new implementations can

use this material, but they shall move to the favored approach as soon as possible. Implementations can implement

any deprecated elements as required by this document to achieve backward compatibility. Although implementations

can use deprecated elements, they are directed to use the favored elements instead.

74 The following typographical convention indicates deprecated material:

75 DEPRECATED

76 Deprecated material appears here.

Security Protocol and Data Model (SPDM) Specification DSP0274

16 Published Version 1.3.0

77 DEPRECATED

78 In places where this typographical convention cannot be used (for example, in tables or figures), the “DEPRECATED”

label is used alone.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 17

79 3 Scope

80 This specification describes how to use messages, data objects, and sequences to exchange messages between two

devices over a variety of transports and physical media. This specification contains the message exchanges, sequence

diagrams, message formats, and other relevant semantics for such message exchanges, including authentication of

hardware identities and firmware measurements.

81 Other specifications define the mapping of these messages to different transports and physical media. This

specification provides information to enable security policy enforcement but does not specify individual policy

decisions.

Security Protocol and Data Model (SPDM) Specification DSP0274

18 Published Version 1.3.0

82 4 Normative references

83 The following documents are indispensable for the application of this specification. For dated or versioned references,

only the edition cited, including any corrigenda or DMTF update versions, applies. For references without date or

version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions)

applies.

• ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2021 (9th

edition)

• DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0004_3.0.1.pdf

• DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0223_1.0.1.pdf

• DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/

DSP0236_1.3.0.pdf

• DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/

DSP0239_1.6.0.pdf

• DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/

standards/documents/DSP0240_1.0.0.pdf

• DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification, https://www.dmtf.org/

dsp/DSP0275

• DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/

documents/DSP1001_1.2.0.pdf

• IETF RFC 9147, The Datagram Transport Layer Security (DTLS) Protocol Version 1.3, April 2022

• IETF RFC 2986, PKCS #10: Certification Request Syntax Specification, November 2000

• IETF RFC 4716, The Secure Shell (SSH) Public Key File Format, November 2006

• IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

• IETF RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, May

2008

• IETF RFC 7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security

(DTLS), June 2014

• IETF RFC 7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS),

August 2016

• IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, November, 2016

• IETF RFC 8032, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

• IETF RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

• USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

• TCG Algorithm Registry, Family “2.0”, Level 00 Revision 01.32, June 25, 2020

• NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 19

https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://datatracker.ietf.org/doc/html/rfc9147
https://tools.ietf.org/html/rfc2986
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

(GCM) and GMAC, November 2007

• IETF RFC 8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018

• IETF RFC 8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021

• GB/T 32918.1-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 1: General, August 2016

• GB/T 32918.2-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 2: Digital signature algorithm, August 2016

• GB/T 32918.3-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 3: Key exchange protocol, August 2016

• GB/T 32918.4-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 4: Public key encryption algorithm, August 2016

• GB/T 32918.5-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic

curves—Part 5: Parameter definition, August 2016

• GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016

• GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016

• ASN.1 — ISO-822-1-4, DER — ISO-8825-1

◦ ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015

• ASCII — ISO/IEC 646:1991, 09/1991

• ECDSA

◦ Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-5 Digital Signature

Standard (DSS)

◦ NIST SP 800-186 Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain

Parameters

◦ IETF RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital

Signature Algorithm (ECDSA), August 2013

• SHA2-256, SHA2-384, and SHA2-512

◦ FIPS PUB 180-4 Secure Hash Standard (SHS)

• SHA3-256, SHA3-384, and SHA3-512

◦ FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

Security Protocol and Data Model (SPDM) Specification DSP0274

20 Published Version 1.3.0

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/rfc8998
http://www.gmbz.org.cn/upload/2018-07-24/1532401673134070738.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673134070738.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673138056311.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673138056311.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673149005052.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673149005052.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673367034870.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673367034870.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401863206085511.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401863206085511.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401392982079739.pdf
http://www.gmbz.org.cn/upload/2018-04-04/1522788048733065051.pdf
https://www.itu.int/rec/T-REC-X.680-X.693-201508-S/en
https://www.iso.org/standard/4777.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

84 5 Terms and definitions

85 In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines those

terms.

86 The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need

not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives, Part

2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when the

preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies

additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English

meaning.

87 The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in ISO/

IEC Directives, Part 2, Clause 6.

88 The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives,

Part 2, Clause 3. In this document, clauses, subclauses, and annexes labeled “(informative)” do not contain normative

content. Notes and examples are always informative elements.

89 The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this document.

90 This specification uses these terms:

Term Definition

alias certificate Certificate that is dynamically generated by the component or component firmware.

application data

Data that is specific to the application and whose definition and format is outside the scope

of this specification. Application data usually exists at the application layer, which is, in

general, the layer above SPDM and the transport layer. Examples of data that could be

application data include: messages carried as DMTF MCTP payloads; Internet traffic; PCIe

transaction layer packets (TLPs); camera images and video (MIPI CSI-2 packets); video

display stream (MIPI DSI-2 packets); and touchscreen data (MIPI I3C Touch).

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.

authentication Process of determining whether an entity is who or what it claims to be.

byte Eight-bit quantity. Also known as an octet.

certificate authority (CA) Trusted entity that issues certificates.

certificate chain
Typically a series of two or more certificates. Each certificate is signed by the preceding

certificate in the chain.

certificate
Digital form of identification that provides information about an entity and certifies

ownership of a particular asymmetric key-pair.

component
Physical device, contained in a single package. A “component” may also refer to a functional

block implemented in hardware, firmware, and/or software.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 21

Term Definition

device certificate
Certificate that contains information that identifies the component. Can be a leaf certificate

or an intermediate certificate.

device Physical entity such as a network controller or a fan.

DMTF

Formerly known as the Distributed Management Task Force, the DMTF creates open

manageability standards that span diverse emerging and traditional information technology

(IT) infrastructures, including cloud, virtualization, network, servers, and storage. Member

companies and alliance partners worldwide collaborate on standards to improve the

interoperable management of IT.

encapsulated request

A request embedded into an ENCAPSULATED_REQUEST or ENCAPSULATED_RESPONSE_ACK

response message to allow the Responder to issue a request to a Requester. See

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

generic certificate
A certificate, for use in certificate slots 1 or greater, that has minimal SPDM requirements to

allow for numerous use cases that the vendor, standards body, or user defines.

endpoint
Logical entity that communicates with other endpoints over one or more transport

protocols.

event notifier
An SPDM endpoint that is capable of sending asynchronous notifications using SPDM event

mechanisms. See Event mechanism.

event recipient
An SPDM endpoint that is capable of receiving asynchronous notifications using SPDM event

mechanisms. See Event mechanism.

intermediate certificate Certificate that is neither a root certificate nor a leaf certificate.

invasive debug mode

A device mode that enables debug access that might expose or allow modification of

firmware, hardware, or settings that can access (read or write) security keys, states, and

contexts of the device. A device should not be trusted when it is operating in this mode.

large SPDM message
An SPDM message that is greater than the DataTransferSize of the receiving SPDM

endpoint or greater than the transmit buffer size of the sending SPDM endpoint.

large SPDM request message A large SPDM message that is an SPDM request.

large SPDM response message A large SPDM message that is an SPDM response.

leaf certificate
Last certificate in a certificate chain. A leaf certificate is synonymous with an end entity

certificate as RFC 5280 describes.

measurement Representation of hardware/firmware/software or configuration data on an endpoint.

message See SPDM message.

message body Portion of an SPDM message that carries additional data.

Security Protocol and Data Model (SPDM) Specification DSP0274

22 Published Version 1.3.0

Term Definition

message transcript

The concatenation of a sequence of messages in the order in which they are sent and

received by an endpoint. The final message included in the message transcript may be

truncated to allow inclusion of a signature in that message which is computed over the

message transcript. If an endpoint is communicating with multiple peer endpoints

concurrently, the message transcripts for the peers are accumulated separately and

independently.

monotonically increasing

This specification uses the term monotonically increasing to describe an integer field where

the value of each instance of the field in a series increases from a lower starting point to a

higher ending point without repeating values. For instance, a monotonically increasing field

may contain the values 1, 3, 4, 7, and 9.

most significant byte (MSB) Highest-order byte in a number consisting of multiple bytes.

Negotiated State

Set of parameters that represents the state of the communication between a corresponding

pair of Requester and Responder at the successful completion of the

NEGOTIATE_ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES , and

ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to

continue or preserve communication with each other.

nibble Computer term for a four-bit aggregation, or half of a byte.

non-invasive debug mode
A device mode that enables debug access that does not expose or allow modification of

security-critical firmware, hardware, or settings.

nonce

Number that is unpredictable to entities other than its generator. The probability of the same

number occurring more than once is negligible. A nonce may be generated by combining a

random number of at least 64 bits, optionally concatenated with a monotonically increasing

counter of size suitable for the application.

opaque data

Opaque data fields transfer data that is outside the scope of this specification. The semantics

and usage of this data are implementation specific and are also outside the scope of this

specification.

payload

Information-bearing fields of a message. These fields are separate from the transport fields

and elements, such as address fields, framing bits, and checksums, that transport the

message from one point to another.

physical transport binding

Specifications that define how a base messaging protocol is implemented on a particular

physical transport type and medium, such as SMBus/I2C or PCI Express™ Vendor Defined

Messaging.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 23

Term Definition

Platform Management Component

Intercommunication (PMCI)

Working group under the DMTF that defines standardized communication protocols, low-

level data models, and transport definitions that support communications with and between

management controllers and management devices that form a platform management

subsystem within a managed computer system.

record A unit or chunk of data that is either encrypted and/or authenticated.

Requester

Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver,

or destination, of an SPDM response message. A Requester is the sender of the

GET_VERSION request and remains the requester for the remainder of that connection.

Reset
This term is used to denote a Reset or restart of a device that runs the Requester or

Responder code, which typically leads to the loss of all volatile state on the device.

Responder
Ultimate receiver, or destination, of an SPDM request message. It is also the original

transmitter, or source of an SPDM response message.

root certificate
First certificate in a certificate chain, which acts as the trust anchor and is typically self-

signed.

secure session
Provides either encryption or message authentication or both for communicating data over

a transport.

Security Protocols and Data Models (SPDM)

WG

Working group under the DMTF that defines standards to enable security for platforms,

whether for the control plane, data plane, or other infrastructure.

sequentially decreasing

This specification uses the term sequentially decreasing to describe an integer field where the

value of each instance of the field in a series decrements from a higher starting point to a

lower ending point without skipping or repeating values. For instance, a sequentially

decreasing field may contain the values 255, 254, 253, 252, and 251.

sequentially increasing

This specification uses the term sequentially increasing to describe an integer field where the

value of each instance of the field in a series increments from a lower starting point to a

higher ending point without skipping or repeating values. For instance, a sequentially

increasing field may contain the values 1, 2, 3, 4, and 5.

session keys
Any secrets, derived cryptographic keys, or any cryptographic information bound to a

session.

Session-Secrets-Exchange

Any SPDM request and their corresponding response that initiates a session and provides

initial cryptographic exchange. Examples of such requests are KEY_EXCHANGE and

PSK_EXCHANGE .

Session-Secrets-Finish

This term denotes any SPDM request and its corresponding response that finalizes a session

setup and provides the final exchange of cryptographic or other information before

application data can be securely transmitted. Examples of such requests are FINISH and

PSK_FINISH .

SPDM message payload

Portion of the message body of an SPDM message. This portion of the message is separate

from those fields and elements that identify the SPDM version, the SPDM request and

response codes, and the two parameters.

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Published Version 1.3.0

Term Definition

SPDM message Unit of communication in SPDM communications. See Generic SPDM message format.

SPDM request message
Message that is sent to an endpoint to request a specific SPDM operation. A corresponding

SPDM response message acknowledges receipt of an SPDM request message.

SPDM response message
Message that is sent in response to a specific SPDM request message. This message includes

a Response Code field that indicates whether the request completed normally.

trusted computing base (TCB)

Set of all hardware, firmware, and/or software components that are critical to its security, in

the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security

properties of the entire system. By contrast, parts of a computer system outside the TCB shall

not be able to misbehave in a way that would leak any more privileges than are granted to

them in accordance with the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

trusted environment
An environment where the operator is assured of no unauthorized interference in

operations.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 25

https://en.wikipedia.org/wiki/Trusted_computing_base

91 6 Symbols and abbreviated terms

92 The abbreviations that DSP0004, DSP0223, and DSP1001 define apply to this document.

93 The following additional abbreviations are used in this document.

Abbreviation Definition

AEAD Authenticated Encryption with Associated Data

CA certificate authority

DMTF Formerly the Distributed Management Task Force

ECC Elliptic-curve cryptography

ECDSA Elliptic-curve Digital Signature Algorithm

KDF Key Derivation Function

MAC Message Authentication Code

MSB most significant byte

OID Object identifier

PMCI Platform Management Component Intercommunication

RMA Return Merchandise Authorization

RSA Rivest–Shamir–Adleman

SPDM Security Protocol and Data Model

TCB trusted computing base

VCA Version-Capabilities-Algorithms

Security Protocol and Data Model (SPDM) Specification DSP0274

26 Published Version 1.3.0

94 7 SPDM message exchanges

95 The message exchanges that this specification defines are between two endpoints and are performed and exchanged

through sending and receiving of SPDM messages that SPDM messages defines. The SPDM message exchanges are

defined in a generic fashion that allows the messages to be communicated across different physical mediums and

over different transport protocols.

96 The specification-defined message exchanges enable Requesters to:

• Discover and negotiate the security capabilities of a Responder.

• Authenticate or provision an identity of a Responder.

• Retrieve the measurements of a Responder.

• Securely establish cryptographic session keys to construct a secure communication channel for the transmission

or reception of application data.

• Receive notifications of selectable events when certain scenarios transpire.

97 These message exchange capabilities are built on top of well-known and established security practices across the

computing industry. The following clauses provide a brief overview of each message exchange capability. Some

message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0 with

ECN and Errata through January 7, 2019 defines.

98 7.1 Security capability discovery and negotiation

99 This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For

example, an endpoint could support multiple cryptographic hash functions that this specification defines.

Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of

cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the

Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

100 7.2 Identity authentication

101 In this specification, the authenticity of a Responder is determined by digital signatures using well-established

techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using

a private key, and the signatures can be cryptographically verified by the Requester using the public key associated

with that private key.

102 At a high level, the authentication of the identity of a Responder involves these processes:

• Identity provisioning

• Runtime authentication

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 27

103 7.2.1 Identity provisioning

104 Identity provisioning is the process that device vendors follow during or after hardware manufacturing to equip a

device with a secure identifier. In the context of this specification, this secure identifier consists of an asymmetric key

pair and, optionally, a certificate to bind the key pair to a particular instance of a device and associate it with

additional metadata. The specifics of key generation and provisioning are outside the scope of this specification.

However, as the security of the SPDM protocol depends on device identities that cannot be easily modified, removed,

or copied, it is strongly recommended that identity keys are unique per device and generated using cryptographically

strong random seeds.

105 7.2.1.1 Certificate models

106 If trust in a device public key is established through a certificate, the certificate is typically part of a certificate chain.

The certificate chain has a root certificate (RootCert) as its root and a leaf certificate as the last certificate in it. The

RootCert is generated by a trusted root certificate authority (CA) and certifies the certificate containing the device

public key either directly or indirectly through a number of intermediate CAs. Authentication initiators use the

RootCert to verify the validity of device certificate chains.

107 The certificate chain should contain at least one certificate that includes hardware identity information, regardless of

the certificate model that is in use. The Hardware identity OID should be used to indicate which certificate conveys

the hardware identity. Though existing deployments might not include the Hardware identity OID in a certificate, it is

strongly recommended that new deployments include this information. The public/private key pair associated with a

hardware identity certificate is constant on the instance of the device, regardless of the version of firmware running

on the device.

108 SPDM defines multiple overarching formats for certificate chains, referred to as certificate chain models. While the

details of each certificate chain model vary, all of them follow the general format of connecting from a root certificate

(RootCert) to a leaf certificate, possibly through one or more intermediate certificates.

109 A Responder can use one or more of the certificate chain models. A Requester should be capable of performing

Runtime authentication on a certificate chain that conforms to any of the models.

110 Figure 1 — SPDM certificate chain models shows the SPDM certificate chain models:

111 Figure 1 — SPDM certificate chain models

Security Protocol and Data Model (SPDM) Specification DSP0274

28 Published Version 1.3.0

Léon GALL

Léon GALL

Léon GALL

112

Intermediate

CA

Device
Certificate

...

Root CARoot CA

Intermediate

CA

Device
Certificate

CA

Root CA

Intermediate

CA

...

GenericCert
Model

DeviceCert

Model

Generic
Leaf Certificate

...

AliasCert
Model

Alias

Intermediate

CA

Alias

Certificate

...

113 7.2.1.1.1 Device certificate model

114 When the device certificate (DeviceCert) model is in use, the leaf certificate is a Device Certificate, which contains

the public key that corresponds to the device private key. Through the certificate chain, the root CA indirectly

endorses the device public key in the Device Certificate. In this model, the Device Certificate should contain the

Hardware identity OID.

115 7.2.1.1.2 Alias certificate model

116 When the alias certificate (AliasCert) model is in use, the leaf certificate is an Alias Certificate, in which case there

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 29

may be one or more intermediate AliasCert certificates between the Device Certificate and the leaf Alias

Certificate. In the AliasCert model, the device private key signs the next level Alias Certificate, and then the private

key associated with the public key in each Alias Intermediate CA signs the Alias Certificate below it. When the

AliasCert model is in use, the Device Certificate is referred to as a Device Certificate CA, indicating that the

certificate both contains device hardware identity information and functions as a certificate authority to sign an

additional certificate. In this model, the Device Certificate CA should contain the Hardware identity OID.

117 A device that implements the AliasCert model might factor some mutable information, such as the measurement

of a firmware image, into the derivation of the public/private key pairs for the intermediate and leaf alias certificates.

Therefore, the asymmetric public/private key pairs for each Alias Certificate should be treated as mutable.

118 Through the certificate chain, the root CA indirectly endorses the device public key in the Device Certificate. When the

AliasCert model is in use, the Alias Certificates are endorsed by the device private key, meaning that the Alias

Certificates are also indirectly endorsed by the root CA.

119 When the AliasCert model is used, the device creates and endorses one or more certificates. The certificates from

the root certificate to the Device Certificate are considered immutable because the Responder cannot change them,

as they can only be changed through the SET_CERTIFICATE command or an equivalent capability. The certificates

below the Device Certificate can be created on the device and are mutable certificates in that they can change when

the device state changes, such as a device reset. The Mutable certificate OID should be used to indicate mutable

certificates.

120 In addition, when the AliasCert model is used, one or more Alias Certificates can contain firmware identity

information. Other standards bodies might define the format of the firmware identity information. Such definitions

are outside the scope of this specification.

121 Note that a signature algorithm used with a mutable alias certificate can insert random data during signing, which

would cause the digest of the certificate chain to change each time it is regenerated. An implementer can use a

mechanism that is outside the scope of this specification to ensure that such a signature does not change between

instances of DIGESTS and CERTIFICATE responses.

122 7.2.1.1.3 Generic certificate model

123 With the support of multiple asymmetric keys, the need for another certificate model arises to accommodate varying

use cases that DeviceCert and AliasCert models cannot fulfill. Thus, the generic certificate model offers the

greatest flexibility to the device manufacturer, a manufacturer in the supply chain, and the users of the SPDM

endpoint.

124 As Figure 1 — SPDM certificate chain models illustrates, much like the other certificate models, the generic certificate

model, too, is composed of a chain of certificates starting with the root and ending with the leaf. The root CA, too,

either directly certifies the leaf certificate or indirectly certifies the leaf certificate (GenericCert) through one or

more intermediate certificate authorities. In other words, this model is the most flexible (or least restrictive) of the

certificate models in this specification. The main difference between this model and the other models is that SPDM

shall not impose any requirements on the contents of each certificate in the chain in a generic certificate model other

than the key pair and related information associated in the leaf certificate.

125 For example, in a device certificate model, the leaf certificate can contain elements that specifically identify the device

Security Protocol and Data Model (SPDM) Specification DSP0274

30 Published Version 1.3.0

and device manufacturer, whereas the generic certificate model has no such requirement nor any concept of a device

certificate.

126 As such, the generic certificate model applies to certificates in slots greater than slot 0. A model in a certificate slot in

this specification is either a DeviceCert , AliasCert , or GenericCert model.

127 The contents and use cases for the certificates of a generic certificate model, other than the associated key pair and

related information in the leaf certificate, are outside the scope of this specification. Typically, the users of the SPDM

endpoint, the device manufacturer, or standards define the contents and use cases of a generic certificate model.

128 7.2.2 Raw public keys

129 Instead of using certificate chains, the vendor can provision the raw public key of the Responder to the Requester in a

trusted environment; for example, during the secure manufacturing process. In this case, trust of the public key of the

Responder is established without the need for a certificate-based public key infrastructure.

130 The format of the provisioned public key is outside the scope of this specification. Vendors can use proprietary

formats or public key formats that other standards define, such as RFC 7250 and RFC 4716.

131 7.2.3 Runtime authentication

132 Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder in

a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a

unique challenge to the Responder. The Responder uses the private key associated with the leaf certificate to sign the

challenge. The authentication initiator verifies the signature by using the public key associated with the leaf certificate

of the Responder and any intermediate public keys within the certificate chain by using the root certificate as the

trusted anchor.

133 If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication

initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The

authentication initiator verifies the signature by using the public key of the Responder. Device identification can be

handled using the GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages or the transport layer

(which is outside the scope of this specification).

134 7.3 Firmware and configuration measurement

135 A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is

typically either a cryptographic hash value of the data or the raw data itself. The endpoint optionally binds a

measurement with the endpoint identity through the use of digital signatures. This binding enables an authentication

initiator to establish the identity and measurement of the firmware/software or configuration running on the

endpoint.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 31

Léon GALL

136 7.4 Secure sessions

137 Many devices exchange data that might require protection with other devices. In this specification, this data that is

being exchanged is generically referred to as application data. The protocol of the application data usually exists at a

higher layer, and as such it is outside the scope of this specification. The protocol of the application data usually

allows for encrypted and/or authenticated data transfer.

138 This specification provides a method to perform a cryptographic key exchange such that the protocol of the

application data can use the exchanged keys to provide a secure channel of communication by using encryption and

message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual

authentication, both of which can be considered equivalent to Runtime authentication. For more details, see the

Session clause.

139 Finally, many SPDM requests and their corresponding responses can also be afforded the same protection. For more

details, see Table 6 — SPDM request and response messages validity and the SPDM request and response code

issuance allowance clause.

140 Figure 2 — SPDM messaging protocol flow gives a very high-level view of when the secure session starts.

141 7.5 Mutual authentication overview

142 The ability of a Responder to verify the authenticity of the Requester is called mutual authentication. Several

mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means

to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity provisioning

clause discusses identity in regards to the Responder but the details also apply to the Requester.

143 In general, when this specification states requirements or recommendations for Responders in the context of identity,

those same rules also apply to Requesters in the context of mutual authentication. The various clauses in this

specification provide more details.

144 7.6 Multiple asymmetric key support

145 An SPDM endpoint can use more than one asymmetric key pair for a negotiated asymmetric algorithm. This enables

cryptographic isolation between different use cases which potentially increases the security posture of the SPDM

endpoint and its corresponding SPDM connections. For example, an SPDM Responder can choose which key-pairs to

use in a CHALLENGE request and which key pairs to use in a GET_MEASUREMENTS request. The SPDM Responder

permits the CHALLENGE and GET_MEASUREMENTS requests to use the same key-pair for signing operations.

146 Additionally, a Responder can allow the Requester to select the use cases to associate with each asymmetric key pair.

The Responder can, also, allow the Requester to request the generation of a new key pair.

147 To facilitate the use of multiple asymmetric keys, the ability to uniquely identify each key pair is essential. To achieve

this, a unique key pair number, called KeyPairID , identifies each asymmetric key pair. Additionally, one or more leaf

certificates can bind to the same asymmetric key pair.

Security Protocol and Data Model (SPDM) Specification DSP0274

32 Published Version 1.3.0

Léon GALL

148 7.7 Custom environments

149 A fixed or predetermined environment is an environment where certain characteristics of the environment are fixed or

known before the SPDM endpoints communicate with each other. In many cases, these characteristics are determined

even before the environment can operate such as during the design phase. An example of a such an environment is

when two specific endpoints can only communicate with each other. These environments may forfeit certain SPDM

features such as interoperability. However, the security posture and guarantees of these environments are outside the

scope of this specification.

150 7.8 Notification overview

151 To aid an SPDM endpoint in enforcing its security policy requirements in an efficient, reliable, and timely manner, the

SPDM event mechanism provides a method to asynchronously deliver a notification to or receive a notification from

the interested SPDM endpoint. This mechanism allows an interested SPDM endpoint to choose only the event types it

wants to receive. For more details, see Event mechanism.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 33

152 8 SPDM messaging protocol

153 The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the

message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to with

an SPDM response message as this specification defines unless this specification states otherwise.

154 Figure 2 — SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An

endpoint that acts as the Requester sends an SPDM request message to another endpoint that acts as the Responder,

and the Responder returns an SPDM response message to the Requester.

155 Figure 2 — SPDM messaging protocol flow

Security Protocol and Data Model (SPDM) Specification DSP0274

34 Published Version 1.3.0

156

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

If necessary

ResponderRequester

GET_VERSION

VERSION

CAPABILITIES

If supported

CHALLENGE

CHALLENGE_AUTH

GET_CERTIFICATE

CERTIFICATE

If supported

MEASUREMENTS

KEY_EXCHANGE

GET_MEASUREMENTS

FINISH

FINISH_RSP

If supported

Secure Session

Application Data

KEY_EXCHANGE_RSP

Mutual Authentication

GET_CAPABILITIES

If supported

157 All SPDM request-response messages share a common data format that consists of a four-byte message header and

zero or more bytes message payload that is message-dependent. The following clauses describe the common

message format and SPDM messages’ details for each of the request and response messages.

158 The Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS request messages before

issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS can be saved by the Requester so that after Reset the Requester can skip these requests.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 35

159 8.1 SPDM connection model

160 In SPDM, communication between a pair of SPDM endpoints starts when one endpoint sends a GET_VERSION

request to another SPDM endpoint. The SPDM endpoint that starts the communication is called the Requester. The

endpoint receiving the GET_VERSION and providing the VERSION response is called a Responder. The

communication between a pair of Requester and Responder is called a connection. One or more connections can

exist between a Requester and Responder. Different connections might exist over the same transport or over different

transports. When there are multiple connections over the same transport, the transport is responsible for providing

mechanisms for SPDM endpoints to distinguish between one or more connections. When the transport does not

provide such a mechanism, there shall be one connection between the Requester and Responder over that

connection.

161 SPDM endpoints can be both a Requester and Responder. As a Requester, an SPDM endpoint can communicate with

one or more Responders. Likewise, as a Responder, an SPDM endpoint can respond to multiple Requesters. The

SPDM connection model considers each of these communications to be a separate connection. For example, a pair of

SPDM endpoints can be both Requester and Responder to each other. Thus, the SPDM connection model considers

this to be two separate connections.

162 Within a connection, the Requester remains the Requester for the remainder of the connection. Likewise, the

Responder remains the Responder for the remainder of the connection. However, under certain scenarios allowed by

SPDM, a Responder can send a request to a Requester and, likewise, a Requester might provide a response to a

Responder. These cases are limited and this specification explicitly defines these cases. In such scenarios, when a

Requester provides a response, the Requester shall abide by all requirements in this specification as if they are a

Responder for that request. Similarly, when a Responder sends a request, the Responder shall abide by all

requirements in this specification as if they are a Requester for that request.

163 Within a connection, the Requester can establish one or more secure sessions. These secure sessions are considered

to be part of the same connection. Secure sessions can terminate and additional sessions can be established at any

time. A GET_VERSION can reset the connection and all context associated with that connection including, but not

limited to, information such as session keys and session IDs. However, this is not considered a termination of the

connection. A connection can terminate due to external events such as a device reset or an error-handling strategy

implemented on an SPDM endpoint, but such scenarios are outside the scope of this specification. Connections can

be terminated using mechanisms outside the scope of this specification.

164 8.2 SPDM bits-to-bytes mapping

165 All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned

byte in sequentially decreasing order down to and including the least numerically assigned byte of that field. The

following two figures illustrate this mapping.

166 Figure 3 — One-byte field bit map shows the one-byte field bit map:

167 Figure 3 — One-byte field bit map

Security Protocol and Data Model (SPDM) Specification DSP0274

36 Published Version 1.3.0

Léon GALL

168

Byte 1

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A One-Byte Field

169 Figure 4 — Two-byte field bit map shows the two-byte field bit map:

170 Figure 4 — Two-byte field bit map

171

Byte 2

Bit
0

Bit
1

Bit
4

Bit
3

Bit
2

Bit
7

Bit
6

Bit
5

Example: A Two-Byte Field

Byte 3

Bit
8

Bit
9

Bit
12

Bit
11

Bit
10

Bit
15

Bit
14

Bit
13

172 8.3 Generic SPDM message format

173 Table 3 — Generic SPDM message field definitions defines the fields that constitute a generic SPDM message,

including the message header and payload:

174 Table 3 — Generic SPDM message field definitions

Byte offset Bit offset Size (bits) Field Description

0 [7:4] 4 SPDM Major Version

Shall be the major version of the

SPDM Specification. An endpoint

shall not communicate by using an

incompatible SPDM version value.

See Version encoding.

0 [3:0] 4 SPDM Minor Version

Shall be the minor version of the

SPDM Specification. A specification

with a given minor version extends a

specification with a lower minor

version as long as they share the

major version. See Version

encoding.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 37

Byte offset Bit offset Size (bits) Field Description

1 [7:0] 8 Request Response Code

Shall be the request message code

or response code, which Table 4 —

SPDM request codes and Table 5 —

SPDM response codes enumerate.

0x00 through 0x7F represent

response codes and 0x80 through

0xFF represent request codes. In

request messages, this field is

considered the request code. In

response messages, this field is

considered the response code.

2 [7:0] 8 Param1

Shall be the first one-byte

parameter. The contents of the

parameter are specific to the

Request Response Code .

3 [7:0] 8 Param2

Shall be the second one-byte

parameter. The contents of the

parameter are specific to the

Request Response Code .

4
See the

description.
Variable SPDM message payload

Shall be zero or more bytes that are

specific to the Request Response

Code .

175 8.3.1 SPDM version

176 The SPDMVersion field, present as the first field in all SPDM messages, indicates the version of the SPDM

specification that the format of an SPDM message adheres to. The format of this field shall be the same as byte 0 in

Table 3 — Generic SPDM message field definitions. The value of this field shall be the same value as the version of

this specification except for GET_VERSION and VERSION messages.

177 For example, if the version of this specification is 1.2, the value of SPDMVersion is 0x12 , which also corresponds to

an SPDM Major Version of 1 and an SPDM Minor Version of 2. See Version encoding for more examples.

178 The version of this specification can be found on the title page and in the footer of the other pages in this document.

179 The SPDMVersion for the version of this specification shall be 0x13 .

180 The SPDMversionString shall be a string formed by concatenating the major version, a period (“.”), and the minor

version. For example, if the version of this specification is 1.2.3, then SPDMversionString is "1.2" .

181 8.4 SPDM request codes

182 Table 4 — SPDM request codes defines the SPDM request codes. The Implementation requirement column

indicates requirements on the Requester.

Security Protocol and Data Model (SPDM) Specification DSP0274

38 Published Version 1.3.0

183 All SPDM-compatible implementations shall use SPDM request codes.

184 If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

185 Table 4 — SPDM request codes

Request Code value Implementation requirement Message format

GET_DIGESTS 0x81 Optional
Table 34 — GET_DIGESTS request

message format

GET_CERTIFICATE 0x82 Optional
Table 38 — GET_CERTIFICATE request

message format

CHALLENGE 0x83 Optional
Table 44 — CHALLENGE request

message format

GET_VERSION 0x84 Required
Table 8 — GET_VERSION request

message format

CHUNK_SEND 0x85 Optional
Table 96 — CHUNK_SEND request

format

CHUNK_GET 0x86 Optional
Table 100 — CHUNK_GET request

format

GET_ENDPOINT_INFO 0x87 Optional
Table 119 — GET_ENDPOINT_INFO

request format

GET_MEASUREMENTS 0xE0 Optional
Table 49 — GET_MEASUREMENTS

request message format

GET_CAPABILITIES 0xE1 Required
Table 11 — GET_CAPABILITIES request

message format

GET_SUPPORTED_EVENT_TYPES 0xE2 Optional

Table 109 —

GET_SUPPORTED_EVENT_TYPES

request message format

NEGOTIATE_ALGORITHMS 0xE3 Required
Table 15 — NEGOTIATE_ALGORITHMS

request message format

KEY_EXCHANGE 0xE4 Optional
Table 69 — KEY_EXCHANGE request

message format

FINISH 0xE5 Optional
Table 72 — FINISH request message

format

PSK_EXCHANGE 0xE6 Optional
Table 74 — PSK_EXCHANGE request

message format

PSK_FINISH 0xE7 Optional
Table 76 — PSK_FINISH request

message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 39

Request Code value Implementation requirement Message format

HEARTBEAT 0xE8 Optional
Table 78 — HEARTBEAT request

message format

KEY_UPDATE 0xE9 Optional
Table 80 — KEY_UPDATE request

message format

GET_ENCAPSULATED_REQUEST 0xEA Optional

Table 83 —

GET_ENCAPSULATED_REQUEST

request message format

DELIVER_ENCAPSULATED_RESPONSE 0xEB Optional

Table 85 —

DELIVER_ENCAPSULATED_RESPONSE

request message format

END_SESSION 0xEC Optional
Table 87 — END_SESSION request

message format

GET_CSR 0xED Optional
Table 90 — GET_CSR request message

format

SET_CERTIFICATE 0xEE Optional
Table 93 — SET_CERTIFICATE request

message format

GET_MEASUREMENT_EXTENSION_LOG 0xEF Optional

Table 126 —

GET_MEASUREMENT_EXTENSION_LOG

message format

SUBSCRIBE_EVENT_TYPES 0xF0 Optional
Table 113 — SUBSCRIBE_EVENT_TYPES

request message format

SEND_EVENT 0xF1 Optional
Table 116 — SEND_EVENT request

message format

GET_KEY_PAIR_INFO 0xFC Optional
Table 102 — GET_KEY_PAIR_INFO

request message format

SET_KEY_PAIR_INFO 0xFD Optional
Table 106 — SET_KEY_PAIR_INFO

request message format

VENDOR_DEFINED_REQUEST 0xFE Optional

Table 57 —

VENDOR_DEFINED_REQUEST request

message format

RESPOND_IF_READY 0xFF Required
Table 56 — RESPOND_IF_READY

request message format

Reserved All other values

SPDM implementations compatible

with this version shall not use the

reserved request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

40 Published Version 1.3.0

186 8.5 SPDM response codes

187 The Request Response Code field in the SPDM response message shall specify the appropriate response code for a

request. All SPDM-compatible implementations shall use Table 5 — SPDM response codes.

188 On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message should be returned.

189 Table 5 — SPDM response codes defines the response codes for SPDM. The Implementation requirement column

indicates requirements on the Responder.

190 Table 5 — SPDM response codes

Response Value Implementation requirement Message format

DIGESTS 0x01 Optional
Table 35 — Successful DIGESTS

response message format

CERTIFICATE 0x02 Optional

Table 40 — Successful

CERTIFICATE response message

format

CHALLENGE_AUTH 0x03 Optional

Table 45 — Successful

CHALLENGE_AUTH response

message format

VERSION 0x04 Required
Table 9 — Successful VERSION

response message format

CHUNK_SEND_ACK 0x05 Optional
Table 98 — CHUNK_SEND_ACK

response message format

CHUNK_RESPONSE 0x06 Optional
Table 101 — CHUNK_RESPONSE

response format

ENDPOINT_INFO 0x07 Optional
Table 122 — ENDPOINT_INFO

response format

MEASUREMENTS 0x60 Optional

Table 52 — Successful

MEASUREMENTS response

message format

CAPABILITIES 0x61 Required

Table 12 — Successful

CAPABILITIES response message

format

SUPPORTED_EVENT_TYPES 0x62 Optional

Table 110 —

SUPPORTED_EVENT_TYPES

response message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 41

Response Value Implementation requirement Message format

ALGORITHMS 0x63 Required

Table 21 — Successful

ALGORITHMS response message

format

KEY_EXCHANGE_RSP 0x64 Optional

Table 71 — Successful

KEY_EXCHANGE_RSP response

message format

FINISH_RSP 0x65 Optional

Table 73 — Successful

FINISH_RSP response message

format

PSK_EXCHANGE_RSP 0x66 Optional
Table 75 — PSK_EXCHANGE_RSP

response message format

PSK_FINISH_RSP 0x67 Optional

Table 77 — Successful

PSK_FINISH_RSP response

message format

HEARTBEAT_ACK 0x68 Optional
Table 79 — HEARTBEAT_ACK

response message format

KEY_UPDATE_ACK 0x69 Optional
Table 81 — KEY_UPDATE_ACK

response message format

ENCAPSULATED_REQUEST 0x6A Optional

Table 84 —

ENCAPSULATED_REQUEST

response message format

ENCAPSULATED_RESPONSE_ACK 0x6B Optional

Table 86 —

ENCAPSULATED_RESPONSE_ACK

response message format

END_SESSION_ACK 0x6C Optional
Table 89 — END_SESSION_ACK

response message format

CSR 0x6D Optional
Table 92 — CSR response

message format

SET_CERTIFICATE_RSP 0x6E Optional

Table 95 — Successful

SET_CERTIFICATE_RSP response

message format

MEASUREMENT_EXTENSION_LOG 0x6F Optional

Table 127 — Successful

MEASUREMENT_EXTENSION_LOG

message format

SUBSCRIBE_EVENT_TYPES_ACK 0x70 Optional

Table 114 —

SUBSCRIBE_EVENT_TYPES_ACK

response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

42 Published Version 1.3.0

Response Value Implementation requirement Message format

EVENT_ACK 0x71 Optional
Table 118 — EVENT_ACK

response message format

KEY_PAIR_INFO 0x7C Optional
Table 103 — KEY_PAIR_INFO

response message format

SET_KEY_PAIR_INFO_ACK 0x7D Optional

Table 108 —

SET_KEY_PAIR_INFO_ACK

response message format

VENDOR_DEFINED_RESPONSE 0x7E Optional

Table 67 —

VENDOR_DEFINED_RESPONSE

response message format

ERROR 0x7F Required
Table 57 — ERROR response

message format

Reserved
All other

values

SPDM implementations

compatible with this version shall

not use the reserved response

codes.

191 8.6 SPDM request and response code issuance allowance

192 Table 6 — SPDM request and response messages validity describes the conditions under which a request and

response can be issued.

193 The Session column describes whether the respective request and response can be sent in a session. If the value is

“Allowed”, the issuer of the request and response shall be able to send it in a secure session, thereby affording them

the protection of a secure session. If the Session column value is “Prohibited”, the issuer shall be prohibited from

sending the respective request and response in a secure session.

194 The Outside of a session column indicates which requests and responses are allowed to be sent free and

independent of a session, thereby lacking the protection of a secure session. An “Allowed” in this column indicates

that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a

“Prohibited” in this column shall prohibit the issuer from sending the respective request or response outside the

context of a session.

195 A request and its corresponding response can have an “Allowed” value in both the Session and Outside of a session

columns, in which case they can be sent and received in both scenarios but might have additional restrictions. For

details, see the respective request and response clauses.

196 A request and its corresponding response that has an “Allowed” value in the Session and “Prohibited” in the Outside

of a session columns are commands used by the session. These commands only operate on the session that they

were sent under, which is outside the scope of this specification. The session ID is implicit from the session used to

transmit the commands.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 43

197 Finally, the Session phases column describes which phases of a session the respective request and response shall be

issued when they are allowed to be issued in a session.

198 If, during the session handshake phase, an unexpected request is received using a valid session ID, the Responder

shall either send an ERROR message in the session with ErrorCode=UnexpectedRequest or silently discard the

request.

199 Vendor-defined shall indicate whether a VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE is

“Allowed” or “Prohibited” for use in the Session, Outside of a session, and the applicable Session phases.

200 For details, see the Session clause.

201 Table 6 — SPDM request and response messages validity

Request Response Outside of a session Session Session phases

GET_MEASUREMENTS MEASUREMENTS Allowed Allowed Application Phase

FINISH FINISH_RSP Prohibited Allowed Session Handshake

PSK_FINISH PSK_FINISH_RSP Prohibited Allowed Session Handshake

HEARTBEAT HEARTBEAT_ACK Prohibited Allowed Application Phase

KEY_UPDATE KEY_UPDATE_ACK Prohibited Allowed Application Phase

END_SESSION END_SESSION_ACK Prohibited Allowed Application Phase

Not Applicable ERROR Allowed Allowed All Phases

GET_ENCAPSULATED_REQUEST ENCAPSULATED_REQUEST Allowed Allowed All Phases

DELIVER_ENCAPSULATED_RESPONSE ENCAPSULATED_RESPONSE_ACK Allowed Allowed All Phases

VENDOR_DEFINED_REQUEST VENDOR_DEFINED_RESPONSE Vendor-defined
Vendor-

defined
Vendor-defined

CHUNK_SEND CHUNK_SEND_ACK Allowed Allowed All Phases

CHUNK_GET CHUNK_RESPONSE Allowed Allowed All Phases

GET_ENDPOINT_INFO ENDPOINT_INFO Allowed Allowed Application Phase

GET_CSR CSR Allowed Allowed Application Phase

SET_CERTIFICATE SET_CERTIFICATE_RSP Allowed Allowed Application Phase

GET_DIGESTS DIGESTS Allowed Allowed Application Phase

GET_CERTIFICATE CERTIFICATE Allowed Allowed Application Phase

GET_KEY_PAIR_INFO KEY_PAIR_INFO Allowed Allowed Application Phase

SET_KEY_PAIR_INFO SET_KEY_PAIR_INFO_ACK Allowed Allowed Application Phase

Security Protocol and Data Model (SPDM) Specification DSP0274

44 Published Version 1.3.0

Request Response Outside of a session Session Session phases

GET_MEASUREMENT_EXTENSION_LOG MEASUREMENT_EXTENSION_LOG Allowed Allowed Application Phase

GET_SUPPORTED_EVENT_TYPES SUPPORTED_EVENT_TYPES Prohibited Allowed Application Phase

SUBSCRIBE_EVENT_TYPES SUBSCRIBE_EVENT_TYPES_ACK Prohibited Allowed Application Phase

SEND_EVENT EVENT_ACK Prohibited Allowed Application Phase

RESPOND_IF_READY Response to Original Request (*) Allowed (*) Allowed (*) All Phases (*)

All others All others Allowed Prohibited Not Applicable

202 (*) See RESPOND_IF_READY request description for details

203 8.7 Concurrent SPDM message processing

204 This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

205 If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response

messages independently.

206 8.8 Requirements for Requesters

207 A Requester shall not have multiple outstanding requests to the same Responder within a connection, with the

following exceptions:

• As the GET_VERSION request and VERSION response messages clause describes, a Requester can issue a

GET_VERSION to a Responder to reset the connection at any time, even if the Requester has existing outstanding

requests to the same Responder.

• In the large SPDM message transfer mechanism, a single large SPDM request message and a single CHUNK_SEND

request can be outstanding at the same time.

208 An outstanding request is a request where the request message has begun transmission, the corresponding response

has not been fully received, and the request is not a retry as described in Timing Requirements.

209 If the Requester has sent a request to a Responder and wants to send a subsequent request to the same Responder,

then the Requester shall wait to send the subsequent request until after the Requester completes one of the following

actions:

• Receives the response from the Responder for the outstanding request.

• Times out waiting for a response.

• Receives an indication from the transport layer that transmission of the request message failed.

• The Requester encounters an internal error or Reset.

• The Requester sends a GET_VERSION to reinitialize the session.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 45

210 A Requester might send simultaneous request messages to different Responders.

211 8.9 Requirements for Responders

212 A Responder is not required to process more than one request message at a time, even across connections, with the

following exceptions:

• As the GET_VERSION request and VERSION response messages clause describes, a Requester can issue a

GET_VERSION to a Responder to reset a connection at any time, even if the Requester has existing outstanding

requests to the same Responder.

• In the large SPDM message transfer mechanism, a single large SPDM request message and a single CHUNK_SEND

request can be outstanding at the same time.

• Retries can be issued multiple times to the same Responder, as Timing requirements defines.

213 A Responder that is not ready to accept a new request message or process more than one outstanding request at a

time from the same Requester shall either respond with an ERROR message of ErrorCode=Busy or silently discard

the request message.

214 If a Responder is working on a request message from a Requester, the Responder can respond with an ERROR

message of ErrorCode=Busy .

215 If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to

distinguish the Requesters by using mechanisms that are outside the scope of this specification.

216 8.10 Transcript and transcript hash calculation rules

217 The transcript is a concatenation of the prescribed full messages or message fields in order. Consequently, the

transcript hash is the hash of the transcript using the negotiated hash algorithm (BaseHashSel or ExtHashSel of

ALGORITHMS). For messages that are encrypted, the plaintext messages are used in the transcript. Where a transcript

indicates that the hash of the specified certificate chain is used, the hash of the certificate chain is calculated over the

specified certificate chain, as Table 33 — Certificate chain format describes. Messages that contribute to a transcript

may be optional and/or conditional and will only contribute to a transcript if issued. Such messages are identified by

the text “if issued” in the transcript definition. For a given message, if it does not have the “if issued” text in the

transcript definition, then it is required to be present in the transcript. When an endpoint calculates the transcript

hash over a series of messages, the endpoint shall ensure both the existence and the order of the messages as

specified by each transcript hash calculation rule.

Security Protocol and Data Model (SPDM) Specification DSP0274

46 Published Version 1.3.0

Léon GALL

218 9 Timing requirements

219 Table 7 — Timing specification for SPDM messages shows the timing specifications for Requesters and Responders.

220 If the Requester does not receive a response within T1 or T2 time accordingly, the Requester can retry a request

message. A retry of a request message shall be a complete retransmission of the original SPDM request message.

From the perspective of a Requester, a retry of a request message is the retransmission of the original SPDM request

one or more times in succession directly following the transmission of the original SPDM request. From the

perspective of a Responder, a retry of a request message is the reception of the same SPDM request one or more

times in succession, assuming that the transport receives messages in order. Successive SPDM requests are different if

the values of any bits differ between them, in which case the Responder will process them differently.

221 The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) can retry, but

this is outside the scope of this specification.

222 9.1 Timing measurements

223 Unless otherwise stated, a Requester shall measure timing parameters applicable to it from the end of a successful

transmission of an SPDM request to the beginning of the reception of the corresponding SPDM response. A

Responder shall measure timing parameters applicable to it from the end of the reception of the SPDM request to the

beginning of transmission of the response. The requirement assumes that the Responder has immediate access to the

transport.

224 9.2 Timing parameters

225 In Table 7 — Timing specification for SPDM messages, timing parameters are differentiated into two categories: the

timing parameters for non-cryptographic operations (T1) and the timing parameters for cryptographic operations

(T2). The timing parameters are differentiated in this manner to allow a Responder to request additional time for

cryptographic operations. The timing parameters apply to normal conditions, and some operations may take

additional time in some situations. For instance, a Responder may need additional time to process a non-

cryptographic operation because of another operation in progress or some other condition. In this case, the

Responder shall respond with an ERROR message of ErrorCode=ResponseNotReady to indicate that it needs more

time.

226 The Responder can request time beyond ST1 for any non-cryptographic operation other than GET_VERSION . Since

GET_VERSION serves as a reset to the connection, a Requester might send GET_VERSION requests as quickly as

allowed by T1 until it receives a response. The Responder shall not respond to GET_VERSION with an ERROR

message of ErrorCode=ResponseNotReady .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 47

227 9.3 Timing specification table

228 The Ownership column of Table 7 — Timing specification for SPDM messages specifies whether the timing

parameter applies to the Responder or Requester. For encapsulated requests, the Requester shall comply with the

timing parameters where the Ownership indicates a Responder.

229 Table 7 — Timing specification for SPDM messages

Timing parameter Ownership Value Units Description

RTT Requester See the description. µs

This value shall be the worst-

case round-trip transport

timing.

The value shall be the worst-

case total time for the

complete transmission and

delivery of an SPDM message

round trip at the transport

layer(s). The actual value for

this parameter is transport- or

media-specific. Both the actual

value and how an endpoint

obtains this value are outside

the scope of this specification.

A Requester shall measure this

timing parameter from the end

of a successful transmission of

an SPDM request to the

beginning of the reception of

the corresponding SPDM

response less ST1 or CT ,

depending on the Request.

Security Protocol and Data Model (SPDM) Specification DSP0274

48 Published Version 1.3.0

Timing parameter Ownership Value Units Description

ST1 Responder 100,000 µs

This value shall be the

maximum amount of time the

Responder has to provide a

response under normal

conditions to requests that do

not require cryptographic

processing, such as the

GET_CAPABILITIES ,

GET_VERSION , or

NEGOTIATE_ALGORITHMS

request messages.

See Table 11 —

GET_CAPABILITIES request

message format, Table 8 —

GET_VERSION request message

format, and Table 15 —

NEGOTIATE_ALGORITHMS

request message format.

T1 Requester RTT + ST1 µs

This value shall be the

minimum amount of time the

Requester shall wait before

issuing a retry for requests that

do not require cryptographic

processing.

For details, see the ST1 timing

parameter.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 49

Timing parameter Ownership Value Units Description

CT Requester and Responder 2 CTExponent µs

CTExponent is reported in the

GET_CAPABILITIES request

message and CAPABILITIES

response message.

This parameter is applicable to

both a Responder and

Requester as the Ownership

columns shows. Specifically for

a Requester, this field is

applicable when the Requester

provides a response that

requires cryptographic

processing such as in the

mutual authentication portion

of a KEY_EXCHANGE flow. When

the Requester provides a

response that requires

cryptographic processing, the

Requester shall measure timing

just as a Responder would.

This timing parameter shall be

the maximum amount of time

the endpoint has to provide

any response requiring

cryptographic processing

under normal conditions, such

as the GET_MEASUREMENTS or

CHALLENGE request messages.

If the Responder cannot

respond within CT , the

Responder shall respond with

an ERROR message of

ErrorCode=ResponseNotReady

to indicate that it needs more

time.

See Table 11 —

GET_CAPABILITIES request

message format, Table 12 —

Successful CAPABILITIES

response message format,

Table 49 —

GET_MEASUREMENTS request

message format, and Table 44

— CHALLENGE request

message format.

Security Protocol and Data Model (SPDM) Specification DSP0274

50 Published Version 1.3.0

Timing parameter Ownership Value Units Description

T2 Requester RTT + CT µs

This value shall be the

minimum amount of time the

Requester shall wait before

issuing a retry for requests that

require cryptographic

processing.

For details, see the CT timing

parameter.

RDT Responder 2 RDTExponent µs

This value shall be the

recommended delay in

microseconds that the

Responder needs to complete

the requested cryptographic

operation. When the

Responder cannot complete

cryptographic processing

response within the CT time, it

shall provide RDTExponent as

part of the ERROR response as

Table 57 — ERROR response

message format shows. For

details, see

ErrorCode=ResponseNotReady

in Table 59 —

ResponseNotReady extended

error data for the

RDTExponent value.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 51

Timing parameter Ownership Value Units Description

WT Requester RDT µs

This value shall be the amount

of time that the Requester

should wait before issuing the

RESPOND_IF_READY request

message as Table 65 —

RESPOND_IF_READY request

message format shows.

The Requester shall measure

this time parameter from the

reception of the ERROR

response to the transmission of

the RESPOND_IF_READY

request. The Requester can

include the transmission time

of the ERROR from the

Responder to Requester as

time spent waiting for WT to

expire. For example, if a

Responder indicates WT is two

seconds and the ERROR

response takes one second to

transport to the Requester, the

Requester only needs to wait

an additional one second upon

reception of the ERROR

response.

For details, see the RDT timing

parameter.

Security Protocol and Data Model (SPDM) Specification DSP0274

52 Published Version 1.3.0

Timing parameter Ownership Value Units Description

WTMax Requester (RDT * RDTM) - RTT µs

This value shall be the

maximum wait time the

Requester has to issue the

RESPOND_IF_READY request

message, as Table 65 —

RESPOND_IF_READY request

message format shows, unless

the Requester issued a

successful RESPOND_IF_READY

request message, as Table 65

— RESPOND_IF_READY request

message format shows, earlier.

The Requester shall start

measuring time from the

reception of the first ERROR

message of

ErrorCode=ResponseNotReady

with the same Token until

WT Max µs elapses or the

corresponding Response is

successfully received.

After this time has passed, the

Responder is allowed to drop

the response. The Requester

shall take into account the

transmission time of the

ERROR response, as Table 57

— ERROR response message

format shows, from the

Responder to Requester when

calculating WT Max .

The RDTM value appears in

Table 59 — ResponseNotReady

extended error data.

The Responder should ensure

that WT Max does not result in

less than WT in determination

of RDTM .

See

ErrorCode=ResponseNotReady

in Table 59 —

ResponseNotReady extended

error data.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 53

Timing parameter Ownership Value Units Description

HeartbeatPeriod Requester and Responder Variable s

See the HEARTBEAT request

and HEARTBEAT_ACK response

clause.

Security Protocol and Data Model (SPDM) Specification DSP0274

54 Published Version 1.3.0

230 10 SPDM messages

231 SPDM messages can be divided into the following categories that support different aspects of security exchanges

between a Requester and Responder:

• Capability discovery and negotiation

• Responder identity authentication

• Measurement

• Key agreement for secure-channel establishment

232 10.1 Capability discovery and negotiation

233 All Requesters and Responders shall support GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS .

234 Figure 5 — Capability discovery and negotiation flow shows the high-level request-response flow and sequence for

the capability discovery and negotiation:

235 Figure 5 — Capability discovery and negotiation flow

236

Selected
cryptographic
algorithm set

Supported
cryptographic
algorithm set

ResponderRequester

1. The Requester sends a
GET_VERSION request
message.

2. The Requester sends a
GET_CAPABILITIES request
message.

3. Determine device capability
and feature support.

4. The Requester sends a

NEGOTIATE_ALGORITHMS
request message to advertise
the supported algorithms.

5. The Requester uses the
selected cryptographic
algorithm set for all following
exchanges, until the next
GET_VERSION or the next
reset.

1. The Responder
sends a VERSION
response message.

2. The Responder
sends a
CAPABILITIES
response message.

3. The Responder
selects the algorithm
set and sends a
ALGORITHMS
response message.

Measurement
support,

authentication
support,

timeout, etc.

NEGOTIATE_ALGORITHMS

GET_CAPABILITIES

CAPABILITIES

GET_VERSION

VERSION

ALGORITHMS

237 10.1.1 Negotiated state preamble

238 The VCA (Version-Capabilities-Algorithms) shall be the concatenation of messages GET_VERSION , VERSION ,

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 55

GET_CAPABILITIES , CAPABILITIES , NEGOTIATE_ALGORITHMS , and ALGORITHMS last exchanged between the

Requester and the Responder.

239 If the two endpoints do not support session key establishment with the PSK (Pre-Shared Key) option, or if the two

endpoints support PSK but the negotiated capabilities and algorithms are not provisioned to both endpoints

alongside the PSK, then the Requester shall issue GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS

to construct VCA .

240 If the Responder supports caching the negotiated state (CACHE_CAP=1), the Requester might not issue

GET_VERSION , GET_CAPABILITIES , and NEGOTIATE_ALGORITHMS . In this case, the Requester and the Responder

shall store the most recent VCA as part of the Negotiated State.

241 If the two endpoints support session key establishment with the PSK and if the negotiated capabilities and algorithms

(the C and A of VCA) are provisioned to both endpoints alongside the PSK, then the Requester shall not issue

GET_CAPABILITIES and NEGOTIATE_ALGORITHMS .

242 10.2 GET_VERSION request and VERSION response messages

243 This request message shall retrieve the SPDM version of an endpoint. Table 8 — GET_VERSION request message

format shows the GET_VERSION request message format and Table 9 — Successful VERSION response message

format shows the VERSION response message format.

244 In all future SPDM versions, the GET_VERSION and VERSION response messages will be backward compatible with all

earlier versions.

245 The Requester shall begin the discovery process by sending a GET_VERSION request message with the value of the

SPDMVersion field set to 0x10 . All Responders shall always support the GET_VERSION request message with major

version 0x1 and provide a VERSION response containing all supported versions, as Table 8 — GET_VERSION request

message format describes.

246 The Requester shall consult the VERSION response to select a common supported version, which should be the latest

supported common version. The Requester shall use the selected version in all future communication of other

requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies a

common version that both sides support. A Responder shall not respond to the GET_VERSION request message with

an ERROR message of ErrorCode=ResponseNotReady . The selected version shall be the version in the SPDMVersion

field of the Request (other than GET_VERSION) immediately following the GET_VERSION request. If the Requester

uses a version other than the selected version in a Request, the Responder should either return an ERROR message of

ErrorCode=VersionMismatch or silently discard the Request.

247 A Requester can issue a GET_VERSION request message to a Responder at any time, which serves as an exception to

Requirements for Requesters to allow for scenarios where a Requester is required to restart the protocol due to an

internal error or Reset.

248 After receiving a valid GET_VERSION request, the Responder shall invalidate state and data associated with all

previous requests from the same Requester. All active sessions between the Requester and the Responder are

terminated, and information (such as session keys and session IDs) for those sessions should not be used anymore.

Additionally, this message shall clear the previously Negotiated State, if any, in both the Requester and its

corresponding Responder. An invalid GET_VERSION request that results in the Responder returning an error to the

Security Protocol and Data Model (SPDM) Specification DSP0274

56 Published Version 1.3.0

Requester shall not affect the session state. The ERROR message resulting from an invalid GET_VERSION request shall

have the value of the SPDMVersion field set to 0x10 .

249 After sending the VERSION response for a GET_VERSION request, if the Responder completes a runtime code or

configuration change for its hardware or firmware measurement and the change has taken effect, then the Responder

shall either silently discard any request received outside of a session or respond with an ERROR message of

ErrorCode=RequestResynch to any request received outside of a session, until a GET_VERSION request is received.

For requests received within a session, the Responder shall follow the selected session policy that the Requester

selects in Table 70 — Session policy at the time of session establishment.

250 Figure 6 — Discovering the common major version shows the process:

251 Figure 6 — Discovering the common major version

252

ResponderRequester

GET_VERSION (version=1.0)

VERSION (6.4, 6.3, 6.2, 6.1)

Request version always
uses version = 1.0

Supports versions 6.4,
6.3, 6.2, 6.1

GET_CAPABILITIES (version=6.3)

CAPABILITIES

Supports versions 7.1, 7.0, 6.3,
6.2, 6.1, 6.0

Version information
response

Settle on version 6.3

NEGOTIATE_ALGORITHMS (Version = 6.3)

ALGORITHMS ()

253 Table 8 — GET_VERSION request message format shows the GET_VERSION request message format:

254 Table 8 — GET_VERSION request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1 Shall be 0x10 (V1.0).

1 RequestResponseCode 1
Shall be 0x84 = GET_VERSION . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 57

Byte offset Field Size (bytes) Description

3 Param2 1 Reserved.

255 Table 9 — Successful VERSION response message format shows the successful VERSION response message format:

256 Table 9 — Successful VERSION response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1 Shall be 0x10 (V1.0).

1 RequestResponseCode 1
Shall be 0x04 = VERSION . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 VersionNumberEntryCount 1 Number of version entries present in this table (=n).

6 VersionNumberEntry1:n 2 * n

16-bit version entry. See Table 10 —

VersionNumberEntry definition. Each entry should be

unique.

257 Table 10 — VersionNumberEntry definition shows the VersionNumberEntry definition:

258 Table 10 — VersionNumberEntry definition

Bit offset Field Description

[15:12] MajorVersion

Shall be the version of the specification having changes that are

incompatible with one or more functions in earlier major versions of the

specification.

[11:8] MinorVersion

Shall be the version of the specification having changes that are

compatible with functions in earlier minor versions of this major version

specification.

[7:4] UpdateVersionNumber

Shall be the version of the specification with editorial updates but no

functionality additions or changes. Informational; possible errata fixes.

Ignore when checking versions for interoperability.

[3:0] Alpha

Shall be the pre-release work-in-progress version of the specification.

Because the Alpha value represents an in-development version of the

specification, versions that share the same major and minor version

numbers but have different Alpha versions might not be fully

interoperable. Released versions shall have an Alpha value of zero (0).

Security Protocol and Data Model (SPDM) Specification DSP0274

58 Published Version 1.3.0

259 10.3 GET_CAPABILITIES request and CAPABILITIES response messages

260 This request message shall retrieve the SPDM capabilities of an endpoint.

261 Table 11 — GET_CAPABILITIES request message format shows the GET_CAPABILITIES request message format.

262 Table 12 — Successful CAPABILITIES response message format shows the CAPABILITIES response message format.

263 Table 13 — Flag fields definitions for the Requester shows the flag fields definitions for the Requester.

264 Likewise, Table 14 — Flag fields definitions for the Responder shows the flag fields definitions for the Responder.

265 A Responder shall not respond to GET_CAPABILITIES request message with an ERROR message of

ErrorCode=ResponseNotReady .

266 To properly support transferring of SPDM messages, the Requester and Responder shall indicate two buffer sizes:

• One for receiving a single SPDM transfer called DataTransferSize

• One for indicating their maximum internal buffer size for processing a single assembled received SPDM message

called MaxSPDMmsgSize

267 Additionally, the Requester and Responder can have a transmit buffer. The transmit buffer size is not communicated

to the other SPDM endpoint, but it can be less than the DataTransferSize of the receiving SPDM endpoint.

268 Both the Requester and Responder shall support a minimum size for both the transmit and receive buffer to

successfully transfer SPDM messages. The minimum size is referred to as MinDataTransferSize. For this version of

the specification, the MinDataTransferSize shall be 42. This value is the size, in bytes, of the SPDM message with

the largest size from this list, assuming all fields are present:

• GET_VERSION

• VERSION assuming no versions returned contain Alpha versions in VersionNumberEntry and version entries

are not duplicated.

• GET_CAPABILITIES

• CAPABILITIES with Param1 in the GET_CAPABILITIES request set to 0.

• CHUNK_SEND using the size of the SPDM Header for the size of the SPDMchunk field.

• CHUNK_SEND_ACK using the maximum size of ERROR message for the size of the ResponseToLargeRequest

field.

• CHUNK_GET

• CHUNK_RESPONSE using the size of SPDM Header for the size of the SPDMchunk field.

• ERROR using the maximum size for the ExtendedErrorData

269 The GET_CAPABILITIES request with Extended capabilities (Bit 0 of Param1 set to a value of 1) is only allowed if

both the Requester and Responder support the Large SPDM message transfer mechanism (CHUNK_CAP=1). If the

GET_CAPABILITIES request sets Bit 0 of Param1 to a value of 1, then the Responder shall use the value for

DataTransferSize and MaxSPDMmsgSize from the request for the transmission of the CAPABILITIES response. A

Responder can report that it needs to transmit the response in smaller transfers by sending an ERROR message of

ErrorCode=LargeResponse . If the GET_CAPABILITIES request sets Bit 0 of Param1 to a value of 1 and the

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 59

Responder does not support the Large SPDM message transfer mechanism (CHUNK_CAP=0), the Responder shall

send an ERROR message of ErrorCode=InvalidRequest .

270 Table 11 — GET_CAPABILITIES request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE1 = GET_CAPABILITIES . See Table 4 —

SPDM request codes.

2 Param1 1

Shall be the extended capabilities to include in the

response.

• Bit 0. If set in the requests, the Responder shall

include the Supported Algorithms Block in its

CAPABILITIES response if it supports this

extended capability. If the Requester does not

support the Large SPDM message transfer

mechanism (CHUNK_CAP=0), this bit shall be 0.

• All other values reserved.

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be exponent of base 2, which is used to

calculate CT .

See Table 7 — Timing specification for SPDM

messages.

The equation for CT shall be 2 CTExponent

microseconds (µs).

For example, if CTExponent is 10, CT is 210 = 1024

µs.

6 Reserved 2 Reserved.

8 Flags 4
See Table 13 — Flag fields definitions for the

Requester.

Security Protocol and Data Model (SPDM) Specification DSP0274

60 Published Version 1.3.0

Byte offset Field Size (bytes) Description

12 DataTransferSize 4

This field shall indicate the maximum buffer size, in

bytes, of the Requester for receiving a single and

complete SPDM message whose message size is less

than or equal to the value in this field. The value of

this field shall be equal to or greater than

MinDataTransferSize . The DataTransferSize

shall exclude transport headers, encryption headers,

and MAC. This field helps the sender of the SPDM

message know whether or not it needs to utilize the

Large SPDM message transfer mechanism.

16 MaxSPDMmsgSize 4

If the Requester supports the Large SPDM message

transfer mechanism, this field shall indicate the

maximum size, in bytes, of the internal buffer of a

Requester used to reassemble a single and complete

Large SPDM message. This field shall be greater than

or equal to DataTransferSize . This buffer size is

most helpful when transferring a Large SPDM

message in multiple chunks because it tells the

sender whether or not there is enough memory for

the fully reassembled SPDM message.

If the Requester does not support the Large SPDM

message transfer mechanism, this field shall be equal

to the DataTransferSize of the Requester.

271 Table 12 — Successful CAPABILITIES response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x61 = CAPABILITIES . See Table 5 —

SPDM response codes.

2 Param1 1

Shall be the extended capabilities included in the

response.

• Bit 0. If the request message sets the Supported

Algorithms extended capability bit and the

Responder supports this extended capability,

then the Responder shall set this bit in the

response and shall include the Supported

Algorithms Block in its CAPABILITIES response.

If the Responder does not support this extended

capability or does not support the Large SPDM

message transfer mechanism (CHUNK_CAP=0),

this bit shall be 0.

• All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 61

Byte offset Field Size (bytes) Description

3 Param2 1 Reserved.

4 Reserved 1 Reserved.

5 CTExponent 1

Shall be the exponent of base 2, which used to

calculate CT .

See Table 7 — Timing specification for SPDM

messages.

The equation for CT shall be 2 CTExponent

microseconds (µs).

For example, if CTExponent is 10, CT is 210 = 1024

µs.

6 Reserved 2 Reserved.

8 Flags 4
See Table 14 — Flag fields definitions for the

Responder.

12 DataTransferSize 4

This field shall indicate the maximum buffer size, in

bytes, of the Responder for receiving a single and

complete SPDM message whose message size is less

than or equal to the value in this field. The value of

this field shall be equal to or greater than

MinDataTransferSize . The DataTransferSize

shall exclude transport headers, encryption headers,

and MAC. This field helps the sender of the SPDM

message know whether or not it needs to utilize the

Large SPDM message transfer mechanism.

16 MaxSPDMmsgSize 4

If the Responder supports the Large SPDM message

transfer mechanism, this field shall indicate the

maximum size, in bytes, of the internal buffer of a

Responder used to reassemble a single and complete

Large SPDM message. This field shall be greater than

or equal to DataTransferSize . This buffer size is

most helpful when transferring a Large SPDM

message in multiple chunks because it tells the

sender whether or not there is enough memory for

the fully reassembled SPDM message.

If the Responder does not support the Large SPDM

message transfer mechanism, this field shall be equal

to the DataTransferSize of the Responder.

Security Protocol and Data Model (SPDM) Specification DSP0274

62 Published Version 1.3.0

Byte offset Field Size (bytes) Description

20 SupportedAlgorithms AlgSize or 0

If present, this field shall be AlgSize in size and the

format of the field shall be as described in Supported

algorithms block. If Bit 0 of Param1 does not

indicate that the Supported Algorithm extended

capability is included in this response, then this field

shall be absent.

272 As described in other parts of this specification, a Requester or Responder can reverse roles or take on both roles for

certain SPDM messages and flows. Thus, an SPDM endpoint cannot send a Large SPDM message that exceeds the

MaxSPDMmsgSize of the receiving SPDM endpoint. Specifically, a requesting SPDM endpoint shall not send a request

that exceeds the size of MaxSPDMmsgSize of the responding SPDM endpoint. Likewise, a responding SPDM endpoint

shall not send a response that exceeds the size of MaxSPDMmsgSize of the requesting SPDM endpoint. If the size of a

response message exceeds the size of the MaxSPDMmsgSize of the requesting SPDM endpoint, the responding SPDM

endpoint shall respond with an ERROR message of ErrorCode=ResponseTooLarge . If the size of a request message

exceeds the size of the MaxSPDMmsgSize of the responding SPDM endpoint, the responding SPDM endpoint shall

either respond with an ERROR message of ErrorCode=RequestTooLarge or silently discard the request. Additionally,

an SPDM endpoint should provide graceful error handling (for example, buffer overflow/underflow protection) in the

event that it receives an SPDM message that exceeds its MaxSPDMmsgSize .

273 Table 13 — Flag fields definitions for the Requester shows the flag fields definitions for the Requester.

274 Unless otherwise stated, if a Requester indicates support for a capability associated with an SPDM request or

response message, it means the Requester can receive the corresponding request and produce a successful response.

In other words, the Requester is acting as a Responder to that SPDM request associated with that capability. For

example, if a Requester sets the CERT_CAP bit to 1 , the Requester can receive a GET_CERTIFICATE request and

send back a successful CERTIFICATE response message.

275 AlgSize is the size of the Supported algorithms block. If the Supported Algorithms Block is not included in the

response, then the SupportedAlgorithms field shall be absent.

276 Table 13 — Flag fields definitions for the Requester

Byte offset Bit offset Field Description

0 0 Reserved Reserved.

0 1 CERT_CAP

If set, Requester shall support DIGESTS and

CERTIFICATE response messages. Shall be 0b if the

Requester does not support asymmetric algorithms.

0 2 CHAL_CAP
DEPRECATED: If set, Requester shall support

CHALLENGE_AUTH response message.

0 [5:3] Reserved Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 63

Byte offset Bit offset Field Description

0 6 ENCRYPT_CAP

If set, Requester shall support message encryption in a

secure session. If set, when the Requester chooses to

start a secure session, the Requester shall send one of

the Session-Secrets-Exchange request messages

supported by the Responder. This capability shall apply

to all phases of a secure session.

0 7 MAC_CAP

If set, Requester shall support message authentication

in a secure session. If set, when the Requester chooses

to start a secure session, the Requester shall send one

of the Session-Secrets-Exchange request messages

supported by the Responder. This capability shall apply

to all phases of a secure session. MAC_CAP is not the

same as the HMAC in the RequesterVerifyData or

ResponderVerifyData fields of Session-Secrets-

Exchange and Session-Secrets-Finish messages.

1 0 MUT_AUTH_CAP If set, Requester shall support mutual authentication.

1 1 KEY_EX_CAP

If set, Requester shall support KEY_EXCHANGE request

message. If set, ENCRYPT_CAP or MAC_CAP shall be

set.

1 [3:2] PSK_CAP

Pre-Shared Key capabilities of the Requester.

• 00b . Requester shall not support Pre-Shared Key

capabilities.

• 01b . Requester shall support Pre-Shared Key

• 10b and 11b . Reserved.

If supported, ENCRYPT_CAP or MAC_CAP shall be set.

1 4 ENCAP_CAP

If set, Requester shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages. Additionally,

the transport may require the Requester to support

these messages.

ENCAP_CAP was previously deprecated because Basic

mutual authentication is deprecated. Deprecation is

removed since some messages, such as KEY_UPDATE ,

do not require mutual authentication but still require

ENCAP_CAP .

1 5 HBEAT_CAP If set, Requester shall support HEARTBEAT messages.

1 6 KEY_UPD_CAP If set, Requester shall support KEY_UPDATE messages.

Security Protocol and Data Model (SPDM) Specification DSP0274

64 Published Version 1.3.0

Byte offset Bit offset Field Description

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Requester can support a Responder that can

only send and receive all SPDM messages exchanged

during the Session Handshake Phase in the clear (such

as without encryption and message authentication).

Application data is encrypted and/or authenticated

using the negotiated cryptographic algorithms as

normal. Setting this bit leads to changes in the

contents of certain SPDM messages, as discussed in

other parts of this specification.

If this bit is cleared, the Requester signals that it

requires encryption and/or message authentication of

SPDM messages exchanged during the Session

Handshake Phase.

If the Requester supports Pre-Shared Keys (PSK_CAP

is 01b) and does not support asymmetric key

exchange (KEY_EX_CAP is 0b), then this bit shall be

zero. If the Requester does not support encryption and

message authentication, then this bit shall be zero.

In other words, this bit indicates whether MAC_CAP

and ENCRYPT_CAP is involved accordingly in the

handshake phase of a secure session or both

encryption and message authentication capabilities

are disabled in the session handshake phase of a

secure session.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Requester was provisioned

to the Responder. The transport layer is responsible for

identifying the Responder. In this case, the CERT_CAP

of the Requester shall be 0 .

2 1 CHUNK_CAP
If set, Requester shall support Large SPDM message

transfer mechanism messages.

2 [5:2] Reserved Reserved.

2 [7:6] EP_INFO_CAP

The ENDPOINT_INFO response capabilities of the

Requester.

• 00b . The Requester does not support

ENDPOINT_INFO response capabilities.

• 01b . The Requester supports the

ENDPOINT_INFO response but cannot perform

signature generation for this response.

• 10b . The Requester supports the

ENDPOINT_INFO response and can generate

signatures for this response.

• 11b . Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 65

Byte offset Bit offset Field Description

3 0 Reserved Reserved.

3 1 EVENT_CAP
If set, the Requester is an Event Notifier. See Event

mechanism for details.

3 [3:2] MULTI_KEY_CAP

Shall be the Multiple Asymmetric Key capabilities of

the Requester.

• 00b . Requester shall not support Multiple

Asymmetric Key capabilities.

• 01b . Requester shall only support Multiple

Asymmetric Key capabilities.

• 10b . Requester shall support Multiple

Asymmetric Key capabilities, and Responder can

use RequesterMultiKeyConnSel as Multiple

Asymmetric Key Negotiation describes.

• 11b . Reserved.

If set to 01b or 10b , the Requester shall support

more than one key pair for at least one asymmetric

algorithm for use in Requester authentication such as

in mutual authentication. In the case of mutual

authentication, these are the key pairs belonging to

the Requester.

3 [7:4] Reserved Reserved.

277 Table 14 — Flag fields definitions for the Responder shows the flag fields definitions for the Responder.

278 Unless otherwise stated, if a Responder indicates support for a capability associated with an SPDM request or

response message, it means the Responder can receive the corresponding request and produce a successful

response. For example, if a Responder sets the CERT_CAP bit to 1 , the Responder can receive a GET_CERTIFICATE

request and send back a successful CERTIFICATE response message.

279 Table 14 — Flag fields definitions for the Responder

Security Protocol and Data Model (SPDM) Specification DSP0274

66 Published Version 1.3.0

Byte offset Bit offset Field Description

0 0 CACHE_CAP

If set, the Responder shall support the ability

to cache the Negotiated State across a Reset.

This allows the Requester to skip reissuing the

GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS requests after a

Reset. The Responder shall cache the selected

cryptographic algorithms as one of the

parameters of the Negotiated State. If the

Requester chooses to skip issuing these

requests after the Reset, the Requester shall

also cache the same selected cryptographic

algorithms.

0 1 CERT_CAP

If set, Responder shall support DIGESTS and

CERTIFICATE response messages. Shall be

0b if the Responder does not support

asymmetric algorithms.

0 2 CHAL_CAP
If set, Responder shall support

CHALLENGE_AUTH response message.

0 [4:3] MEAS_CAP

MEASUREMENTS response capabilities of the

Responder.

• 00b . The Responder shall not support

MEASUREMENTS response capabilities.

• 01b . The Responder shall support

MEASUREMENTS response but cannot

perform signature generation for this

response.

• 10b . The Responder shall support

MEASUREMENTS response and can

generate signatures for this response.

• 11b . Reserved.

Note that, apart from affecting

MEASUREMENTS , this capability also affects

Param2 of CHALLENGE , Param1 of

KEY_EXCHANGE , Param1 of PSK_EXCHANGE ,

and the MeasurementSummaryHash field of

KEY_EXCHANGE_RSP , CHALLENGE_AUTH , and

PSK_EXCHANGE_RSP . See the respective

request and response clauses for further

details.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 67

Byte offset Bit offset Field Description

0 5 MEAS_FRESH_CAP

• 0 . As part of MEASUREMENTS response

message, the Responder may return

MEASUREMENTS that were computed

during the last Responder’s Reset.

• 1 . The Responder shall support

recomputing all MEASUREMENTS without

requiring a Reset and shall always return

fresh MEASUREMENTS as part of

MEASUREMENTS response message.

0 6 ENCRYPT_CAP

If set, Responder shall support message

encryption in a secure session. If set,

PSK_CAP or KEY_EX_CAP shall be set

accordingly to indicate support. This

capability applies to all phases of a secure

session.

0 7 MAC_CAP

If set, Responder shall support message

authentication in a secure session. If set,

PSK_CAP or KEY_EX_CAP shall be set

accordingly to indicate support. This

capability applies to all phases of a secure

session. MAC_CAP is not the same as the

HMAC in the RequesterVerifyData or

ResponderVerifyData fields of Session-

Secrets-Exchange and Session-Secrets-Finish

messages.

1 0 MUT_AUTH_CAP
If set, Responder shall support mutual

authentication.

1 1 KEY_EX_CAP

If set, Responder shall support

KEY_EXCHANGE_RSP response message. If set,

ENCRYPT_CAP or MAC_CAP shall be set.

Security Protocol and Data Model (SPDM) Specification DSP0274

68 Published Version 1.3.0

Byte offset Bit offset Field Description

1 [3:2] PSK_CAP

Pre-Shared Key capabilities of the

Responder.

• 00b . Responder shall not support Pre-

Shared Key capabilities.

• 01b . Responder shall support Pre-

Shared Key but does not provide

ResponderContext for session key

derivation.

• 10b . Responder shall support Pre-

Shared Key and provides

ResponderContext for session key

derivation.

• 11b . Reserved.

If supported, ENCRYPT_CAP or MAC_CAP shall

be set.

1 4 ENCAP_CAP

If set, Responder shall support

GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED_REQUEST ,

DELIVER_ENCAPSULATED_RESPONSE , and

ENCAPSULATED_RESPONSE_ACK messages.

Additionally, the transport may require the

Responder to support these messages.

ENCAP_CAP was previously deprecated

because Basic mutual authentication is

deprecated. Deprecation is removed since

some messages, such as KEY_UPDATE , do not

require mutual authentication but still require

ENCAP_CAP .

1 5 HBEAT_CAP
If set, Responder shall support HEARTBEAT

messages.

1 6 KEY_UPD_CAP
If set, Responder shall support KEY_UPDATE

messages.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 69

Byte offset Bit offset Field Description

1 7 HANDSHAKE_IN_THE_CLEAR_CAP

If set, the Responder can only send and

receive messages without encryption and

message authentication during the Session

Handshake Phase. If set, KEY_EX_CAP shall

also be set. Setting this bit leads to changes in

the contents of certain SPDM messages, as

discussed in other parts of this specification.

If the Responder supports Pre-Shared Keys

(PSK_CAP is 01b) and does not support

asymmetric key exchange (KEY_EX_CAP is

0b), then this bit shall be zero. If the

Responder does not support encryption and

message authentication, then this bit shall be

zero.

In other words, this bit indicates whether

message authentication and/or encryption

(MAC_CAP and ENCRYPT_CAP) are used in the

handshake phase of a secure session.

2 0 PUB_KEY_ID_CAP

If set, the public key of the Responder was

provisioned to the Requester. The transport

layer is responsible for identifying the

Requester. In this case, CERT_CAP and

ALIAS_CERT_CAP of the Responder shall both

be 0 .

2 1 CHUNK_CAP
If set, Responder shall support Large SPDM

message transfer mechanism messages.

2 2 ALIAS_CERT_CAP
If set, the Responder shall use the AliasCert

model. See Identity provisioning for details.

2 3 SET_CERT_CAP
If set, Responder shall support

SET_CERTIFICATE_RSP response messages.

2 4 CSR_CAP

If set, Responder shall support CSR response

messages. If this bit is set, SET_CERT_CAP

shall be set.

2 5 CERT_INSTALL_RESET_CAP

If set, Responder may return an ERROR

message of ErrorCode=ResetRequired to

complete a certificate provisioning request. If

this bit is set, SET_CERT_CAP shall be set and

CSR_CAP can be set.

Security Protocol and Data Model (SPDM) Specification DSP0274

70 Published Version 1.3.0

Byte offset Bit offset Field Description

2 [7:6] EP_INFO_CAP

The ENDPOINT_INFO response capabilities of

the Responder.

• 00b . The Responder shall not support

ENDPOINT_INFO response capabilities.

• 01b . The Responder shall support the

ENDPOINT_INFO response but cannot

perform signature generation for this

response.

• 10b . The Responder shall support the

ENDPOINT_INFO response and can

generate signatures for this response.

• 11b . Reserved.

3 0 MEL_CAP

If set, Responder shall support

MEASUREMENT_EXTENSION_LOG response

message.

3 1 EVENT_CAP
If set, the Responder is an Event Notifier. See

Event mechanism for details.

3 [3:2] MULTI_KEY_CAP

Shall be the Multiple Asymmetric Key

capabilities of the Responder.

• 00b . Responder shall not support

Multiple Asymmetric Key capabilities.

• 01b . Responder shall only support

Multiple Asymmetric Key capabilities.

• 10b . Responder shall support Multiple

Asymmetric Key capabilities, and

Requester can use

ResponderMultiKeyConn as Multiple

Asymmetric Key Negotiation describes.

• 11b . Reserved.

If set to 01b or 10b , the Responder shall

support more than one key pair for at least

one asymmetric algorithm for the SPDM

connection to use in Responder

authentication.

3 4 GET_KEY_PAIR_INFO_CAP

If set, Responder shall support

KEY_PAIR_INFO response messages. If the

Responder sets MULTI_KEY_CAP , this bit shall

also be set.

3 5 SET_KEY_PAIR_INFO_CAP
If set, Responder shall support

SET_KEY_PAIR_INFO_ACK response message.

3 [7:6] Reserved Reserved.

280 In the case where an SPDM implementation incorrectly returns an illegal combination of capability flags as they are

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 71

defined by this specification (for example, ENCRYPT_CAP is set but both KEY_EX_CAP and PSK_CAP are cleared), the

following guidance is provided: If a Responder detects an illegal capability flag combination reported by the

Requester, it shall issue an ERROR message of ErrorCode=InvalidRequest .

281 10.3.1 Supported algorithms block

282 The Supported Algorithms Block reports all options from the ALGORITHMS response that are supported by the

Responder. The Supported Algorithms Block shall conform to the Table 15 — NEGOTIATE_ALGORITHMS request

message format, including all fields from Param1 through the end of the message, inclusive. When constructing the

Supported Algorithms Block, the Responder shall follow all requirements for the Requester, and shall set all bits and

values that reflect algorithms that the Responder supports.

283 10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response
messages

284 This request message shall negotiate cryptographic algorithms. In SPDM, the Requester issues

NEGOTIATE_ALGORITHMS to indicate which cryptographic algorithm(s) it supports for each type of cryptographic

operation, and the Responder selects one algorithm of each type using the ALGORITHMS response message. The

selected algorithms shall be used for all relevant cryptographic operations for the duration of the connection. The

criteria a Responder uses to determine which algorithm to select when more than one are supported by both

endpoints are outside the scope of this specification.

285 Figure 7 — Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.

Endpoint A issues a NEGOTIATE_ALGORITHMS request message, and endpoint B returns a selected mutually supported

algorithm in the ALGORITHMS response.

286 Figure 7 — Hashing algorithm selection: Example 1

Security Protocol and Data Model (SPDM) Specification DSP0274

72 Published Version 1.3.0

287

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

If necessary

ResponderRequester

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384)

ALGORITHMS (SHA-384)

If supported

CHALLENGE (256-bit Nonce)

CHALLENGE_AUTH (384-bit CertChainHash,
and MeasurementSummaryHash, 256-bit Nonce)

GET_MEASUREMENTS

MEASUREMENTS

If supported

If supported

Supports SHA-384

and SHA3-384
Supports SHA-256

and SHA-384

Select SHA-384
Agree on SHA-384

returns SHA-384 digest

288 If the Requester and Responder support no common algorithms of a particular type, the Responder shall issue an

ALGORITHMS response message with all appropriate selection field values set to zero to indicate that no selection was

made. The Responder should respond to all subsequent requests by this Requester with an ERROR message of

ErrorCode=RequestResynch . The Responder may continue to operate with limited functionality for operations that

do not require negotiated cryptographic algorithms.

289 A Requester shall not issue a NEGOTIATE_ALGORITHMS request message until it receives a successful CAPABILITIES

response message.

290 After a Requester issues a NEGOTIATE_ALGORITHMS request, it shall not issue any other SPDM requests, with the

exception of GET_VERSION , until it receives a successful ALGORITHMS response message.

291 A Responder shall not respond to a NEGOTIATE_ALGORITHMS request message with an ERROR message of

ErrorCode=ResponseNotReady .

292 For each algorithm type, a Responder shall not select both an SPDM-enumerated algorithm and an extended

algorithm.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 73

293 The SPDM protocol accounts for the possibility that both endpoints issue NEGOTIATE_ALGORITHMS request messages

independently of each other. In this case, the endpoint A Requester and endpoint B Responder communication pair

might select a different algorithm from the one selected by the endpoint B Requester and endpoint A Responder

communication pair.

294 Table 15 — NEGOTIATE_ALGORITHMS request message format shows the NEGOTIATE_ALGORITHMS request message

format.

295 Table 15 — NEGOTIATE_ALGORITHMS request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE3 = NEGOTIATE_ALGORITHMS . See Table 4

— SPDM request codes.

2 Param1 1
Shall be the number of algorithm structure tables in

this request using ReqAlgStruct .

3 Param2 1 Reserved.

4 Length 2
Shall be the length of the entire request message, in

bytes. Length shall be less than or equal to 128 bytes.

6 MeasurementSpecification 1

Bit mask. The Measurement specification field format

table defines the format for this field. For each

defined measurement specification a Requester

supports, the Requester can set the appropriate bits.

7 OtherParamsSupport 1

Shall be the selection bit mask.

Bit [3:0] - See Opaque Data Format Support and

Selection Table

Bit [4] - This field shall be the

ResponderMultiKeyConn field as Multiple

Asymmetric Key Negotiation describes.

Bit [7:5] - Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

74 Published Version 1.3.0

Byte offset Field Size (bytes) Description

8 BaseAsymAlgo 4

Shall be the bit mask listing Requester-supported

SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature verification. If

the Requester does not support any request/

response pair that requires signature verification, this

value shall be set to zero. If the Requester will not

send any requests that require a signature, this value

should be set to zero. Let SigLen be the size of the

signature in bytes.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048 where

SigLen =256.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048 where

SigLen =256.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072 where

SigLen =384.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072 where

SigLen =384.

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256

where SigLen =64 (32-byte r followed by

32-byte s).

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096 where

SigLen =512.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096 where

SigLen =512.

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384

where SigLen =96 (48-byte r followed by

48-byte s).

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521

where SigLen =132 (66-byte r followed by

66-byte s).

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256

where SigLen =64 (32-byte SM2_R followed by

32-byte SM2_S).

• Byte 1 Bit 2. EdDSA ed25519 where SigLen =64

(32-byte R followed by 32-byte S).

• Byte 1 Bit 3. EdDSA ed448 where SigLen =114

(57-byte R followed by 57-byte S).

• All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 75

Byte offset Field Size (bytes) Description

12 BaseHashAlgo 4

Shall be the bit mask listing Requester-supported

SPDM-enumerated cryptographic hashing

algorithms. If the Requester does not support any

request/response pair that requires hashing

operations, this value shall be set to zero.

• Byte 0 Bit 0. TPM_ALG_SHA_256

• Byte 0 Bit 1. TPM_ALG_SHA_384

• Byte 0 Bit 2. TPM_ALG_SHA_512

• Byte 0 Bit 3. TPM_ALG_SHA3_256

• Byte 0 Bit 4. TPM_ALG_SHA3_384

• Byte 0 Bit 5. TPM_ALG_SHA3_512

• Byte 0 Bit 6. TPM_ALG_SM3_256

• All other values reserved.

16 Reserved 12 Reserved.

28 ExtAsymCount 1

Shall be the number of Requester-supported

extended asymmetric key signature algorithms (=A)

for the purpose of signature verification. A + E +

ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4

+ ExtAlgCount5 shall be less than or equal to 20. If

the Requester does not support any request/

response pair that requires signature verification, this

value shall be set to zero.

29 ExtHashCount 1

Shall be the number of Requester-supported

extended hashing algorithms (=E). A + E +

ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4

+ ExtAlgCount5 shall be less than or equal to 20. If

the Requester does not support any request/

response pair that requires hashing operations, this

value shall be set to zero.

30 Reserved 1 Reserved.

31 MELspecification 1

Shall be the bit mask. The Measurement Extension

Log specification field format table defines the

format for this field. The Requester shall set the

corresponding bit for each supported measurement

extension log (MEL) specification.

32 ExtAsym 4 * A

Shall be the list of Requester-supported extended

asymmetric key signature algorithms for the purpose

of signature verification. Table 27 — Extended

Algorithm field format describes the format of this

field.

Security Protocol and Data Model (SPDM) Specification DSP0274

76 Published Version 1.3.0

Byte offset Field Size (bytes) Description

32 + 4 * A ExtHash 4 * E

Shall be the list of the extended hashing algorithms

supported by Requester. Table 27 — Extended

Algorithm field format describes the format of this

field.

32 + 4 * A + 4 * E ReqAlgStruct AlgStructSize See the AlgStructure request field.

296 AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall

be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

297 Table 16 — Algorithm request structure shows the Algorithm request structure:

298 Table 16 — Algorithm request structure

Byte offset Field Size (bytes) Description

0 AlgType 1

Shall be the type of algorithm.

• 0x00 and 0x01. Reserved.

• 0x02. DHE.

• 0x03. AEADCipherSuite .

• 0x04. ReqBaseAsymAlg .

• 0x05. KeySchedule .

• All other values reserved.

1 AlgCount 1

Shall be the Requester-supported fixed algorithms.

• Bit [7:4]. Number of bytes required to describe

Requester-supported SPDM-enumerated fixed

algorithms (=FixedAlgCount). FixedAlgCount +

2 shall be a multiple of 4.

• Bit [3:0]. Number of Requester-supported

extended algorithms (= ExtAlgCount).

2 AlgSupported FixedAlgCount
Shall be the bit mask listing Requester-supported

SPDM-enumerated algorithms.

2 + FixedAlgCount AlgExternal 4 * ExtAlgCount

Shall be the list of Requester-supported extended

algorithms. Table 27 — Extended Algorithm field

format describes the format of this field.

299 The following tables describe the Algorithm request structures mapped to their respective types:

• Table 17 — DHE structure

• Table 18 — AEAD structure

• Table 19 — ReqBaseAsymAlg structure

• Table 20 — KeySchedule structure

300 Table 17 — DHE structure

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 77

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x02 = DHE

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended DHE groups (= ExtAlgCount2).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated Diffie-Hellman Ephemeral (DHE)

groups. Values in parentheses specify the size of the

corresponding public values associated with each

group.

• Byte 0 Bit 0. ffdhe2048 (D = 256).

• Byte 0 Bit 1. ffdhe3072 (D = 384).

• Byte 0 Bit 2. ffdhe4096 (D = 512).

• Byte 0 Bit 3. secp256r1 (D = 64, C = 32).

• Byte 0 Bit 4. secp384r1 (D = 96, C = 48).

• Byte 0 Bit 5. secp521r1 (D = 132, C = 66).

• Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5 of GB/T

32918 specification) (D = 64, C = 32).

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount2

Shall be the list of Requester-supported extended

DHE groups. Table 27 — Extended Algorithm field

format describes the format of this field.

301 Table 18 — AEAD structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be the 0x03 = AEAD

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended AEAD algorithms (= ExtAlgCount3).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated AEAD algorithms.

• Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit IV

(initialization vector); tag size is specified by

transport layer.

• Byte 0 Bit 1. AES-256-GCM. 256-bit key; 96-bit

IV; tag size is specified by transport layer.

• Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit key;

96-bit IV; 128-bit tag.

• Byte 0 Bit 3. AEAD_SM4_GCM. 128-bit key; 96-bit

IV; tag size is specified by transport layer.

• All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

78 Published Version 1.3.0

Byte offset Field Size (bytes) Description

4 AlgExternal 4 * ExtAlgCount3

Shall be the list of Requester-supported extended

AEAD algorithms. Table 27 — Extended Algorithm

field format describes the format of this field.

302 Table 19 — ReqBaseAsymAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x04 = ReqBaseAsymAlg

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended asymmetric key signature algorithms

for the purpose of signature generation

(= ExtAlgCount4).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature generation. If

the Requester does not support any request/

response pair that requires signature generation, this

value shall be set to zero.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072.

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256.

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096.

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384.

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521.

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256.

• Byte 1 Bit 2. EdDSA ed25519.

• Byte 1 Bit 3. EdDSA ed448.

• All other values reserved.

For details of SigLen for each algorithm, see Table

15 — NEGOTIATE_ALGORITHMS request message

format.

4 AlgExternal 4 * ExtAlgCount4

Shall be the list of Requester-supported extended

asymmetric key signature algorithms for the purpose

of signature generation. Table 27 — Extended

Algorithm field format describes the format of this

field.

303 Table 20 — KeySchedule structure

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 79

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x05 = KeySchedule

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported

extended key schedule algorithms

(= ExtAlgCount5).

2 AlgSupported 2

Shall be the bit mask listing Requester-supported

SPDM-enumerated key schedule algorithms.

• Byte 0 Bit 0. SPDM Key Schedule.

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount5

Shall be the list of Requester-supported extended key

schedule algorithms. Table 27 — Extended Algorithm

field format describes the format of this field.

304 Table 21 — ALGORITHMS response message format shows the ALGORITHMS response message format.

305 Table 21 — Successful ALGORITHMS response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x63 = ALGORITHMS . See Table 5 — SPDM

response codes.

2 Param1 1
Shall be the number of algorithm structure tables in

this request using RespAlgStruct .

3 Param2 1 Reserved.

4 Length 2
Shall be the length of the response message, in

bytes.

6 MeasurementSpecificationSel 1

Bit mask. The Responder shall select one of the

measurement specifications supported by the

Requester and Responder. Thus, no more than one

bit shall be set. The Measurement specification field

format table defines the format for this field.

Security Protocol and Data Model (SPDM) Specification DSP0274

80 Published Version 1.3.0

Byte offset Field Size (bytes) Description

7 OtherParamsSelection 1

Shall be the selected Parameter Bit Mask. The

Responder shall select one of the opaque data

formats supported by the Requester. Thus, no more

than one bit shall be set for the opaque data format.

• Bit [3:0]. See Opaque Data Format Support and

Selection Table.

• Bit 4 - This field shall be the

RequesterMultiKeyConnSel as Multiple

Asymmetric Key Negotiation describes.

• Bit [7:5]. Reserved.

8 MeasurementHashAlgo 4

Shall be the bit mask indicating the SPDM-

enumerated hashing algorithms used for

measurements.

• Byte 0 Bit 0. Raw Bit Stream Only.

• Byte 0 Bit 1. TPM_ALG_SHA_256.

• Byte 0 Bit 2. TPM_ALG_SHA_384.

• Byte 0 Bit 3. TPM_ALG_SHA_512.

• Byte 0 Bit 4. TPM_ALG_SHA3_256.

• Byte 0 Bit 5. TPM_ALG_SHA3_384.

• Byte 0 Bit 6. TPM_ALG_SHA3_512.

• Byte 0 Bit 7. TPM_ALG_SM3_256.

• If the Responder supports measurements

(MEAS_CAP=01b or MEAS_CAP=10b in its

CAPABILITIES response) and if

MeasurementSpecificationSel is non-zero,

then exactly one bit in this bit field shall be set.

Otherwise, the Responder shall set this field to

0 .

• All other values reserved.

A Responder shall select bit 0 only if it supports raw

bit streams as the only form of measurement;

otherwise, the Responder shall select one of the

other bits.

12 BaseAsymSel 4

Shall be the bit mask indicating the SPDM-

enumerated asymmetric key signature algorithm

selected for the purpose of signature generation. If

the Responder does not support any request/

response pair that requires signature generation, this

value shall be set to zero. The Responder shall set no

more than one bit.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 81

Byte offset Field Size (bytes) Description

16 BaseHashSel 4

Shall be the bit mask indicating the SPDM-

enumerated hashing algorithm selected. If the

Responder does not support any request/response

pair that requires hashing operations, this value shall

be set to zero. The Responder shall set no more than

one bit.

20 Reserved 11 Reserved.

31 MELspecificationSel 1

Shall be the bit mask indicating MEL. The Responder

shall select one of the MEL specifications supported

by the Requester and Responder. No more than one

bit shall be set. The Measurement Extension Log

specification field format table defines the format for

this field.

32 ExtAsymSelCount 1

Shall be the number of extended asymmetric key

signature algorithms selected for the purpose of

signature generation. Shall be either 0 or 1 (=A’).

If the Responder does not support any request/

response pair that requires signature generation, this

value shall be set to zero.

33 ExtHashSelCount 1

Shall be the number of extended hashing algorithms

selected. Shall be either 0 or 1 (=E’). If the

Responder does not support any request/response

pair that requires hashing operations, this value shall

be set to zero.

34 Reserved 2 Reserved.

36 ExtAsymSel 4 * A'

Shall be the extended asymmetric key signature

algorithm selected for the purpose of signature

generation. The Responder shall use this asymmetric

signature algorithm for all subsequent applicable

response messages to the Requester. The extended

algorithm field format table describes the format of

this field.

36 + 4 * A' ExtHashSel 4 * E'

Shall be the extended hashing algorithm selected.

The Responder shall use this hashing algorithm

during all subsequent response messages to the

Requester. The Requester shall use this hashing

algorithm during all subsequent applicable request

messages to the Responder. The extended algorithm

field format table describes the format of this field.

36 + 4 * A' + 4 * E' RespAlgStruct AlgStructSize See Table 22 — Response AlgStructure field format.

306 AlgStructSize is the sum of the sizes of all the algorithm structure tables, as the following tables show. An

Security Protocol and Data Model (SPDM) Specification DSP0274

82 Published Version 1.3.0

algorithm structure table needs to be present only if the Responder supports that AlgType . AlgType shall

monotonically increase for subsequent entries.

307 Table 22 — Response AlgStructure field format

Byte offset Field Size (bytes) Description

0 AlgType 1

Shall be the type of algorithm.

• 0x00 and 0x01. Reserved.

• 0x02. DHE.

• 0x03. AEADCipherSuite .

• 0x04. ReqBaseAsymAlg .

• 0x05. KeySchedule .

• All other values reserved.

1 AlgCount 1

Shall be the bit mask listing Responder-supported

fixed algorithm requested by the Requester.

• Bit [7:4]. Number of bytes required to describe

Requester-supported SPDM-enumerated fixed

algorithms (=FixedAlgCount). FixedAlgCount +

2 shall be a multiple of 4.

• Bit [3:0]. Number of Requester-supported,

Responder-selected, extended algorithms

(= ExtAlgCount'). This value shall be either 0 or

1.

2 AlgSupported FixedAlgCount

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

algorithm. Responder shall set at most one bit to 1.

2 + FixedAlgCount AlgExternal 4 * ExtAlgCount'

If present: shall be a Requester-supported,

Responder-selected, extended algorithm. Responder

shall select at most one extended algorithm. Table 27

— Extended Algorithm field format describes the

format of this field.

308 The following tables describe the algorithm types and their associated fixed fields:

• Table 23 — DHE structure

• Table 24 — AEAD structure

• Table 25 — ReqBaseAsymAlg structure

• Table 26 — KeySchedule structure

• Table 27 — Extended Algorithm field format

309 Table 23 — DHE structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x02 = DHE

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 83

Byte offset Field Size (bytes) Description

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Shall be the number of Requester-

supported, Responder-selected, extended DHE

groups (= ExtAlgCount2'). This value shall be

either 0 or 1.

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

DHE group. Values in parentheses specify the size of

the corresponding public values associated with each

group.

• Byte 0 Bit 0. ffdhe2048 (D = 256).

• Byte 0 Bit 1. ffdhe3072 (D = 384).

• Byte 0 Bit 2. ffdhe4096 (D = 512).

• Byte 0 Bit 3. secp256r1 (D = 64, C = 32)

• Byte 0 Bit 4. secp384r1 (D = 96, C = 48).

• Byte 0 Bit 5. secp521r1 (D = 132, C = 66).

• Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5 of GB/T

32918) (D = 64, C = 32).

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount2'

If present: shall be a Requester-supported,

Responder-selected, extended DHE algorithm. Table

27 — Extended Algorithm field format describes the

format of this field.

310 Table 24 — AEAD structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x03 = AEAD

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Shall be the number of Requester-

supported, Responder-selected, extended AEAD

algorithms (= ExtAlgCount3'). This value shall

be either 0 or 1.

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

AEAD algorithm.

• Byte 0 Bit 0. AES-128-GCM.

• Byte 0 Bit 1. AES-256-GCM.

• Byte 0 Bit 2. CHACHA20_POLY1305.

• Byte 0 Bit 3. AEAD_SM4_GCM.

• All other values reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

84 Published Version 1.3.0

Byte offset Field Size (bytes) Description

4 AlgExternal 4 * ExtAlgCount3'

If present: shall be a Requester-supported,

Responder-selected, extended AEAD algorithm. Table

27 — Extended Algorithm field format describes the

format of this field.

311 Table 25 — ReqBaseAsymAlg structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x04 = ReqBaseAsymAlg

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Number of Requester-supported,

Responder-selected, extended asymmetric key

signature algorithms (= ExtAlgCount4') for the

purpose of signature verification. This value shall

be either 0 or 1.

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

asymmetric key signature algorithm for the purpose

of signature verification. If the Responder does not

support any request/response pair that requires

signature verification, this value shall be set to zero. If

the Responder will not send any messages that

require a signature, this value should be set to zero.

• Byte 0 Bit 0. TPM_ALG_RSASSA_2048.

• Byte 0 Bit 1. TPM_ALG_RSAPSS_2048.

• Byte 0 Bit 2. TPM_ALG_RSASSA_3072.

• Byte 0 Bit 3. TPM_ALG_RSAPSS_3072.

• Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256.

• Byte 0 Bit 5. TPM_ALG_RSASSA_4096.

• Byte 0 Bit 6. TPM_ALG_RSAPSS_4096.

• Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384.

• Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521.

• Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256.

• Byte 1 Bit 2. EdDSA ed25519.

• Byte 1 Bit 3. EdDSA ed448.

• All other values reserved.

For details of SigLen for each algorithm, see Table

15 — NEGOTIATE_ALGORITHMS request message

format.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 85

Byte offset Field Size (bytes) Description

4 AlgExternal 4 * ExtAlgCount4'

If present: shall be a Requester-supported,

Responder-selected extended asymmetric key

signature algorithm for the purpose of signature

verification. Table 27 — Extended Algorithm field

format describes the format of this field.

312 Table 26 — KeySchedule structure

Byte offset Field Size (bytes) Description

0 AlgType 1 Shall be 0x05 = KeySchedule

1 AlgCount 1

• Bit [7:4]. Shall be a value of 2.

• Bit [3:0]. Shall be the number of Requester-

supported, Responder-selected, extended key

schedule algorithms (= ExtAlgCount5'). This

value shall be either 0 or 1.

2 AlgSupported 2

Shall be the bit mask for indicating a Requester-

supported, Responder-selected, SPDM-enumerated

key schedule algorithm.

• Byte 0 Bit 0. SPDM key schedule.

• All other values reserved.

4 AlgExternal 4 * ExtAlgCount5'

If present: shall be a Requester-supported,

Responder-selected, extended key schedule

algorithm. Table 27 — Extended Algorithm field

format describes the format of this field.

313 Table 27 — Extended Algorithm field format

Byte offset Field Size (bytes) Description

0 Registry ID 1

Shall represent the registry or standards body. The ID

column of Table 60 — Registry or standards body ID

describes the value of this field.

1 Reserved 1 Reserved.

2 Algorithm ID 2

Shall indicate the desired algorithm. The registry or

standards body owns the value of this field. See Table

60 — Registry or standards body ID.

314 Table 28 — Opaque Data Format Support and Selection

Security Protocol and Data Model (SPDM) Specification DSP0274

86 Published Version 1.3.0

Bit offset Field Description

0 OpaqueDataFmt0

If set, this bit shall indicate that the format

for all OpaqueData fields in this

specification is defined by the device

vendor or other standards body.

1 OpaqueDataFmt1

If set, this bit shall indicate that the format

for all OpaqueData fields in this

specification is defined by the General

opaque data format.

[3:2] Reserved Reserved.

315 The Opaque Data Format Selection Table shows the bit definition for the format of the Opaque data fields. A

Requester may set more than one bit in the table to indicate each supported format. A Responder shall select no

more than one of the bits supported by the Requester in this table. If the Requester or the Responder does not set a

bit, then all OpaqueData fields in this specification shall be absent by setting the respective OpaqueDataLength field

to a value of zero.

316 Table 29 — Measurement Specification Field Format

Bit offset Field Description

0 DMTFmeasSpec

This bit shall indicate a DMTF-defined measurement

specification. Table 54 — DMTF measurement

specification format defines the format for this

measurement specification.

[1:7] Reserved Reserved

317 The Measurement Specification Field Format Table describes the field format for Measurement specification related

fields. The selected measurement specification (MeasurementSpecificationSel) is used in the MEASUREMENTS

response. See Measurement block and GET_MEASUREMENTS for details.

318 Table 30 — Measurement Extension Log Specification Field Format

Bit offset Field Description

0 DMTFmelSpec

This bit indicates a DMTF-defined measurement

extension log specification. Refer to the DMTF

Measurement Extension Log Format clause for details.

If the Responder supports the DMTF-defined

measurement extension log specification, it shall set

this bit to 1 in MELspecification . If the Responder

selects the DMTF-defined measurement extension log

specification for constructing the MEL, it shall set this

bit to 1 in MELspecificationSel .

[1:7] Reserved Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 87

319 The Measurement Extension Log Specification Field Format Table describes the field format for MEL specification

related fields. The selected MEL specification (MELspecificationSel) is used in construction of the MEL.

320 10.4.1 Connection behavior after VCA

321 With the successful completion of the ALGORITHMS message, all the parameters of the SPDM connection have been

determined. Thus, all SPDM message exchanges after the VCA messages shall comply with the selected parameters in

the ALGORITHMS message, with the exception of GET_VERSION and VERSION messages, or unless otherwise stated

in this specification. To explain this behavior, suppose a Responder supports both RSA and ECDSA asymmetric

algorithms. For an SPDM connection, the Responder selects the TPM_ALG_RSASSA_2048 asymmetric algorithm in

BaseAsymSel and the TPM_ALG_SHA_256 hash algorithm in BaseHashSel . If the Requester on that same connection

issues GET_DIGESTS , the Responder returns TPM_ALG_SHA_256 digests only for those populated slots that can

provide a TPM_ALG_RSASSA_2048 signature for a CHALLENGE_AUTH response. The Responder would violate this

requirement if it returns one or more digests of populated slots that perform ECDSA signatures or if it uses a different

hash algorithm to create the digests.

322 Unless otherwise stated in this specification, and with the exception of GET_VERSION , if a Requester issues a request

that violates one or more of the negotiated or selected parameters of a given connection, the Responder shall either

silently discard the request or return an ERROR message with an appropriate error code.

323 10.4.2 Multiple asymmetric key negotiation

324 The Requester and Responder can negotiate the parameters of multiple asymmetric key support for the SPDM

connection. As with other parameters in this request and response, the Responder makes the selection and the

Requester indicates its support. There are two sets of multiple asymmetric key use parameters to negotiate: one for

Responder authentication and one for Requester authentication.

325 10.4.3 Multiple asymmetric key use for Responder authentication

326 The Responder shall report the multiple asymmetric keys capability in the MULTI_KEY_CAP field of CAPABILITIES .

327 If MULTI_KEY_CAP is 10b , the ResponderMultiKeyConn field in NEGOTIATE_ALGORITHMS determines whether or not

the SPDM connection uses multiple asymmetric keys for Responder authentication. The Requester makes the decision

for the SPDM connection in the ResponderMultiKeyConn field. If the Requester sets the ResponderMultiKeyConn

field, the Responder shall support multiple asymmetric keys in the SPDM connection for Responder authentication. If

ResponderMultiKeyConn is not set, the Responder shall support only one key pair per supported asymmetric

algorithm for this SPDM connection.

328 If MULTI_KEY_CAP is 01b , the Responder determines that the SPDM connection uses multiple asymmetric keys. The

ResponderMultiKeyConn field in NEGOTIATE_ALGORITHMS shall be set to acknowledge the Responder capability.

329 If MULTI_KEY_CAP is 00b , the Responder determines that the SPDM connection does not use multiple asymmetric

keys. The ResponderMultiKeyConn field in NEGOTIATE_ALGORITHMS shall be cleared.

Security Protocol and Data Model (SPDM) Specification DSP0274

88 Published Version 1.3.0

330 10.4.4 Multiple asymmetric key use for Requester authentication

331 The Requester shall report the multiple asymmetric keys capability for Requester authentication in the

MULTI_KEY_CAP field of GET_CAPABILITIES .

332 If MULTI_KEY_CAP is 10b , the RequesterMultiKeyConnSel field in the ALGORITHMS message determines whether

or not the SPDM connection uses multiple asymmetric keys for Requester authentication, such as in mutual

authentication. The Responder makes the decision for the SPDM connection in RequesterMultiKeyConnSel . If the

Responder sets the RequesterMultiKeyConnSel field, the Requester shall support multiple asymmetric keys in this

SPDM connection for Requester authentication. If RequesterMultiKeyConnSel is not set, the Requester shall

support only one key pair per supported asymmetric algorithm for this SPDM connection.

333 If MULTI_KEY_CAP is 01b , the Requester determines that the SPDM connection uses multiple asymmetric keys. The

RequesterMultiKeyConnSel field in the ALGORITHMS message shall be set to acknowledge the Requester capability.

334 If MULTI_KEY_CAP is 00b , the Requester determines that the SPDM connection does not use multiple asymmetric

keys. The RequesterMultiKeyConnSel field in the ALGORITHMS message shall be cleared.

335 10.4.5 Multiple asymmetric key connection

336 For the remainder of this specification, the boolean variables MULTI_KEY_CONN_REQ and MULTI_KEY_CONN_RSP

indicate whether or not the responding SPDM endpoint supports more than one key pair for one or more asymmetric

algorithms for key pairs belonging to it in this SPDM connection. If the responding endpoint is the Requester, then

MULTI_KEY_CONN_REQ is used. See Table 31 — MULTI_KEY_CONN_REQ value calculation. If the responding endpoint

is the Responder, then MULTI_KEY_CONN_RSP is used. See Table 32 — MULTI_KEY_CONN_RSP value calculation.

337 Table 31 — MULTI_KEY_CONN_REQ value calculation

MULTI_KEY_CAP in GET_CAPABILITIES RequesterMultiKeyConnSel in ALGORITHMS MULTI_KEY_CONN_REQ

00b 0 false

00b 1 invalid

01b 0 invalid

01b 1 true

10b 0 false

10b 1 true

338 Table 32 — MULTI_KEY_CONN_RSP value calculation

MULTI_KEY_CAP in CAPABILITIES ResponderMultiKeyConn in NEGOTIATE_ALGORITHMS MULTI_KEY_CONN_RSP

00b 0 false

00b 1 invalid

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 89

MULTI_KEY_CAP in CAPABILITIES ResponderMultiKeyConn in NEGOTIATE_ALGORITHMS MULTI_KEY_CONN_RSP

01b 0 invalid

01b 1 true

10b 0 false

10b 1 true

339 If the responding SPDM endpoint has MULTI_KEY_CAP set to 00b , then the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP shall be false.

340 If the responding SPDM endpoint has MULTI_KEY_CAP set to 01b , then the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP shall be true.

341 If the responding SPDM endpoint has MULTI_KEY_CAP set to 10b , then the value of the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP depends on the peer endpoint. If the responding SPDM endpoint is

the Requester and if RequesterMultiKeyConnSel is set by the Responder, then the value of MULTI_KEY_CONN_REQ

shall be true. If the responding SPDM endpoint is the Responder and if ResponderMultiKeyConn is set by the

Requester, then the value of MULTI_KEY_CONN_RSP shall be true. In all other cases, the value of the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP shall be false.

342 10.5 Responder identity authentication

343 This clause describes request messages and response messages associated with the identity of the Responder’s

authentication operations. The GET_DIGESTS and GET_CERTIFICATE messages shall be supported by a Responder

that returns CERT_CAP=1 in its CAPABILITIES response message. The CHALLENGE message that this clause defines

shall be supported by a Responder that returns CHAL_CAP=1 in its CAPABILITIES response message. The

GET_DIGESTS and GET_CERTIFICATE messages are not applicable if the public key of the Responder was

provisioned to the Requester in a trusted environment.

344 Figure 8 — Responder authentication: Example certificate retrieval flow shows the high-level request-response

message flow and sequence for certificate retrieval.

345 Figure 8 — Responder authentication: Example certificate retrieval flow

Security Protocol and Data Model (SPDM) Specification DSP0274

90 Published Version 1.3.0

346

RootCert

…

VendorCert

…

ModelCert

DeviceCert

SHA384Slot0

…

SHA384Slot3

…

SHA384Slotn-2

SHA384Slotn-1

Offset (0)
Length (0x2000)

ResponderRequester

1. The requester sends a GET_DIGESTS
request message. 1. The responder sends a DIGESTS

message.

2.For each received
GET_CERTIFICATE request, the
responder verifies that Offset is
within the certificate chain and then
sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

3. The requester sends a
GET_CERTIFICATE request

4. Verify validity of certificate chain against
the root certificate, then proceed to the
challenge-response.

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE (1076, 0)

If necessary

RootCert

347 The GET_DIGESTS request message and DIGESTS response message can optimize the amount of data required to

be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The

cryptographic hash values of every certificate chain stored on an endpoint are returned with the DIGESTS response

message, enabling the Requester to compare these values to previously retrieved and cached certificate chain hash

values and detect any changes to the certificate chains stored on the device before issuing a GET_CERTIFICATE

request message.

348 For the runtime challenge-response flow, the signature field in the CHALLENGE_AUTH response message payload shall

be signed by using the private key associated with the leaf certificate over the hash of the message transcript. See

Table 47 — Request ordering and message transcript computation rules for M1/M2.

349 This ensures cryptographic binding between a specific request message from a specific Requester and a specific

response message from a specific Responder, which enables the Requester to detect the presence of an active

adversary attempting to downgrade cryptographic algorithms or SPDM versions.

350 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a

Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates. The

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 91

message transcript generation for the signature computation is restarted as of the most recent GET_VERSION request

received.

351 10.6 Requester identity authentication

352 If a Requester supports mutual authentication, it shall comply with all requirements placed on a Responder as

specified in Responder identity authentication.

353 If a Responder supports mutual authentication, it shall comply with all requirements placed on a Requester as

specified in Responder identity authentication. The preceding two statements essentially describe a role reversal.

354 10.6.1 Certificates and certificate chains

355 Each SPDM endpoint that supports identity authentication using certificates shall carry at least one complete

certificate chain. A certificate chain contains an ordered list of certificates, presented as the binary (byte)

concatenation of the fields that Table 33 — Certificate chain format shows. In the context of this specification, a

complete certificate chain is one where: (i) the first certificate either is signed by a Root Certificate (a certificate that

specifies a trust anchor) or is a Root Certificate itself, (ii) each subsequent certificate is signed by the preceding

certificate, and (iii) the final certificate contains the public key used to authenticate the SPDM endpoint. The final

certificate is called the leaf certificate.

356 If an SPDM endpoint does not support multiple asymmetric keys (MULTI_KEY_CAP=0), the SPDM endpoint shall

contain a single public-private key pair per supported algorithm for its leaf certificates, regardless of how many

certificate chains are stored on the device. The Responder selects a single asymmetric key signature algorithm per

Requester regardless of the value of MULTI_KEY_CAP field.

357 Certificate chains are stored in logical locations called slots. Each supported slot shall either be empty or contain one

complete certificate chain. A device shall not contain more than eight slots. Slots are numbered 0 through 7 inclusive.

Slot 0 is populated by default. If a device uses the DeviceCert model (ALIAS_CERT_CAP=0b in its CAPABILITIES

response) and if MULTI_KEY_CAP is not set, then the certificate chain in every populated slot shall use the

DeviceCert model. If a device uses the AliasCert model (ALIAS_CERT_CAP=1b in its CAPABILITIES response)

and if MULTI_KEY_CAP is not set, then the certificate chain in every populated slot shall use the AliasCert model.

358 If the MULTI_KEY_CAP is set, the certificate model for each populated certificate slot can be different. Multiple

asymmetric key support allows the use of the generic certificate model. The use of the GenericCert model shall be

prohibited when MULTI_KEY_CAP is not set.

359 In all cases, the certificate model for slot 0 shall be either the device certificate model or the alias certificate model.

360 Additional slots may be populated through the supply chain such as by a platform integrator or by an end user such

as an IT administrator. A slot mask identifies the certificate chains in the eight slots. Similarly, if the Requester

supports mutual authentication and if MULTI_KEY_CONN_REQ is not set, a Requester device shall use either the

DeviceCert model or the AliasCert model and the certificate chain in every populated slot shall use the same

model. Note that the Requester does not have capability flags to indicate the certificate model.

361 If an endpoint supports certificates, then Slot 0 is the default certificate chain slot. Slot 0 shall contain a valid

certificate chain unless the device has not yet had a certificate chain provisioned and is in a trusted environment.

Security Protocol and Data Model (SPDM) Specification DSP0274

92 Published Version 1.3.0

362 Each certificate in a chain shall be in ASN.1 DER-encoded X.509 v3 format as RFC 5280 defines. The ASN.1 DER

encoding of each individual certificate can be analyzed to determine its length.

363 To allow for flexibility in supporting multiple certificate models, the minimum number of certificates within a

certificate chain shall be one and a chain shall contain a leaf certificate.

364 The leaf certificate in the device certificate model shall be the DeviceCert leaf certificate. The leaf certificate in an

alias certificate model shall be the AliasCert leaf certificate. In a generic certificate model, the leaf certificate shall

be the GenericCert leaf certificate. When MULTI_KEY_CAP is not set and a certificate chain consists of a single

certificate, that certificate can only be a DeviceCert leaf certificate. When MULTI_KEY_CAP is set and a certificate

chain consists of a single certificate, that certificate is either a DeviceCert or a GenericCert leaf certificate.

365 Table 33 — Certificate chain format describes the certificate chain format:

366 Table 33 — Certificate chain format

Byte offset Field Size (bytes) Description

0 Length 2

Shall be the total length of the certificate chain, in

bytes, including all fields in this table. This field is

little endian.

2 Reserved 2 Reserved.

4 RootHash H

Shall be the digest of the Root Certificate. Note that

the Root Certificate is ASN.1 DER-encoded for this

digest. This field shall be in hash byte order. H is the

output size, in bytes, of the hash algorithm selected

by the most recent ALGORITHMS response.

4 + H Certificates Length - (4 + H)

Shall be a complete certificate chain consisting of

one or more ASN.1 DER-encoded X.509 v3

certificates. This field shall be in Encoded ASN.1 byte

order.

367 10.7 GET_DIGESTS request and DIGESTS response messages

368 This request message shall retrieve the certificate chain digests.

369 Table 34 — GET_DIGESTS request message format shows the GET_DIGESTS request message format.

370 The digests in Table 35 — Successful DIGESTS response message format shall be computed over the certificate chain

as Table 33 — Certificate chain format shows.

371 When the corresponding MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is true, certificate slots have four states

that can be reported by the endpoint. The sub-bullet of each state describes how the state is represented in the

DIGESTS response.

1. Does not exist

◦ The corresponding bit in SupportedSlotMask is not set.

2. Exists and empty

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 93

◦ The corresponding bit in SupportedSlotMask is set and the corresponding bit in

ProvisionedSlotMask is not set.

3. Exists with key

◦ The corresponding bits in SupportedSlotMask and ProvisionedSlotMask are set, but the value

of the corresponding CertModel field is zero.

4. Exists with key and cert

◦ The corresponding bits in SupportedSlotMask and ProvisionedSlotMask are set, and the value

of the corresponding CertModel field is non-zero.

372 When a certificate slot does not exist, it shall remain in this state for the remainder of the SPDM connection. The

“exists and empty” state indicates the presence of a certificate slot where neither a key nor a certificate has been

provisioned yet. The “exists with key” state indicates the certificate slot has only an asymmetric key associated with it

but no certificate chain. The “exists with key and cert” state indicates the certificate has both an asymmetric key

assigned to it and a certificate chain. The “exists with key and cert” state is a fully provisioned state. When a certificate

slot exists, the typical progression of states starts at “exists and empty”, followed by “exists with key”, and ends with

“exists with key and cert”.

373 Table 34 — GET_DIGESTS request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x81 = GET_DIGESTS . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

374 Table 35 — Successful DIGESTS response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x01 = DIGESTS . See Table 5 — SPDM response

codes.

2 Param1 1

SupportedSlotMask. This field indicates which slots

the responding SPDM endpoint supports. If

certificate slot X exists in the responding SPDM

endpoint, the bit in position X of this byte shall be

set. (Bit 0 is the least significant bit of the byte.)

Likewise, if certificate slot X does not exist in the

responding SPDM endpoint, bit X of this byte shall

not be set and certificate slot X shall be an invalid

value in various slot ID fields (SlotID) across all

SPDM request messages that contain this field.

Security Protocol and Data Model (SPDM) Specification DSP0274

94 Published Version 1.3.0

Byte offset Field Size (bytes) Description

3 Param2 1

ProvisionedSlotMask. If slot K contains a certificate

chain that supports the currently negotiated

algorithms for the connection, bit K of this byte shall

be set. (Bit 0 is the least significant bit of the byte.)

Additionally, if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true and if slot K contains an associated key pair, bit

K of this byte shall be set. For all fields from Digest

to KeyUsageMask inclusive, the number of fields

returned (denoted by n) shall be equal to the

number of bits set in this byte.

These fields shall be returned in order of increasing

slot number.

If a bit is set in this field, the corresponding bit in

SupportedSlotMask shall also be set.

4 Digest[0] H
Digest of the certificate chain in CertSlot[0] . This

field shall be in hash byte order.

… … … …

4 + H * (n - 1) Digest[n-1] H

Digest of the certificate chain in CertSlot[n-1] .

This field shall be in hash byte order. If a certificate

chain is not present in this slot, the value of this field

shall be all zeros.

4 + (H * n) KeyPairID[0] 1

Shall be the KeyPairID of the key pair associated

with CertSlot[0] .

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true. Otherwise, it shall be absent.

… … … …

3 + (H + 1) * n KeyPairID[n-1] 1

Shall be the KeyPairID of the key pair associated

with CertSlot[n-1] .

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true. Otherwise, it shall be absent.

4 + (H + 1) * n CertificateInfo[0] 1

Shall be the certificate information for CertSlot[0] .

The format of this field shall be the format that the

certificate info table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true. Otherwise, it shall be absent.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 95

Byte offset Field Size (bytes) Description

… … … …

3 + (H + 2) * n CertificateInfo[n-1] 1

Shall be the certificate information for

CertSlot[n-1] . The format of this field shall be the

format that the certificate info table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true. Otherwise, it shall be absent.

4 + (H + 2) * n KeyUsageMask[0] 2

Shall be the key usage bit mask for CertSlot[0] .

The format of this field shall be the format that the

key usage bit mask table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true. Otherwise, it shall be absent.

… … … …

2 + (H + 4) * n KeyUsageMask[n-1] 2

Shall be the key usage bit mask for CertSlot[n-1] .

The format of this field shall be the format that the

key usage bit mask table defines.

This field shall be present if the corresponding

MULTI_KEY_CONN_REQ or MULTI_KEY_CONN_RSP is

true. Otherwise, it shall be absent.

375 Table 36 — Certificate info shows the format for the CertificateInfo fields.

376 Table 36 — Certificate info

Bit offset Field Description

[2:0] CertModel

The value of this field shall indicate the certificate

model that the certificate slot uses.

• Value of 0 indicates either that the certificate

slot does not contain any certificates or that

the corresponding MULTI_KEY_CONN_REQ or

MULTI_KEY_CONN_RSP is false.

• Value of 1 indicates that the certificate slot

uses the DeviceCert model.

• Value of 2 indicates that the certificate slot

uses the AliasCert model.

• Value of 3 indicates that the certificate slot

uses the GenericCert model.

• All other values reserved.

[7:3] Reserved Reserved

Security Protocol and Data Model (SPDM) Specification DSP0274

96 Published Version 1.3.0

377 Table 37 — Key usage bit mask shows the format for the KeyUsageMask fields.

378 Table 37 — Key usage bit mask

Bit offset Field Description

0 KeyExUse

If set, the SlotID fields in

KEY_EXCHANGE and

KEY_EXCHANGE_RSP can specify

this certificate slot. If not set,

the SlotID fields in

KEY_EXCHANGE and

KEY_EXCHANGE_RSP shall not

specify this certificate slot.

1 ChallengeUse

If set, the SlotID fields in

CHALLENGE and

CHALLENGE_AUTH can specify

this certificate slot. If not set,

the SlotID fields in

CHALLENGE and

CHALLENGE_AUTH shall not

specify this certificate slot.

2 MeasurementUse

If set, the SlotID fields in

GET_MEASUREMENTS and

MEASUREMENTS can specify this

certificate slot. If not set, the

SlotID fields in

GET_MEASUREMENTS and

MEASUREMENTS shall not

specify this certificate slot.

3 EndpointInfoUse

If set, the SlotID fields in

GET_ENDPOINT_INFO and

ENDPOINT_INFO can specify

this certificate slot. If not set,

the SlotID fields in

GET_ENDPOINT_INFO and

ENDPOINT_INFO shall not

specify this certificate slot.

[13:4] Reserved Reserved

14 StandardsKeyUse

If set, this field shall indicate

usage defined by standards

other than specifications

defined by DMTF.

15 VendorKeyUse
If set, this field shall indicate

usage defined by a vendor.

379 For slot 0, at least one of KeyExUse , ChallengeUse , MeasurementUse , and EndpointInfoUse shall be set. The

corresponding capability bits shall be set appropriately.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 97

380 10.8 GET_CERTIFICATE request and CERTIFICATE response messages

381 This request message shall retrieve the certificate chain from the specified slot number.

382 Table 38 — GET_CERTIFICATE request message format shows the GET_CERTIFICATE request message format.

383 GET_CERTIFICATE request attributes shows the GET_CERTIFICATE request attributes.

384 Table 40 — Successful CERTIFICATE response message format shows the CERTIFICATE response message format.

385 Table 141 — CERTIFICATE response attributes shows the CERTIFICATE response attributes.

386 The Requester sends one or more GET_CERTIFICATE requests to retrieve the certificate chain of the Responder.

387 Table 38 — GET_CERTIFICATE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x82 = GET_CERTIFICATE . See Table 4 —

SPDM request codes.

2 Param1 1

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID . Slot number of the

Responder certificate chain to read. The value in

this field shall be between 0 and 7 inclusive.

3 Param2 1
Request attributes.

See GET_CERTIFICATE request attributes.

4 Offset 2

Shall be the offset in bytes from the start of the

certificate chain to where the read request

message begins. The Responder shall send its

certificate chain starting from this offset. For the

first GET_CERTIFICATE request for a given slot,

the Requester shall set this field to 0. For

subsequent requests, Offset is set to the next

portion of the certificate in that slot.

6 Length 2

Shall be the length of certificate chain data, in

bytes, to be returned in the corresponding

response. This field is an unsigned 16-bit integer.

388 Table 39 — GET_CERTIFICATE request attributes

Security Protocol and Data Model (SPDM) Specification DSP0274

98 Published Version 1.3.0

Bit offset Field Description

0 SlotSizeRequested

When SlotSizeRequested=1b in the GET_CERTIFICATE request, the Responder shall

return the number of bytes available for certificate chain storage in the

RemainderLength field of the response. When SlotSizeRequested=1b , the Offset

and Length fields in the GET_CERTIFICATE request shall be ignored by the Responder.

[7:1] Reserved Reserved.

389 Table 40 — Successful CERTIFICATE response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x02 = CERTIFICATE . See Table 5 — SPDM

response codes.

2 Param1 1

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID . Slot number of the

certificate chain returned.

3 Param2 1
The format of this field shall be the format that Table

141 — CERTIFICATE response attributes defines.

4 PortionLength 2

Shall be the number of bytes of this portion of the

certificate chain. This should be less than or equal to

Length received as part of the request. For example,

the Responder might set this field to a value less than

Length received as part of the request due to

limitations on the transmit buffer of the Responder. If

the requested Length field is 0 then this field shall

be set to 0. If SlotSizeRequested=1b in the request,

this field shall be set to zero.

6 RemainderLength 2

Shall be the number of bytes of the certificate chain

that have not been sent yet, after the current

response. For the last response, this field shall be 0 as

an indication to the Requester that the entire

certificate chain has been sent. If the requested

Length field is 0 and SlotSizeRequested=0b in

the request, then this field shall return the actual size

of the certificate chain in the slot. See Table 39 —

GET_CERTIFICATE request attributes for more detail.

8 CertChain PortionLength or 0

Shall be the requested contents of the target

certificate chain, as described in Certificates and

certificate chains. If SlotSizeRequested=1b in the

request, this field shall be absent. If the requested

Length field is 0 , then this field shall be absent.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 99

390 Table 41 — CERTIFICATE response attributes

Bit offset Field Description

[2:0] CertificateInfo

The value of this field shall be

the certificate model of the slot.

The format of this field shall be

the format of the CertModel

field that the certificate info

table defines.

All other bits Reserved Reserved.

391 Figure 9 — Responder cannot return full length data flow shows the high-level request-response message flow when

the Responder cannot return the entire data requested by the Requester in the first response.

392 Figure 9 — Responder cannot return full length data flow

393

ResponderRequester

GET CERTIFICATE(0, 0x1000)

CERTIFICATE (0x800, 0x200)

GET_CERTIFICATE (0x800, 0x200)

CertificateLength = 0xA00
PortionLength = 0x800

RemainderLength = 0x200

CERTIFICATE (0x200, 0)
PortionLength = 0x200
RemainderLength = 0

Responder Buffer Size
 = 0x800

Requests remaining portion,
Offset 0x800, Length 0x0200

Requester Buffer Size
 = 0x1000

394 Endpoints that support the large SPDM message transfer mechanism message set shall use the large SPDM message

transfer mechanism messages to manage the transfer of the requested certificate chain when the CERTIFICATE

response is larger than either the DataTransferSize of the Requester or the transmit buffer of the Responder.

Specifically:

• If the size of the CERTIFICATE response is greater than DataTransferSize and less than or equal to the

MaxSPDMmsgSize of the Requester or if the response is greater than the transmit buffer of the Responder, then

the Responder shall reply with an ERROR message of ErrorCode=LargeResponse .

• If the Requester sets Offset to 0 and Length to 0xFFFF in the GET_CERTIFICATE request, the Responder

shall set PortionLength equal to the size of the complete certificate chain stored in the requested slot, shall set

RemainderLength to 0 , and shall store the contents of the complete certificate chain in CertChain in the

CERTIFICATE response. Then the Responder shall fragment and return this response message in chunks, as per

the clauses presented in CHUNK_GET request and CHUNK_RESPONSE response message.

395 By setting SlotSizeRequested=1b in the request attributes, the Requester can query the size of the Responder’s

Security Protocol and Data Model (SPDM) Specification DSP0274

100 Published Version 1.3.0

certificate slot. The Requester should query the slot size before any action that uses slot storage, because the

Responder might change the value of the slot size based on other actions.

396 10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE
messages

397 If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE

request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports

mutual authentication, the requirements placed on the Requester in the GET_CERTIFICATE request and CERTIFICATE

response messages clauses shall also apply to the Responder. The preceding two sentences essentially describe a role

reversal.

398 10.8.2 SPDM certificate requirements and recommendations

399 This specification defines a number of X.509 v3 required and optional fields for compliant SPDM certificates. SPDM

certificates also adhere to the requirements as RFC 5280 defines. Unless stated otherwise, the following clauses apply

to those certificates in the chain that are specific to a device instance, that is, the leaf certificate in the DeviceCert

model or the DeviceCert , all intermediate AliasCert s, and the leaf certificate in the AliasCert model. See

identity provisioning.

400 In addition, the Subject Alternative Name certificate extension otherName field is recommended for providing

device information. See the Definition of otherName using the DMTF OID.

401 In Table 42 — Field requirements, the requirements columns define the requirement for the corresponding certificate

models. In these columns, the corresponding field with a value of “Mandatory” shall be present in the leaf certificate.

Likewise, the corresponding field with a value of “Optional” can be present or absent in the leaf certificate. As a note,

this table reflects the minimum requirements from the perspective of this specification. The vendor, users of the

SPDM endpoint, and other standards such as RFC 5280 can place additional or more-restrictive requirements.

402 Table 42 — Field requirements

Field DeviceCert / AliasCert Requirements
GenericCert

Requirements
Description

Basic Constraints Mandatory Mandatory

If present in

the leaf

certificate,

the CA value

shall be

FALSE . The

CA value

shall be

present and

set to TRUE

for

intermediate

and root

certificates.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 101

Field DeviceCert / AliasCert Requirements
GenericCert

Requirements
Description

Version Mandatory Mandatory

If present,

the version

of the

encoded

certificate

shall be

present and

shall be 3

(encoded as

value 2).

Serial Number Mandatory Mandatory

If present,

the CA-

assigned

serial

number shall

be present

with a

positive

integer

value.

Signature Algorithm Mandatory Optional

If present,

the

Signature

algorithm

that the CA

uses shall be

present.

Issuer Mandatory Optional

If present,

the CA

distinguished

name shall

be specified.

Subject Name Mandatory Optional

If present,

the subject

name shall

be present

and shall

represent the

distinguished

name

associated

with the leaf

certificate.

Security Protocol and Data Model (SPDM) Specification DSP0274

102 Published Version 1.3.0

Field DeviceCert / AliasCert Requirements
GenericCert

Requirements
Description

Validity Mandatory Optional

If present,

see

Certificate

validity

details, and

RFC 5280.

Subject Public Key Info Mandatory Mandatory

If present,

the device

public key

and the

algorithm

shall be

present.

Key Usage Mandatory Optional

If present,

the key

usage bit for

digital

signature

shall be set.

403 Table 43 — Optional fields

Field Description

Subject Alternative Name otherName

In some cases, it might be desirable to provide device-specific information

as part of the leaf certificate. DMTF chose the otherName field with a

specific format to represent the device information. The use of the

otherName field also provides flexibility for other alliances to provide

device-specific information as part of the leaf certificate. See the

Definition of otherName using the DMTF OID. Note that otherName field

formats specified by other standards are permissible in the certificate.

Extended Key Usage (EKU)

If present in a certificate, the Extended Key Usage extension indicates one

or more purposes for which the public key should be used. See Extended

Key Usage authentication OIDs.

SPDM Non-critical Certificate Extension

If present in a certificate, the SPDM Non-critical Certificate Extension

indicates one or more non-critical OIDs associated with the certificate. See

SPDM Non-Critical Certificate Extension OID.

404 Certificate validity details

405 As per RFC 5280, the certificate validity period is the time interval during which the CA warrants that it will maintain

information about the status of the certificate. The field is represented as an ASN.1-encoded SEQUENCE of two dates:

the date when the certificate validity period begins (notBefore) and the date when the certificate validity period

ends (notAfter).

406 For a leaf certificate whose chain is stored in Slot 0, the notBefore date should be the date of certificate creation,

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 103

and the notAfter date should be set to GeneralizedTime value 99991231235959Z . Immutable leaf certificates’

notAfter dates should be set appropriately to ensure that the leaf certificate will not expire during the practical

lifetime of the device.

407 For leaf certificates whose chains are stored in Slots 1-7, the notBefore date should be the date of certificate

creation. The notAfter date can be set according to end user requirements, including values that will result in

certificate expiration and thus require certificate renewal and device recertification during the lifetime of the device.

408 Definition of otherName using the DMTF OID shows the definition of otherName using the DMTF OID:

409 Definition of otherName using the DMTF OID

id-DMTF OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 }

id-DMTF-spdm OBJECT IDENTIFIER ::= { id-DMTF 274 }

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid
value [0] EXPLICIT ub-DMTF-device-info

}
-- OID for DMTF device info --
id-DMTF-device-info OBJECT IDENTIFIER ::= { 1 3 6 1 4 1 412 274 1 }
DMTF-oid ::= OBJECT IDENTIFIER (id-DMTF-device-info)

-- All printable characters except ":" --
DMTF-device-string ::= UTF8String (ALL EXCEPT ":")

-- Device Manufacturer --
DMTF-manufacturer ::= DMTF-device-string

-- Device Product --
DMTF-product ::= DMTF-device-string

-- Device Serial Number --
DMTF-serialNumber ::= DMTF-device-string

-- Device information string --
ub-DMTF-device-info ::= UTF8String({DMTF-manufacturer":"DMTF-

product":"DMTF-serialNumber})

410 The Leaf certificate example shows an example leaf certificate.

411 10.8.2.1 Extended Key Usage authentication OIDs

412 The following Extended Key Usage purposes are defined for SPDM certificate authentication:

• SPDM Responder Authentication { id-DMTF-spdm 3 }: The presence of this OID shall indicate that a leaf

certificate can be used for Responder authentication purposes.

• SPDM Requester Authentication { id-DMTF-spdm 4 }: The presence of this OID shall indicate that a leaf certificate

Security Protocol and Data Model (SPDM) Specification DSP0274

104 Published Version 1.3.0

can be used for Requester authentication purposes.

413 The presence of both OIDs shall indicate that the leaf certificate can be used for both Requester and Responder

authentication purposes. If present, these OIDs shall appear in the leaf certificate.

414 A Responder device that supports mutual authentication should include the SPDM Responder Authentication OID

in the Extended Key Usage field of its leaf certificate. A Requester device that supports mutual authentication should

include the SPDM Requester Authentication OID in the Extended Key Usage field of its leaf certificate. Note that

alternate OIDs specified by other standards are permissible in the certificate.

415 10.8.2.2 SPDM Non-Critical Certificate Extension OID

416 The id-DMTF-spdm-extension OID is a container of non-critical SPDM OIDs and their corresponding values. The OID

value for id-DMTF-spdm-extension shall be { id-DMTF-spdm 6 }. Furthermore, this OID is a Certificate Extension as

defined in RFC 5280, and its encoding shall follow the Extension syntax also defined in RFC 5280. The Extension

syntax defines three parameters: extnID , critical , and extnValue . The values of these three parameters for id-

DMTF-spdm-extension shall be the DER encoding of the ASN.1 value as the DMTF SPDM Extension Format defines.

417 Definition of DMTF SPDM Extension Format

id-DMTF-spdm-extension Extension ::=
{

extnID { id-DMTF-spdm 6 }
critical FALSE
extnValue id-spdm-cert-oids

}

id-spdm-cert-oids ::= SEQUENCE SIZE (1..MAX) OF id-spdm-cert-oid

id-spdm-cert-oid ::= SEQUENCE
{

spdmOID OBJECT IDENTIFIER
spdmOIDdefinition OCTET STRING OPTIONAL

}

418 The spdmOID field shall contain an OID defined in this specification. Only designated OIDs, permitted by this

specification, shall be allowed in spdmOID . The spdmOIDdefinition field shall be a DER encoding of the ASN.1

value of the definition indicated by spdmOID .

419 These clauses describe the definitions and formats of the SPDM OIDs contained in id-DMTF-spdm-extension . If

present, these OIDs shall only be contained in id-DMTF-spdm-extension .

420 10.8.2.2.1 Hardware identity OID

421 The id-DMTF-hardware-identity OID is defined to help identify the hardware identity certificate in a chain

regardless of the certificate chain model used (DeviceCert or AliasCert). If the AliasCert model is used, this

OID shall not be present in any alias certificates in the chain. The id-DMTF-hardware-identity OID shall have a

format as Hardware identity OID format defines.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 105

422 Hardware identity OID format

id-DMTF-hardware-identity id-spdm-cert-oid :: = {
spdmOID { id-DMTF-spdm 2 }
spdmOIDdefinition ABSENT

}

423 10.8.2.2.2 Mutable certificate OID

424 Mutable certificates may include the id-DMTF-mutable-certificate OID to identify them as mutable. If used, this

OID shall be present in all mutable certificates in the chain. The id-DMTF-mutable-certificate OID shall have a

format as Mutable certificate OID format defines.

425 Mutable certificate OID format

id-DMTF-mutable-certificate id-spdm-cert-oid ::= {
spdmOID { id-DMTF-spdm 5 }
spdmOIDdefinition ABSENT

}

426 10.9 CHALLENGE request and CHALLENGE_AUTH response messages

427 This request message shall authenticate a Responder through the challenge-response protocol.

428 Table 44 — CHALLENGE request message format shows the CHALLENGE request message format.

429 Table 45 — Successful CHALLENGE_AUTH response message format shows the CHALLENGE_AUTH response message

format.

430 Table 46 — CHALLENGE_AUTH response attribute shows the CHALLENGE_AUTH response attribute.

431 Table 44 — CHALLENGE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x83 = CHALLENGE . See Table 4 — SPDM

request codes.

2 Param1 1

Shall be the SlotID . Slot number of the Responder

certificate chain that shall be used for authentication.

If the public key of the Responder was provisioned to

the Requester in a trusted environment, the value in

this field shall be 0xFF ; otherwise it shall be

between 0 and 7 inclusive.

Security Protocol and Data Model (SPDM) Specification DSP0274

106 Published Version 1.3.0

Byte offset Field Size (bytes) Description

3 Param2 1

Shall be the type of measurement summary hash

requested:

• 0x0 . No measurement summary hash

requested.

• 0x1 . TCB measurements only.

• 0xFF . All measurements.

• All other values reserved.

If a Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response), the

Requester shall set this value to 0x0 .

4 Nonce 32 The Requester should choose a random value.

36 Context 8

The Requester can include application-specific

information in Context. The Requester should fill this

field with zeros if it has no context to provide.

432 Table 45 — Successful CHALLENGE_AUTH response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x03 = CHALLENGE_AUTH . See Table 5 —

SPDM response codes.

2 Param1 1
Shall be the Response Attribute Field. See Table 46 —

CHALLENGE_AUTH response attribute.

3 Param2 1

Shall be the slot mask. The bit in position K of this

byte shall be set to 1b if and only if slot number K

contains a certificate chain for the protocol version in

the SPDMVersion field. (Bit 0 is the least significant

bit of the byte.) This field is reserved if the public key

of the Responder was provisioned to the Requester

in a trusted environment.

4 CertChainHash H

Shall be either the hash of the certificate chain as

Table 33 — Certificate chain format describes or, if

the public key of the Responder was provisioned to

the Requester in a trusted environment, the public

key used for authentication. The Requester can use

this value to check that the certificate chain or public

key matches the one requested.

This field shall be in hash byte order.

4 + H Nonce 32 Shall be the Responder-selected random value.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 107

Byte offset Field Size (bytes) Description

36 + H MeasurementSummaryHash MSHLength = H or 0

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or if

the requested Param2 = 0x0 , this field shall be

absent.

If the requested Param2 = 0x1 , this field shall be the

combined hash of measurements of all measurable

components considered to be in the TCB required to

generate this response, computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...)) , where

MeasurementBlock[x] denotes a measurement of

an element in the TCB and hash is the negotiated

base hashing algorithm. Measurements are

concatenated in ascending order based on their

measurement index as Table 53 — Measurement

block format describes.

If the requested Param2 = 0x1 and if there are no

measurable components in the TCB required to

generate this response, this field shall be 0 .

If the requested Param2 = 0xFF , this field shall be

computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported

measurement blocks available in the measurement

index range 0x01 - 0xFE , concatenated in

ascending index order. Indices with no associated

measurements shall not be included in the hash

calculation. See the Measurement index assignments

clause.

If the Responder supports both raw bit stream and

digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

36 + H + MSHLength OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

38 + H + MSHLength OpaqueData OpaqueDataLength

The Responder can include Responder-specific

information and/or information that its transport

defines. If present, this field shall conform to the

selected opaque data format in

OtherParamsSelection .

Security Protocol and Data Model (SPDM) Specification DSP0274

108 Published Version 1.3.0

Byte offset Field Size (bytes) Description

38 + H + MSHLength

+ OpaqueDataLength
RequesterContext 8

This field shall be identical to the Context field of

the corresponding request message.

46 + H + MSHLength

+ OpaqueDataLength
Signature SigLen

Shall be the Responder’s signature. SigLen is the

size of the asymmetric-signing algorithm output that

the Responder selected in the last ALGORITHMS

response message to the Requester. The

CHALLENGE_AUTH signature generation and

CHALLENGE_AUTH signature verification clauses,

respectively, define the signature generation and

verification processes.

433 Table 46 — CHALLENGE_AUTH response attribute

Bit offset Field Description

[3:0] SlotID

Shall contain the SlotID in the Param1 field of the corresponding CHALLENGE request.

If the Responder’s public key was provisioned to the Requester previously, this field shall

be 0xF . The Requester can use this value to check that the certificate matched what was

requested.

[6:4] Reserved Reserved.

7
DEPRECATED:

BasicMutAuthReq

DEPRECATED: When mutual authentication is supported by both Responder and

Requester, the Responder shall set this bit to indicate that the Responder wants to

authenticate the identity of the Requester using the basic mutual authentication flow. The

Requester shall not set this bit in a basic mutual authentication flow. See Basic mutual

authentication flow. If mutual authentication is not supported, this bit shall be zero.

434 10.9.1 CHALLENGE_AUTH signature generation

435 To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

1.436 The Responder shall construct M1, and the Requester shall construct M2 message transcripts. For

Responder authentication, see the request ordering and message transcript computation rules for M1/

M2 table. For Requester authentication in the mutual authentication scenario, see the Mutual

authentication message transcript clause.

◦437 If a response contains ErrorCode=ResponseNotReady :

438 Concatenation function is performed on the contents of both the original request and the

successful response received during RESPOND_IF_READY . Neither the error response

(ResponseNotReady) nor the RESPOND_IF_READY request shall be included in M1/M2.

◦439 If a response contains an ErrorCode other than ResponseNotReady :

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 109

440 No concatenation function is performed on the contents of both the original request and

response.

2.441 The Responder shall generate:

Signature = SPDMsign(PrivKey, M1, "challenge_auth signing");

442 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key associated with the leaf certificate of the Responder in

slot=Param1 of the CHALLENGE request message. If the public key of the Responder was

provisioned to the Requester, then PrivKey shall be the associated private key.

443 10.9.2 CHALLENGE_AUTH signature verification

444 Any modifications to the previous request messages or to the corresponding response messages by an active person-

in-the-middle adversary or media error will result in M2 != M1 and thus lead to verification failure.

445 To complete the CHALLENGE_AUTH signature verification process, the Requester shall complete this step:

1.446 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, M2, "challenge_auth
signing");

447 where:

◦ SPDMsignatureVerify is described in Signature verification. If result is success , the

verification was successful.

◦ PubKey shall be the public key associated with the leaf certificate of the Responder with

slot=Param1 of the CHALLENGE request message. If the public key of the Responder was

provisioned to the Requester, PubKey is the provisioned public key.

448 Figure 10 — Responder authentication: Runtime challenge-response flow shows the high-level request-response

message flow and sequence for the authentication of the Responder for runtime challenge-response.

449 Figure 10 — Responder authentication: Runtime challenge-response flow

Security Protocol and Data Model (SPDM) Specification DSP0274

110 Published Version 1.3.0

450

Nonce

ResponderRequester

1. The Requester sends a
CHALLENGE request message.

2. The Requester verifies
Responder's signature.

1. The Responder computes signature using
the Nonce and generates a
CHALLENGE_AUTH response message

CHALLENGE

Cert Chain Hash, Nonce,
Measurement SummaryHash,

OpaqueData, Signature

CHALLENGE_AUTH

451 10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

452 This clause applies to Responder-only authentication.

453 Table 47 — Request ordering and message transcript computation rules for M1/M2 defines how the message

transcript is constructed for M1 and M2, which are used in signature calculation and verification in the

CHALLENGE_AUTH response message.

454 The possible request orderings leading up to and including CHALLENGE shall be:

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , GET_CERTIFICATE , CHALLENGE

(A1, B1, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_DIGESTS , CHALLENGE (A1, B3, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , GET_CERTIFICATE , CHALLENGE (A1, B4, C1)

• GET_VERSION , GET_CAPABILITIES , NEGOTIATE_ALGORITHMS , CHALLENGE (A1, B2, C1)

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (A2, B1, C1)

• GET_DIGESTS , CHALLENGE (A2, B3, C1)

• GET_CERTIFICATE , CHALLENGE (A2, B4, C1)

• CHALLENGE (A2, B2, C1)

455 Immediately after Reset, M1 and M2 shall be null .

456 After the Requester receives a successful CHALLENGE_AUTH response or the Requester sends a GET_MEASUREMENTS

request, M1 and M2 shall be set to null . If a Negotiated State has been established, this will remain intact.

457 If a Requester sends a GET_VERSION message, the Requester and Responder shall set M1 and M2 to null , clear all

Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

458 For additional rules, see general ordering rules.

459 Table 47 — Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate(A, B, C)

Initial value N/A M1/M2=null

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 111

Requests Implementation requirements M1/M2=Concatenate(A, B, C)

GET_VERSION issued

Requester issues this request to allow the

Requester and Responder to determine an agreed-

upon Negotiated State . Also issued when the

Requester detects an out-of-sync condition, or

when the signature verification fails, or when the

Responder provides an unexpected error response.

M1/M2=null

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS issued

Requester shall always issue these requests in this

order.
A1= VCA

GET_VERSION ,

GET_CAPABILITIES ,

NEGOTIATE_ALGORITHMS skipped

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped these requests if the Responder

had previously indicated CACHE_CAP=1 . In this

case, the Requester and Responder shall proceed

with the previously determined Negotiated

State . These requests and responses are still

required for M1/M2 construction.

A2= VCA

GET_DIGESTS , GET_CERTIFICATE

issued

After NEGOTIATE_ALGORITHMS request completion

or after M1/M2 were re-initialized to null due to

a Reset or a completed CHALLENGE_AUTH

response, Requester issued these requests in this

order if it had skipped the previous three requests.

B1=Concatenate(GET_DIGESTS, DIGESTS,

GET_CERTIFICATE, CERTIFICATE)

GET_DIGESTS , GET_CERTIFICATE

skipped

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped these requests because it could

use previously cached certificate information.

B2=null

GET_DIGESTS issued,

GET_CERTIFICATE skipped

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped the GET_CERTIFICATE request

because it could use the previously cached

CERTIFICATE response.

B3=Concatenate(GET_DIGESTS, DIGESTS)

GET_DIGESTS skipped,

GET_CERTIFICATE issued

After M1/M2 were re-initialized to null due to a

Reset or a completed CHALLENGE_AUTH response,

Requester skipped the GET_DIGESTS request

because it could use the previously cached

CERTIFICATE response to make a byte-by-byte

comparison.

B4=Concatenate(GET_CERTIFICATE,

CERTIFICATE)

CHALLENGE issued

Requester issued this request to complete security

verification of current requests and responses. The

Signature bytes of CHALLENGE_AUTH shall not be

included in C.

C1=Concatenate(CHALLENGE,

CHALLENGE_AUTH(excluding Signature)) . See

Table 44 — CHALLENGE request message format.

CHALLENGE completion Completion of CHALLENGE sets M1/M2 to null . M1/M2=null

Security Protocol and Data Model (SPDM) Specification DSP0274

112 Published Version 1.3.0

Requests Implementation requirements M1/M2=Concatenate(A, B, C)

Other issued

If the Requester issued commands other than

GET_DIGESTS , GET_CERTIFICATE , and

CHALLENGE and skipped CHALLENGE completion,

then M1/M2 are set to null .

M1/M2=null

460 The Basic mutual authentication flow is DEPRECATED. Implementations should use session-based mutual

authentication as Figure 21 — Session-based mutual authentication example shows or optimized session-based

mutual authentication as Figure 22 — Optimized session-based mutual authentication example shows.

461 DEPRECATED

462 10.9.3 Basic mutual authentication

463 Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.

Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester

in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder. The

preceding two sentences essentially describe a role reversal, unless otherwise stated.

464 The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE_AUTH with

BasicMutAuthReq set. This flow shall utilize message encapsulation as described in the

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages clauses to retrieve request

messages. The basic mutual authentication flow shall end when the encapsulated request flow ends.

465 This flow shall only allow GET_DIGESTS , GET_CERTIFICATE , CHALLENGE , and their corresponding responses to be

encapsulated. If other requests are encapsulated, the Requester can send an ERROR message of

ErrorCode=UnexpectedRequest and shall terminate the flow.

466 Figure 11 — Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

467 Figure 11 — Mutual authentication basic flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 113

468

BASIC
MUTUAL
AUTHENTICATION
FLOW

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

CHALLENGE

CHALLENGE_AUTH

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

ENCAPSULATED_RESPONSE_ACK (CHALLENGE)

DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH)

BasicMutAuthReq is
set in the response.

Both Requester
and Responder
set MUT_AUTH_CAP
bits.

469 10.9.3.1 Mutual authentication message transcript

470 This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

471 Table 39 — Basic mutual authentication message transcript defines how the message transcript is constructed for M1

Security Protocol and Data Model (SPDM) Specification DSP0274

114 Published Version 1.3.0

and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when the

Responder authenticates the Requester.

472 The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in

parenthesis):

• GET_DIGESTS , GET_CERTIFICATE , CHALLENGE (BMAF0)

• GET_DIGESTS , CHALLENGE (BMAF1)

• GET_CERTIFICATE , CHALLENGE (BMAF2)

• CHALLENGE (BMAF3)

473 When the basic mutual authentication flow starts, that is, when GET_ENCAPSULATED_REQUEST is issued, M1 and M2

shall be set to null .

474 Table 48 — Basic mutual authentication message transcript

Flow ID M1/M2

BMAF0
Concatenate(VCA , GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH

without the signature)

BMAF1 Concatenate(VCA , GET_DIGESTS , DIGESTS , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF2 Concatenate(VCA , GET_CERTIFICATE , CERTIFICATE , CHALLENGE , CHALLENGE_AUTH without the signature)

BMAF3 Concatenate(VCA , CHALLENGE , CHALLENGE_AUTH without the signature)

475 For GET_CERTIFICATE and CERTIFICATE , these messages might need to be issued multiple times to retrieve the

entire certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they

are issued.

476 DEPRECATED

477 10.10 Firmware and other measurements

478 This clause describes request messages and response messages associated with endpoint measurement. All request

messages in this clause shall be supported by an endpoint that returns MEAS_CAP=01b or MEAS_CAP=10b in its

CAPABILITIES response.

479 Figure 12 — Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint

measurement. If the MEAS_FRESH_CAP bit in the CAPABILITIES response message returns 0 and if the Requester

requires fresh measurements, the Responder shall be Reset before GET_MEASUREMENTS is resent. The mechanisms

employed for Resetting the Responder are outside the scope of this specification.

480 Figure 12 — Measurement retrieval flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 115

481

Nonce

ResponderRequester

1. The Requester sends a
GET_MEASUREMENTS request
message.

2. Verify signature and verify
measurements match expected
values.

1. The Responder sends a
MEASUREMENTS response message.

GET_MEASUREMENTS

Number of
measurements,
length, Nonce,
measurement

blocks,
signature.

MEASUREMENTS

482 10.11 GET_MEASUREMENTS request and MEASUREMENTS response
messages

483 Measurements in SPDM are represented in the form of measurement blocks. A measurement block defines the

measurement block structure. A device can present measurements of different elements of its internal state, as well as

metadata to assist in the attestation of its state via measurements, as separate blocks. The GET_MEASUREMENTS

request message enables a Requester to query a Responder for the number of individual measurement blocks it

supports and request either specific blocks or all available blocks. The MEASUREMENTS response message returns the

requested blocks. A collection of one or more measurement blocks is called a measurement record.

484 Because issuing GET_MEASUREMENTS clears the M1/M2 message transcript, it is recommended that a Requester does

not send this message until it has received at least one successful CHALLENGE_AUTH response message from the

Responder. This ensures that the information in message pairs GET_DIGESTS / DIGESTS and

GET_CERTIFICATE / CERTIFICATE has been authenticated at least once.

485 Table 49 — GET_MEASUREMENTS request message format shows the GET_MEASUREMENTS request message format.

486 Table 50 — GET_MEASUREMENTS request attributes shows the GET_MEASUREMENTS request message attributes.

487 Table 52 — Successful MEASUREMENTS response message format shows the MEASUREMENTS response message

format. The measurement blocks in MeasurementRecord shall be sorted in ascending order by index.

488 Table 49 — GET_MEASUREMENTS request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE0 = GET_MEASUREMENTS . See Table 4 —

SPDM request codes.

2 Param1 1
Shall be Request attributes. See Table 50 —

GET_MEASUREMENTS request attributes.

Security Protocol and Data Model (SPDM) Specification DSP0274

116 Published Version 1.3.0

Byte offset Field Size (bytes) Description

3 Param2 1

Shall be a Measurement operation.

• A value of 0x0 shall query the Responder for

the total number of measurement blocks

available.

• A value of 0xFF shall request all measurement

blocks.

• A value between 0x1 and 0xFE , inclusive, shall

request the measurement block at the index

corresponding to that value.

4 Nonce NL = 32 or 0

The Requester should choose a random value. This

field is only present if Bit [0] of Param1 is 1 . See

Table 50 — GET_MEASUREMENTS request attributes.

4 + NL SlotIDParam 1

This field is only present if Bit [0] of Param1 is 1 .

• Bit [7:4]. Reserved.

• Bit [3:0]. Shall be the SlotID . Slot number of

the Responder certificate chain that shall be

used for authenticating the measurement(s). If

the Responder’s public key was provisioned to

the Requester previously, this field shall be 0xF .

See Table 50 — GET_MEASUREMENTS request

attributes.

5 + NL Context 8

The Requester can include application-specific

information in Context. The Requester should fill this

field with zeros if it has no context to provide.

489 Table 50 — GET_MEASUREMENTS request attributes

Bit offset Field Description

0 SignatureRequested

If the Responder can generate a signature (MEAS_CAP is 10b in

the CAPABILITIES response and either BaseAsymSel or

ExtAsymSelCount is non-zero) a value of 1 indicates that a

signature on the measurement log is required. The Nonce field

shall be present in the request when this bit is set. The Responder

shall generate and send a signature in the response.

A value of 0 indicates that the Requester does not require a

signature. The Responder shall not generate a signature in the

response. The Nonce field shall be absent in the request.

For Responders that cannot generate a signature (MEAS_CAP is

01b in the CAPABILITIES response or both BaseAsymSel and

ExtAsymSelCount are zero), the Requester shall always use 0 .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 117

Bit offset Field Description

1 RawBitStreamRequested

This bit is applicable only if the measurement specification

supports only two representations, raw bit stream and digest, such

as when MeasurementSpecification of the Measurement block

format is set to DMTF , as Table 53 — Measurement block format

describes. If the measurement specification supports other

representations, this bit is ignored.

If the Responder can return either a raw bit stream or a hash for

the requested measurement, value 1 shall request the Responder

to return the raw bit stream version of such measurement. If the

Responder cannot return a raw bit stream for the measurement

(for example, if the raw bit stream contains confidential data that

the Responder cannot expose), it shall return the corresponding

hash. Another scenario in which the Responder cannot return a raw

bit stream is when the MEASUREMENTS message is greater than the

MaxSPDMmsgSize of the Requester. In cases where the Responder

cannot return a raw bit stream, the Requester can simply request a

digest.

Value 0 shall request the Responder to return a hash version of

the measurement. If the Responder cannot return a hash of the

measurement (for example, if the measurement represents a data

structure where a digest is not applicable), it shall return the

corresponding raw bit stream.

2 NewMeasurementRequested

If the Responder has pending updates to measurement blocks that

have not yet taken effect, then value 1 shall be used to request

the Responder to return new values of the measurement blocks at

the indices requested in Param2 .

Value 0 shall be used to request the Responder to return the

current values of the measurement blocks at the requested indices.

If the Responder has no pending updates to the measurement

blocks at the requested indices, then the Responder shall return

the current values of the measurement blocks, regardless of the

value of NewMeasurementRequested .

[7:3] Reserved Reserved.

490 Measurement index assignments

491 This specification imposes no requirements on the scope, type, or format of measurement a device associates with a

particular measurement index in the range 0x1 to 0xEF . As a result, Responders can use the same index to report

different types of measurements based on their implementation. If available, a Requester can use a measurement

manifest to discover information about the specific measurement types available from a particular Responder and the

indices to which they correspond. When measurements follow the DMTF measurement specification format that Table

54 — DMTF measurement specification format describes, a measurement with a

DMTFSpecMeasurementValueType[6:0] equal to either 0x04 or 0x0A is the measurement manifest.

Security Protocol and Data Model (SPDM) Specification DSP0274

118 Published Version 1.3.0

492 To aid interoperability, this specification reserves indices 0xF0 to 0xFE inclusive for specific purposes. If a

Responder supports a type of measurement that Table 51 — Measurement index assigned range defines, it shall

always assign to it the corresponding index value. A Responder shall not assign indices 0xF0 to 0xFE to

measurements types other than those that Table 51 — Measurement index assigned range defines.

493 Table 51 — Measurement index assigned range

Measurement Index Measurement type Description

0xF0 - 0xFC Reserved Reserved.

0xFD Measurement manifest

Shall be the metadata on available measurements, as type

DMTFSpecMeasurementValueType[6:0] = 0x04 or

DMTFSpecMeasurementValueType[6:0] = 0x0A defines.

0xFE Device mode
Shall be structured device mode information, as type

DMTFSpecMeasurementValueType[6:0] = 0x05 defines.

494 Table 52 — Successful MEASUREMENTS response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x60 = MEASUREMENTS . See Table 5 —

SPDM response codes.

2 Param1 1

When Param2 in the requested measurement

operation is 0 , this parameter shall return the total

number of measurement indices on the device.

Otherwise, this field is reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 119

Byte offset Field Size (bytes) Description

3 Param2 1

Bit [7:6]. Reserved.

Bit [5:4]. Content changed. If this message contains

a signature, this field shall indicate if one or more

MeasurementRecord fields of previous

MEASUREMENTS responses in the same

measurement log have changed.

00b : The Responder does not detect changes of

MeasurementRecord fields of previous

MEASUREMENTS responses in the same

measurement log, or this message does not contain

a signature.

01b : The Responder detected that one or more

MeasurementRecord fields of previous

MEASUREMENTS responses in the measurement log

being signed have changed. The Requester might

consider issuing GET_MEASUREMENTS again to

acquire latest measurements.

10b : The Responder detected no change in

MeasurementRecord fields of previous

MEASUREMENTS responses in the measurement log

being signed.

11b : Reserved.

Bit [3:0]. Shall be the SlotID . If this message

contains a signature, this field shall contain the slot

number of the certificate chain specified in the

GET_MEASUREMENTS request, or 0xF if the

Responder’s public key was provisioned to the

Requester previously. If this message does not

contain a signature, this field shall be set to 0x0 .

4 NumberOfBlocks 1

Shall be the number of measurement blocks in the

MeasurementRecord .

If Param2 in the requested measurement operation

is 0 , this field shall be 0 .

5 MeasurementRecordLength 3

Shall be the size of the MeasurementRecord in

bytes.

If Param2 in the requested measurement operation

is 0 , this field shall be 0 .

8 MeasurementRecord
L =

MeasurementRecordLength

Shall be the concatenation of all measurement

blocks that correspond to the requested

Measurement operation. Measurement block

defines the measurement block structure.

8 + L Nonce 32
The Responder should choose a random value. This

field shall always be present.

Security Protocol and Data Model (SPDM) Specification DSP0274

120 Published Version 1.3.0

Byte offset Field Size (bytes) Description

40 + L OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

42 + L OpaqueData OpaqueDataLength

The Responder can include Responder-specific

information and/or information that its transport

defines. If present, this field shall conform to the

selected opaque data format in

OtherParamsSelection .

42 + L +

OpaqueDataLength
RequesterContext 8

This field shall be identical to the Context field of

the corresponding request message.

50 + L +

OpaqueDataLength
Signature SigLen

Shall be Signature of the measurement log,

excluding the Signature field and signed using the

private key associated with the leaf certificate. The

Responder shall use the asymmetric signing

algorithm it selected during the last ALGORITHMS

response message to the Requester, and SigLen is

the size of that asymmetric signing algorithm

output. This field is conditional and is only present

in the MEASUREMENTS response corresponding to a

GET_MEASUREMENTS request with Param1[0] set to

1 .

495 10.11.1 Measurement block

496 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,

offsets 0 through 3, followed by the measurement data that corresponds to a particular measurement index and

measurement type.

497 Table 53 — Measurement block format shows the format for a measurement block:

498 Table 53 — Measurement block format

Byte offset Field Size (bytes) Description

0 Index 1

Shall be the index. When Param2 of the

GET_MEASUREMENTS request is between 0x1 and

0xFE , inclusive, this field shall match the request.

Otherwise, this field shall represent the index of the

measurement block, where the index starts at 1 and

ends at the index of the last measurement block.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 121

Byte offset Field Size (bytes) Description

1 MeasurementSpecification 1

Bit mask. The value shall indicate the measurement

specification that the requested Measurement

follows and shall match the selected measurement

specification (MeasurementSpecificationSel) in

the ALGORITHMS message. See Table 21 —

Successful ALGORITHMS response message format.

Only one bit shall be set.

The Measurement specification field format table

defines the format for this field.

2 MeasurementSize 2 Shall be the size of Measurement , in bytes.

4 Measurement MeasurementSize

Shall be the measurement value whose format the

selected measurement specification

(MeasurementSpecificationSel) defines. If

DMTFmeasSpec is selected, the format of this field

shall be as Table 54 — DMTF measurement

specification format defines.

499 10.11.1.1 DMTF specification for the Measurement field of a measurement block

500 The present clause is the specification for the format of the Measurement field in a measurement block when the

MeasurementSpecification field’s Bit 0 (DMTF) is set. Table 54 — DMTF measurement specification format specifies

this format.

501 10.11.1.1.1 Measurement manifest

502 A measurement manifest refers to a data structure that describes the contents of other indices or itself contains

measurements. For instance, a manifest may describe which indices describe the different firmware modules’

measurements. When the Table 54 — DMTF measurement specification format is in use, this specification defines

multiple overarching manifest formats, as described in the DMTFSpecMeasurementValueType values table.

503 When DMTFSpecMeasurementValueType[6:0]=0x04 , the measurement manifest type is a freeform manifest. When

read, the manifest data is placed in the Measurement field of the Table 53 — Measurement block format. The format

of a freeform manifest is implementation specific and outside the scope of this specification.

504 When DMTFSpecMeasurementValueType[6:0]=0x0A , the measurement manifest type is a structured measurement

manifest. The structured manifest starts with an SVH header as Table 56 — Manifest measurement block format

describes. The SVH header is used to indicate the standards body or vendor that defines the manifest format. The

format of the Manifest data in a structured measurement manifest is outside the scope of this specification.

505 10.11.1.1.2 Hash-extend measurements

506 A device may support reporting of measurements through an “extend” scheme, which works as follows:

Security Protocol and Data Model (SPDM) Specification DSP0274

122 Published Version 1.3.0

initialize HEM = MH bytes of 0s
for each extend operation, perform HEM = hash(Concatenate(HEM, DataToExtend)) for all data
elements to extend

507 An example of such a scheme is the Platform Configuration Register “extend” function in Trusted Platform Modules.

The hash() function is the measurement hash algorithm specified by the most recent ALGORITHMS response

message. The initial value of a hash-extend measurement (HEM) shall be MH bytes whose bits are all set to 0 , where

MH is the size of MeasurementHashAlgo in the most recent ALGORITHMS response message. The hash-extend

measurement is updated by “extending” the current value to include the next data to extend (DataToExtend). The

extend operation is calculating the digest of the current value concatenated with the data to extend. Then repeat the

extend operation for additional data to extend.

508 Hash-extend measurements are reported in a measurement block. A Responder that reports hash-extend

measurements shall set DMTFSpecMeasurementValueType[6:0] to 0x8 for the corresponding measurement index.

509 Table 54 — DMTF measurement specification format

Byte offset Field Size (bytes) Description

0 DMTFSpecMeasurementValueType 1

Composed of:

• Bit [7]. Shall indicate the representation in

DMTFSpecMeasurementValue .

• Bit [6:0]. Indicates what is being measured by

DMTFSpecMeasurementValue .

These values are set independently and are

interpreted as follows:

• [7]=0b . Digest.

• [7]=1b . Raw bit stream. The Responder should

ensure the raw bit stream does not contain

secrets.

• See DMTFSpecMeasurementValueType values

for defined values for

DMTFSpecMeasurementValueType[6:0].

1 DMTFSpecMeasurementValueSize 2

Shall be the size of DMTFSpecMeasurementValue , in

bytes.

When DMTFSpecMeasurementValueType[7]=0b , the

DMTFSpecMeasurementValueSize shall be derived

from the measurement hash algorithm that the

ALGORITHMS response message returns.

3 DMTFSpecMeasurementValue MS

Shall be the cryptographic hash or raw bit stream, as

indicated in DMTFSpecMeasurementValueType[7] .

For cryptographic hashes or digests, this field shall

be in hash byte order. The vendor defines the byte

order for raw bit streams.

510 Table 55 — DMTFSpecMeasurementValueType values

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 123

DMTFSpecMeasurementValueType[6:0] Description

0x0 Immutable ROM.

0x1 Mutable firmware.

0x2 Hardware configuration, such as straps.

0x3
Firmware configuration, such as configurable firmware

policy.

0x4

Freeform measurement manifest. When

DMTFSpecMeasurementValueType[6:0]=0x4 , the

Responder should support setting

DMTFSpecMeasurementValueType[7] to either 0b or 1b .

The format of this manifest is device specific.

0x5

Structured representation of debug and device mode. See

Device mode field of a measurement block. When

DMTFSpecMeasurementValueType[6:0]=0x5 ,

DMTFSpecMeasurementValueType[7] shall be set to 1b .

0x6

Mutable firmware’s version number. This specification does

not mandate a format for firmware version number. When

DMTFSpecMeasurementValueType[6:0]=0x7 ,

DMTFSpecMeasurementValueType[7] should be set to 1b .

0x7

Mutable firmware’s security version number, which should

be formatted as an 8-byte unsigned integer. When

DMTFSpecMeasurementValueType[6:0]=0x7 ,

DMTFSpecMeasurementValueType[7] should be set to 1b .

0x8

Hash-extend measurement. The measurement reported is

an HEM value as defined in Hash-extend measurements.

When DMTFSpecMeasurementValueType[6:0]=0x8 ,

DMTFSpecMeasurementValueType[7] shall be set to 0b .

0x9

Informational. The measurement is for the Requester’s

information only and does not carry sensitive security

attributes. For example, human-readable boot progress

information. When

DMTFSpecMeasurementValueType[6:0]=0x9 ,

DMTFSpecMeasurementValueType[7] shall be set to 1b .

0xA

Structured measurement manifest. When

DMTFSpecMeasurementValueType[6:0]=0xA , the

Responder shall support setting

DMTFSpecMeasurementValueType[7] to 1b , and should

support setting DMTFSpecMeasurementValueType[7] to

0b . The manifest shall follow the format described in

Manifest format for a measurement block.

All other values Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

124 Published Version 1.3.0

511 10.11.1.2 Device mode field of a measurement block

Byte offset Field Size (bytes) Description

0 OperationalModeCapabilities 4

Fields with bits set to 1 indicate support for reporting

the associated state in OperationalModeState .

• Bit [0]. Shall indicate support for reporting

device in manufacturing mode.

• Bit [1]. Shall indicate support for reporting

device in validation mode.

• Bit [2]. Shall indicate support for reporting

device in normal operational mode.

• Bit [3]. Shall indicate support for reporting

device in recovery mode.

• Bit [4]. Shall indicate support for reporting

device in Return Merchandise Authorization

(RMA) mode.

• Bit [5]. Shall indicate support for reporting

device in decommissioned mode.

• All other values reserved.

4 OperationalModeState 4

Fields with bits set to 1 indicate true for the reported

state.

• Bit [0]. Shall indicate the device is in

manufacturing mode.

• Bit [1]. Indicates the device is in validation mode.

• Bit [2]. Shall indicate the device is in normal

operational mode.

• Bit [3]. Shall indicate the device is in recovery

mode.

• Bit [4]. Shall indicate the device is in RMA mode.

• Bit [5]. Shall indicate the device is in

decommissioned mode.

• All other values reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 125

Byte offset Field Size (bytes) Description

8 DeviceModeCapabilities 4

Fields with bits set to 1 indicate support for reporting

the associated state in DeviceModeState .

• Bit [0]. Shall indicate support for reporting non-

invasive debug mode is active.

• Bit [1]. Shall indicate support for reporting

invasive debug mode is active.

• Bit [2]. Shall indicate support for reporting non-

invasive debug mode has been active this Reset

cycle.

• Bit [3]. Shall indicate support for reporting

invasive debug mode has been active this Reset

cycle.

• Bit [4]. Shall indicate support for reporting

invasive debug mode has been active on this

device at least once since exiting manufacturing

mode.

• All other values reserved.

12 DeviceModeState 4

Fields with bits set to 1 indicate true for the reported

state.

• Bit [0]. Shall indicate non-invasive debug mode

is active.

• Bit [1]. Shall indicate invasive debug mode is

active.

• Bit [2]. Shall indicate non-invasive debug mode

has been active this Reset cycle.

• Bit [3]. Shall indicate invasive debug mode has

been active this Reset cycle.

• Bit [4]. Shall indicate invasive debug mode has

been active on this device at least once since

exiting manufacturing mode.

• All other values reserved.

512 10.11.1.3 Manifest format for a measurement block

513 When DMTFSpecMeasurementValueType[6:0]=0xA , the response shall be either a manifest or the digest of a

manifest. If DMTFSpecMeasurementValueType[7]=0b , then the Measurement field of the Measurement block shall

contain a digest of the structure described in Table 56 — Manifest measurement block format. If

DMTFSpecMeasurementValueType[7]=1b , then the Measurement field of the Measurement block shall contain a

manifest in the format described in Table 56 — Manifest measurement block format.

514 Table 56 — Manifest measurement block format

Security Protocol and Data Model (SPDM) Specification DSP0274

126 Published Version 1.3.0

Byte offset Field Size (bytes) Description

0 SVH 2 + VendorIDLen

Shall be a standards body or vendor-defined header,

as described in Table 64 — Standards body or

vendor-defined header (SVH).

2 + VendorIDLen Manifest Variable

Shall contain the manifest data, as defined by the

registry, standards body, or vendor specified in the

ID and VendorID fields.

515 10.11.2 MEASUREMENTS signature generation

516 While a Requester can opt to require a signature in each of the request-response messages, it is advisable that the

cost of the signature generation process is minimized by amortizing it over multiple request-response messages

where applicable. In this scheme, the Requester issues a number of requests without requiring signatures followed by

a final request requiring a signature over the entire set of request-response messages exchanged. The steps to

complete this scheme are as follows:

1.517 The Responder shall construct measurement log L1 and the Requester shall construct measurement

log L2 over their observed messages:

L1/L2 = Concatenate(VCA, GET_MEASUREMENTS_REQUEST1, MEASUREMENTS_RESPONSE1, ...,
GET_MEASUREMENTS_REQUESTn-1, MEASUREMENTS_RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS_RESPONSEn)

518 where:

◦ Concatenate is the standard concatenation function.

◦ GET_MEASUREMENTS_REQUEST1 is the entire first GET_MEASUREMENTS request message under

consideration, where the Requester has not requested a signature on that specific

GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSE1 is the entire MEASUREMENTS response message without the signature

bytes that the Responder sent in response to GET_MEASUREMENTS_REQUEST1 .

◦ GET_MEASUREMENTS_REQUESTn-1 is the entire last consecutive GET_MEASUREMENTS request

message under consideration, where the Requester has not requested a signature on that specific

GET_MEASUREMENTS request.

◦ MEASUREMENTS_RESPONSEn-1 is the entire MEASUREMENTS response message without the

signature bytes that the Responder sent in response to GET_MEASUREMENTS_REQUESTn-1 .

◦ GET_MEASUREMENTS_REQUESTn is the entire first GET_MEASUREMENTS request message under

consideration, where the Requester has requested a signature on that specific GET_MEASUREMENTS

request. n is a number greater than or equal to 1 . When n equals 1 , the Requester has not

made any GET_MEASUREMENTS requests without signature prior to issuing a GET_MEASUREMENTS

request with signature.

◦ MEASUREMENTS_RESPONSEn is the entire MEASUREMENTS response message without the signature

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 127

bytes that the Responder sent in response to GET_MEASUREMENTS_REQUESTn .

519 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or

response re-initializes L1/L2 computation to null . The GET_MEASUREMENTS requests and

MEASUREMENTS responses before the L1/L2 re-initialization will not be covered by the signature in the

final MEASUREMENTS response. Consequently, it is recommended that the Requester not use the

measurements before verifying the signature.

520 An ERROR message of ErrorCode=ResponseNotReady shall not re-initialize L1/L2 - Requester and

Responder shall continue to construct L1/L2 with GET_MEASUREMENTS and MEASUREMENTS . An error

response with any error code other than ResponseNotReady shall re-initialize L1/L2 to null .

2.521 The Responder shall generate:

Signature = SPDMsign(PrivKey, L1, "measurements signing");

522 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key of the Responder associated with the leaf certificate stored in

SlotID of SlotIDParam in GET_MEASUREMENTS . If the public key of the Responder was

provisioned to the Requester, then PrivKey shall be the associated private key.

523 10.11.3 MEASUREMENTS signature verification

524 To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

1.525 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, L2, "measurements signing")

526 where:

◦ SPDMsignatureVerify is described in Signature verification. A successful verification is when

result is success .

◦ PubKey shall be the public key associated with the leaf certificate stored in SlotID of

SlotIDParam in GET_MEASUREMENTS . PubKey is extracted from the CERTIFICATE response. If

the public key of the Responder was provisioned to the Requester, then PubKey shall be the

provisioned public key.

527 Figure 13 — Measurement signature computation example shows an example of a typical Requester-Responder

protocol where the Requester issues 1 to n-1 GET_MEASUREMENTS requests without a signature, which is followed by a

single GET_MEASUREMENTS request n with a signature.

Security Protocol and Data Model (SPDM) Specification DSP0274

128 Published Version 1.3.0

528 Figure 13 — Measurement signature computation example

529

GET_MEASUREMENTS (n-1, NoSig)

MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS (n, Sig)

MEASUREMENTS (n, Sig)

Responder

GET_MEASUREMENTS (1, NoSig)

MEASUREMENTS (1, NoSig)
MEASUREMENTS
response 1 with no

signature

...

...

MEASUREMENTS
response n-1 with no

signature

GET_MEASUREMENTS
request 1 with no

signature request

GET_MEASUREMENTS
request n-1 with no

signature request

GET_MEASUREMENTS
request n with signature

request

MEASUREMENTS
response n with signature

computed as described

Requester

Verify Signature computed

as described

530 10.12 ERROR response message

531 For an SPDM operation that results in an error, the Responder should send an ERROR message to the Requester.

532 Table 57 — ERROR response message format shows the ERROR response format.

533 Table 58 — Error code and error data shows the detailed error code, error data, and extended error data.

534 Table 59 — ResponseNotReady extended error data shows the ResponseNotReady extended error data.

535 Table 60 — Registry or standards body ID shows the registry or standards body ID.

536 Table 61 — ExtendedErrorData format for vendor or other standards-defined ERROR response message shows the

ExtendedErrorData format definition for vendor or other standards-defined ERROR response messages.

537 Table 57 — ERROR response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 129

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
Shall be 0x7F = ERROR . See Table 5 — SPDM

response codes.

2 Param1 1
Shall be the ErrorCode. See Table 58 — Error code

and error data.

3 Param2 1
Shall be the Error data. See Table 58 — Error code

and error data.

4 ExtendedErrorData 0-32
Shall be Optional extended data. See Table 58 —

Error code and error data.

538 Table 58 — Error code and error data

ErrorCode Value Description Error data ExtendedErrorData

Reserved 0x00 Reserved. Reserved Reserved

InvalidRequest 0x01
One or more request fields

are invalid
0x00

No extended error data is

provided.

Reserved 0x02 Reserved. Reserved
No extended error data is

provided.

Busy 0x03

The Responder received the

request message and the

Responder decided to ignore

the request message, but the

Responder might be able to

process the request message

if the request message is

sent again in the future.

0x00
No extended error data is

provided.

UnexpectedRequest 0x04

The Responder received an

unexpected request

message. For example,

CHALLENGE before

NEGOTIATE_ALGORITHMS .

0x00
No extended error data is

provided.

Unspecified 0x05 Unspecified error occurred. 0x00
No extended error data is

provided.

DecryptError 0x06

The receiver cannot decrypt

or verify data during the

session.

Reserved
No extended error data is

provided.

UnsupportedRequest 0x07

The RequestResponseCode

or the SubCode (if

applicable) in the request

message is unsupported.

RequestResponseCode

or the SubCode in the

request message.

No extended error data is

provided

Security Protocol and Data Model (SPDM) Specification DSP0274

130 Published Version 1.3.0

ErrorCode Value Description Error data ExtendedErrorData

RequestInFlight 0x08

The Responder has delivered

an encapsulated request to

which it is still waiting for the

response.

Reserved
No extended error data is

provided.

InvalidResponseCode 0x09

The Requester delivered an

invalid response for an

encapsulated response.

Reserved
No extended error data is

provided.

SessionLimitExceeded 0x0A
Maximum number of

concurrent sessions reached.
Reserved

No extended error data is

provided.

SessionRequired 0x0B

The Request message

received by the Responder is

only allowed within a

session.

Reserved
No extended error data is

provided.

ResetRequired 0x0C

The device requires a reset to

complete the requested

operation. This ErrorCode

can be sent in response to

the GET_CSR or

SET_CERTIFICATE message.

Bit[7:3]. Reserved.

Bit[2:0]. If sent in

response to GET_CSR ,

the Responder-

assigned

CSRTrackingTag .

Otherwise, shall be 0 .

No extended error data is

provided.

ResponseTooLarge 0x0D

The response is greater than

the MaxSPDMmsgSize of the

requesting SPDM endpoint.

Reserved

See Table 62 —

ExtendedErrorData format for

ResponseTooLarge.

RequestTooLarge 0x0E

The request is greater than

the MaxSPDMmsgSize of the

receiving SPDM endpoint.

Reserved Reserved

LargeResponse 0x0F

The response is greater than

DataTransferSize and less

than or equal to

MaxSPDMmsgSize of the

requesting SPDM endpoint.

Reserved

See Table 63 —

ExtendedErrorData format for

LargeResponse.

MessageLost 0x10

The SPDM message is lost.

For example, this error code

can be used to indicate the

loss of a Large Request,

Large Response, or the

request in a

ResponseNotReady .

Reserved Reserved

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 131

ErrorCode Value Description Error data ExtendedErrorData

InvalidPolicy 0x11

The Responder received one

or more messages that

violated its security policy.

For example, if a Responder

requires both encryption and

MAC capabilities in a secure

session, and the Requester

only supports encryption,

then the Responder would

return this error code if the

Requester sends

KEY_EXCHANGE .

Reserved Reserved

Reserved 0x12–0x40 Reserved Reserved Reserved

VersionMismatch 0x41

Requested SPDM version is

not supported or is a

different version from the

selected version.

0x00
No extended error data is

provided.

ResponseNotReady 0x42
See the RESPOND_IF_READY

request message format.
0x00

See Table 59 —

ResponseNotReady extended

error data.

RequestResynch 0x43

Responder is requesting

Requester to reissue

GET_VERSION to re-

synchronize. An example is

following a firmware update.

0x00
No extended error data is

provided.

OperationFailed 0x44

An internal error occurred

upon servicing the request

issued by the Requester.

0x00
No extended error data is

provided.

NoPendingRequests 0x45

The Responder does not

have any pending request for

a

GET_ENCAPSULATED_REQUEST

message.

Reserved Reserved

Reserved 0x46–0xFE Reserved. Reserved Reserved

Vendor or Standards-Defined 0xFF Vendor or standards-defined

Shall indicate the

registry or standards

body using one of the

values in the ID column

of Table 60 — Registry

or standards body ID.

See Table 61 —

ExtendedErrorData format for

vendor or other standards-

defined ERROR response

message for format definition.

539 Table 59 — ResponseNotReady extended error data

Security Protocol and Data Model (SPDM) Specification DSP0274

132 Published Version 1.3.0

Byte offset Field Size (bytes) Description

0 RDTExponent 1

Shall be the exponent expressed in logarithmic

(base-2 scale) to calculate RDT time in µs after

which the Responder can provide successful

completion response.

For example, the raw value 8 indicates that the

Responder will be ready in 28 = 256 µs.

Requester should use RDT to avoid continuous

pinging and issue the RESPOND_IF_READY request

message, as Table 65 — RESPOND_IF_READY request

message format shows, after RDT time.

For timing requirement details, see Table 7 — Timing

specification for SPDM messages.

1 RequestCode 1
Shall be the request code that triggered this

response.

2 Token 1

Shall be the opaque handle that the Requester shall

pass in with the RESPOND_IF_READY request

message, as Table 65 — RESPOND_IF_READY request

message format shows. The Responder can use the

value in this field to provide the correct response

when the Requester issues a RESPOND_IF_READY

request.

3 RDTM 1

Shall be the multiplier used to compute WT Max in µs

to indicate that the response might be dropped after

this delay.

The multiplier shall always be greater than 1.

The Responder might also stop processing the initial

request if the same Requester issues a different

request.

For timing requirement details, see Table 7 — Timing

specification for SPDM messages.

540 Table 60 — Registry or standards body ID

541 For algorithm encoding in extended algorithm fields, consult the respective registry or standards body unless

otherwise specified.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 133

ID Vendor ID length (bytes) Registry or standards body name Description

0x0 0 DMTF

DMTF does not have a

Vendor ID registry. At

present, DMTF does not

define any algorithms

for use in extended

algorithms fields.

0x1 2 TCG

Vendor is identified by

using TCG Vendor ID

Registry. For extended

algorithms, see TCG

Algorithm Registry.

0x2 2 USB

Vendor is identified by

using the vendor ID

assigned by USB.

0x3 2 PCI-SIG
Vendor is identified

using PCI-SIG Vendor ID.

0x4 4 IANA

The Private Enterprise

Number (PEN) assigned

by the Internet Assigned

Numbers Authority

(IANA) identifies the

vendor.

0x5 4 HDBaseT

Vendor is identified by

using HDBaseT HDCD

entity.

0x6 2 MIPI

The Manufacturer ID

assigned by MIPI

identifies the vendor.

0x7 2 CXL
Vendor is identified by

using CXL vendor ID.

0x8 2 JEDEC
Vendor is identified by

using JEDEC vendor ID.

0x9 0 VESA

For fields and formats

defined by the VESA

standards body, there is

no Vendor ID registry.

Security Protocol and Data Model (SPDM) Specification DSP0274

134 Published Version 1.3.0

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/
https://vesa.org/

ID Vendor ID length (bytes) Registry or standards body name Description

0xA Variable IANA CBOR

The CBOR Tag Registry

that identifies the

format of the element,

as assigned by the

Internet Assigned

Numbers Authority

(IANA). The encoding of

the CBOR tag indicates

the length of the tag.

When a CBOR Tag is

used with a standards

body or vendor-defined

header, the

VendorIDLen field shall

be set to the length of

the encoded CBOR tag,

followed by the data

payload, which starts

with an encoded CBOR

tag.

542 Table 61 — ExtendedErrorData format for vendor or other standards-defined ERROR response message

Byte offset Field Size (bytes) Description

0 Len 1

Shall be the length of the VendorID field.

If the vendor defines the error, the value of this field

shall equal the “Vendor ID length”, as Table 60 —

Registry or standards body ID describes, of the

corresponding registry or standards body name.

If a registry or standards body defines the error, this

field shall be zero (0), which also indicates that the

VendorID field is not present.

The Error Data field in the ERROR message

indicates the registry or standards body name (that

is, Param2) and is one of the values in the ID

column of Table 60 — Registry or standards body ID.

1 VendorID Len

The value of this field shall indicate the Vendor ID as

assigned by the registry or standards body. Table 60

— Registry or standards body ID describes the length

of this field. Shall be in little-endian format.

The name of the registry or standards body in the

ERROR is indicated in the Error Data field (that is,

Param2) and is one of the values in the ID column

of Table 60 — Registry or standards body ID.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 135

https://www.iana.org/
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

Byte offset Field Size (bytes) Description

1 + Len OpaqueErrorData Variable The vendor or standards body defines this value.

543 Table 62 — ExtendedErrorData format for ResponseTooLarge

Byte offset Field Size (bytes) Description

0 ActualSize 4 Shall be the size of the actual response.

544 Table 63 — ExtendedErrorData format for LargeResponse

Byte offset Field Size (bytes) Description

0 Handle 1

Shall be a unique value that identifies the Large SPDM

Response and shall be the same value for all chunks of

the same large SPDM message.

The value of this field should either sequentially increase

or sequentially decrease with each large SPDM message

with the expectation that it will wrap around after

reaching the maximum or minimum value, respectively,

of this field. See CHUNK_GET request and

CHUNK_RESPONSE response message.

545 10.12.1 Standards body or vendor-defined header

546 This specification uses the format that Table 64 — Standards body or vendor-defined header (SVH) describes to help

identify the entity that defines the format for a given payload. The clauses in the other parts of this specification

indicate to which payload this header applies.

547 Table 64 — Standards body or vendor-defined header (SVH)

Byte offset Field Size (bytes) Description

0 ID 1
Shall be one of the values in the ID column of Table

60 — Registry or standards body ID.

1 VendorIDLen 1

Shall be the Length in bytes of the VendorID field.

If the given payload belongs to a standards body or

registry, this field shall be 0.

Otherwise, the given payload belongs to the vendor

and therefore, this field shall be the length indicated

in the “Vendor ID length” column of Table 60 —

Registry or standards body ID for the respective ID .

2 VendorID VendorIDLen

If VendorIDLen is greater than zero, this field shall

be the ID of the vendor corresponding to the ID

field. Otherwise, this field shall be absent.

Security Protocol and Data Model (SPDM) Specification DSP0274

136 Published Version 1.3.0

548 10.13 RESPOND_IF_READY request message format

549 This request message shall ask for the response to the original request upon receipt of the ResponseNotReady error

code. If the response to the original request is ready, the Responder shall return that response message. If the

response to the original request is not ready, the Responder shall return an ERROR message of

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response message.

550 The validity of the RESPOND_IF_READY request (see the SPDM Request and Response messages validity table) is

defined by the original request that caused the RESPOND_IF_READY flow. This means the last request to which the

Responder sent an ERROR message of ErrorCode=ResponseNotReady .

551 Figure 14 — RESPOND_IF_READY flow leading to completion shows the RESPOND_IF_READY flow:

552 Figure 14 — RESPOND_IF_READY flow leading to completion

553

CHALLENGE_AUTH()

ResponderRequester

CHALLENGE(0x83)

ERROR (ResponseNotReady, 0x7, 8, 4)

RESPOND_IF_READY(0x83, 0x7)

Sends response in less than CT
μs to meet the crypto timeout

requirement.
ResponseNotReady with

Token=0x7, RDTExponent = 8 and
RDTM = 4

Waits for more than
WT = 2 ^ 8 μs but

less than WTMax =
((2 ^ 8) × 4) – μs

Processing is complete

Less than CT μs

Less than CT μs

RTT = 1

554 Table 55 — RESPOND_IF_READY request message format shows the RESPOND_IF_READY request message format.

555 Table 65 — RESPOND_IF_READY request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xFF = RESPOND_IF_READY . See Table 4 —

SPDM request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 137

Byte offset Field Size (bytes) Description

2 Param1 1

Shall be the original request code that triggered the

ResponseNotReady error code response. Shall match

the request code returned as part of the

ResponseNotReady extended error data.

3 Param2 1
Shall be the token that was returned as part of the

ResponseNotReady extended error data.

556 10.14 VENDOR_DEFINED_REQUEST request message

557 A Requester intending to define a unique request to meet its needs can use this request message. Table 66 —

VENDOR_DEFINED_REQUEST request message format defines the format.

558 The Requester should send this request message only after sending the GET_VERSION , GET_CAPABILITIES , and

NEGOTIATE_ALGORITHMS request sequence.

559 If the vendor intends that these messages are to be used before a session has been established, and the vendor

wishes to have the requests authenticated, then the vendor shall indicate how the transcript and/or message

transcript are changed to add the vendor-defined commands.

560 Table 66 — VENDOR_DEFINED_REQUEST request message format shows the VENDOR_DEFINED_REQUEST request

message format.

561 Table 66 — VENDOR_DEFINED_REQUEST request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xFE = VENDOR_DEFINED_REQUEST . See

Table 4 — SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 StandardID 2

Shall indicate the registry or standards body by using

one of the values in the ID column of Table 60 —

Registry or standards body ID.

6 Len 1

Shall be the length of the Vendor ID field. If the

VendorDefinedReqPayload is standards-defined,

Len shall be 0 . If the VendorDefinedReqPayload

is vendor-defined, Len shall equal “Vendor ID

length”, as Table 60 — Registry or standards body ID

describes.

Security Protocol and Data Model (SPDM) Specification DSP0274

138 Published Version 1.3.0

Byte offset Field Size (bytes) Description

7 VendorID Len
Shall be the Vendor ID as assigned by the registry or

standards body. Shall be in little-endian format.

7 + Len ReqLength 2
Shall be the length of the

VendorDefinedReqPayload .

7 + Len + 2 VendorDefinedReqPayload ReqLength This field shall be used to send the request payload.

562 Other DMTF specifications may define VENDOR_DEFINED_REQUEST with StandardID set to 0. See

VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications for more information.

563 10.15 VENDOR_DEFINED_RESPONSE response message

564 A Responder can use this response message in response to VENDOR_DEFINED_REQUEST . Table 67 —

VENDOR_DEFINED_RESPONSE response message format defines the format.

565 Table 67 — VENDOR_DEFINED_RESPONSE response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x7E = VENDOR_DEFINED_RESPONSE . See

Table 5 — SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 StandardID 2

Shall indicate the registry or standards body using

one of the values in the ID column of Table 60 —

Registry or standards body ID.

6 Len 1

Shall be the length of the Vendor ID field. If the

VendorDefinedRespPayload is standards-defined,

length shall be 0 . If the

VendorDefinedRespPayload is vendor-defined,

length shall equal “Vendor ID length” as Table 60 —

Registry or standards body ID describes.

7 VendorID Len

Shall indicate the Vendor ID as assigned by the

registry or standards body. Shall be in little-endian

format.

7 + Len RespLength 2
Shall be the length of the

VendorDefinedRespPayload

7 + Len + 2 VendorDefinedRespPayload ReqLength
This value shall be used to send the response

payload.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 139

566 10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
specifications

567 Other DMTF specifications may define VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages with

StandardID set to 0 (“DMTF”, as defined in Table 50 — Registry or standards body ID) and Len set to 0. In this case,

VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE messages shall specify the underlying DMTF

specification that defines them. A DMTF specification which defines the data model of VendorDefinedReqPayload for

VENDOR_DEFINED_REQUEST and the data model of VendorDefinedRespPayload for VENDOR_DEFINED_RESPONSE shall

follow Table 68 — Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF.

568 Table 68 — Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

Byte offset Field Size (bytes) Description

0 DSPNumber 2

Shall be the DMTF specification’s DSP number as a

16-bit integer. For example, DSP0287 shall use

0x011F .

2 DSPVersion 2

Shall be the version number of the DMTF

specification whose DSP number is populated in the

DSPNumber field. The format of the version number

shall follow Table 10 — VersionNumberEntry

definition.

4 VendorPayload Variable

Shall be the actual payload data defined by the

DMTF specification whose DSP number is populated

in the DSPNumber field.

569 10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response
messages

570 This request message shall initiate a handshake between Requester and Responder intended to authenticate the

Responder (or, optionally, both parties), negotiate cryptographic parameters (in addition to those negotiated in the

last NEGOTIATE_ALGORITHMS / ALGORITHMS exchange), and establish shared keying material.

Table 69 — KEY_EXCHANGE request message format shows the KEY_EXCHANGE request message format, and Table

71 — Successful KEY_EXCHANGE_RSP response message format shows the KEY_EXCHANGE_RSP response message

format. The handshake is completed by the successful exchange of the FINISH request and FINISH_RSP response

messages presented in the next clause. The handshake depends on the tight coupling between these two request/

response message pairs.

571 The Requester-Responder pair can support two modes of handshakes. If HANDSHAKE_IN_THE_CLEAR_CAP is set in

both the Requester and the Responder, all SPDM messages exchanged during the Session Handshake Phase are sent

in the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/or

message authentication during the Session Handshake Phase using the Handshake secret derived at the completion

Security Protocol and Data Model (SPDM) Specification DSP0274

140 Published Version 1.3.0

of the KEY_EXCHANGE_RSP message for subsequent message communication until the completion of the

FINISH_RSP message.

572 Figure 15 — Responder authentication key exchange example shows an example of a Responder authentication key

exchange:

573 Figure 15 — Responder authentication key exchange example

574

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

KEY_EXCHANGE

KEY_EXCHANGE_RSP

GET_CERTIFICATE

CERTIFICATE

If supported

FINISH

FINISH_RSP

575 Figure 16 — Responder authentication multiple key exchange example shows an example of multiple sessions using

two independent sets of root session keys that coexist at the same time. The specification does not require a specific

temporal relationship between the second KEY_EXCHANGE request message and the first FINISH_RSP response

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 141

message. However, to simplify implementation, a Responder might respond with an ERROR message of

ErrorCode=Busy to the second KEY_EXCHANGE request message until the first FINISH_RSP response message is

complete.

576 Figure 16 — Responder authentication multiple key exchange example

577

KEY_EXCHANGE(K2)

KEY_EXCHANGE_RSP (K2)

ResponderRequester

KEY_EXCHANGE (K1)

KEY_EXCHANGE_RSP (K1)

FINISH (K1)

FINISH_RSP (K1)

FINISH (K2)

FINISH_RSP (K2)

Enables authenticated and/or
 encrypted data transfer (K2)

Enables authenticated and/or
 encrypted data transfer (K1)

Authenticated and/or encrypted
data transfer (K1) continues

578 The handshake includes an ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder

each generate an ephemeral (that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key

pairs in the ExchangeData fields of the KEY_EXCHANGE request message and KEY_EXCHANGE_RSP response

message. The Responder generates a DHE secret by using the private key of the DHE key pair of the Responder and

the public key of the DHE key pair of the Requester provided in the KEY_EXCHANGE request message. Similarly, the

Requester generates a DHE secret by using the private key of the DHE key pair of the Requester and the public key of

the DHE key pair of the Responder provided in the KEY_EXCHANGE_RSP response message. The DHE secrets are

computed as specified in clause 7.4 of RFC 8446. Assuming that the public keys were received correctly, both the

Requester and Responder generate identical DHE secrets from which session secrets are generated.

579 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent

ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC

8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g^X mod p) for the specified

Security Protocol and Data Model (SPDM) Specification DSP0274

142 Published Version 1.3.0

group (see Table 17 — DHE structure for group definitions) encoded as a big-endian integer and padded to the left

with zeros to the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field in

KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the serialization of X and Y, which are the binary

representations of the x and y values respectively in network byte order, padded on the left by zeros if necessary. The

size of each number representation occupies as many octets as are implied by the curve parameters selected.

Specifically, X is [0: C - 1] and Y is [C : D - 1], where C and D are determined by the group (see Table 17 — DHE

structure).

580 For SM2_P256 key exchange, the identifiers IDA and IDB that the GB/T 32918.3-2016 specification defines are needed

to derive the shared secret. If this algorithm is selected, the ID for the Requester (that is, IDA) shall be the

concatenation of “Requester-KEP-dmtf-spdm-v” and SPDMversionString . Likewise, the ID for the Responder (that is,

IDB) shall be the concatenation of “Responder-KEP-dmtf-spdm-v” and SPDMversionString .

581 A Requester should generate a new DHE key pair for each KEY_EXCHANGE request message that the Requester sends.

A Responder should generate a new DHE key pair for each KEY_EXCHANGE_RSP response message that the

Responder sends.

582 Table 69 — KEY_EXCHANGE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE4 = KEY_EXCHANGE . See Table 4 —

SPDM request codes.

2 Param1 1

Shall be the type of measurement summary hash

requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response), the

Requester shall set this value to 0x0 .

3 Param2 1

Shall be the SlotID . Slot number of the Responder

certificate chain that shall be used for authentication.

If the public key of the Responder was provisioned to

the Requester in a trusted environment, the value in

this field shall be 0xFF ; otherwise it shall be

between 0 and 7 inclusive.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 143

Byte offset Field Size (bytes) Description

4 ReqSessionID 2

Shall be the two-byte Requester contribution to allow

construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID (SessionID) = Concatenate(ReqSessionID,

RspSessionID).

6 SessionPolicy 1
Shall be the session policy as Table 70 — Session

policy defines.

7 Reserved 1 Reserved.

8 RandomData 32 Shall be the Requester-provided random data.

40 ExchangeData D

Shall be the DHE public information generated by

the Requester. If the DHE group selected in the most

recent ALGORITHMS response is finite-field-based

(FFDHE), the ExchangeData represents the

computed public value. If the selected DHE group is

elliptic-curve-based (ECDHE), the ExchangeData

represents the X and Y values in network byte order.

Specifically, X is [0: C - 1] and Y is [C : D - 1]. In both

cases the size of D (and C for ECDHE) is derived from

the selected DHE group, as described in Table 23 —

DHE structure.

40 + D OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

42 + D OpaqueData OpaqueDataLength

If present, shall be the OpaqueData sent by the

Requester. Used to indicate any parameters that the

Requester wishes to pass to the Responder as part of

key exchange. If present, this field shall conform to

the selected opaque data format in

OtherParamsSelection .

583 Table 70 — Session policy

Security Protocol and Data Model (SPDM) Specification DSP0274

144 Published Version 1.3.0

Bit offset Field Description

0 TerminationPolicy

This field specifies the behavior of the Responder when the

Responder completes a runtime code or configuration update that

affects the hardware or firmware measurement of the Responder.

The Requester selects the value. If not set, the Responder shall

terminate the session when the runtime update has taken effect. If

set, the Responder shall decide whether to terminate or continue

with the session based on its own policy. A policy example is one

where the Responder terminates the session whenever an update

to configuration or runtime code changes the security version of

the firmware that manages SPDM sessions. The policy of the

Responder is outside the scope of this specification.

To terminate a session, the Responder shall either respond with an

ERROR message of ErrorCode=RequestResynch to any SPDM

request received within the session or silently discard any request

received within the session until a GET_VERSION request is

received.

1 EventAllPolicy

If set, the Responder shall subscribe the Requester to all events the

Responder supports. Upon successfully entering the application

phase of a session, the Responder may immediately send events.

If EVENT_CAP is not set in CAPABILITIES , the Responder shall

either respond with an ERROR message of

ErrorCode=InvalidRequest or silently discard the request.

[7:2] Reserved Reserved

584 Table 71 — Successful KEY_EXCHANGE_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x64 = KEY_EXCHANGE_RSP . See Table 5 —

SPDM response codes.

2 Param1 1

Shall be HeartbeatPeriod.

The value of this field shall be zero if Heartbeat is not

supported by one of the endpoints. Otherwise, the

value shall be in units of seconds. Zero is a legal

value if Heartbeat is supported, and this means that a

heartbeat is not desired on this session.

3 Param2 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 145

Byte offset Field Size (bytes) Description

4 RspSessionID 2

Shall be the two-byte Responder contribution to

allow construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID = Concatenate(ReqSessionID,

RspSessionID).

6 MutAuthRequested 1

Bit 0. If set, the Responder is requesting to

authenticate the Requester (Session-based mutual

authentication) without using the encapsulated

request flow.

Bit 1. If set, Responder is requesting Session-based

mutual authentication with the encapsulated request

flow.

Bit 2. If set, Responder is requesting Session-based

mutual authentication with an implicit GET_DIGESTS

request. The Responder and Requester shall follow

the optimized encapsulated request flow.

Bit [7:3]. Reserved.

At most one bit of Bit 0, Bit 1, or Bit 2 shall be set.

For encapsulated request flow and the optimized

encapsulated request flow details, see the

GET_ENCAPSULATED_REQUEST request and

ENCAPSULATED_REQUEST response messages

clause.

7 SlotIDParam 1

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID . Slot number of the

Requester certificate chain that shall be used for

mutual authentication, if MutAuthRequested Bit 0 is

set. If the public key of the Requester was

provisioned to the Responder through other means,

the value in this field shall be 0xF ; otherwise it shall

be between 0 and 7 inclusive. All other values

reserved.

For any other value of MutAuthRequested , this field

shall be set to 0 and ignored by the Requester.

8 RandomData 32 Shall be the Responder-provided random data.

Security Protocol and Data Model (SPDM) Specification DSP0274

146 Published Version 1.3.0

Byte offset Field Size (bytes) Description

40 ExchangeData D

Shall be the DHE public information generated by

the Responder. If the DHE group selected in the most

recent ALGORITHMS response is finite-field-based

(FFDHE), the ExchangeData represents the

computed public value. If the selected DHE group is

elliptic-curve-based (ECDHE), the ExchangeData

represents the X and Y values in network byte order.

Specifically, X is [0: C - 1] and Y is [C : D - 1]. In both

cases the size of D (and C for ECDHE) is derived from

the selected DHE group, as described in Table 23 —

DHE structure.

40 + D MeasurementSummaryHash MSHLength = H or 0

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or

requested Param1 = 0x0 , this field shall be absent.

If the requested Param1 = 0x1 , this field shall be the

combined hash of measurements of all measurable

components considered to be in the TCB required to

generate this response, computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...)) , where

MeasurementBlock[x] denotes a measurement of

an element in the TCB and hash is the negotiated

base hashing algorithm. Measurements are

concatenated in ascending order based on their

measurement index as Table 53 — Measurement

block format describes.

If the requested Param1 = 0x1 and if there are no

measurable components in the TCB required to

generate this response, this field shall be 0 .

If requested Param1 = 0xFF , this field shall be

computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported

measurements available in the measurement index

range 0x01 - 0xFE , concatenated in ascending

index order. Indices with no associated

measurements shall not be included in the hash

calculation. See the Measurement index assignments

clause.

If the Responder supports both raw bit stream and

digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 147

Byte offset Field Size (bytes) Description

40 + D + MSHLength OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

42 + D + MSHLength OpaqueData OpaqueDataLength

If present, shall be the OpaqueData sent by the

Responder. Used to indicate any parameters that the

Responder wishes to pass to the Requester as part of

key exchange. If present, this field shall conform to

the selected opaque data format in

OtherParamsSelection .

42 + D + MSHLength

+ OpaqueDataLength
Signature SigLen

Shall be the Signature over the transcript. SigLen

is the size of the asymmetric signing algorithm

output the Responder selected via the last

ALGORITHMS response message to the Requester.

The Transcript for KEY_EXCHANGE_RSP signature

defines the construction of the transcript.

42 + D + MSHLength

+ OpaqueDataLength

+ SigLen

ResponderVerifyData H or 0

Conditional field.

If the Session Handshake Phase is encrypted and/or

message authenticated, this field shall be of length H

and shall equal the HMAC of the transcript hash,

using finished_key as the secret key and using the

negotiated hash algorithm as the hash function. The

transcript hash shall be the hash of the transcript for

KEY_EXCHANGE_RSP HMAC as Transcript for

KEY_EXCHANGE_RSP HMAC shows. The

finished_key shall be derived from the Response

Direction Handshake Secret and is described in

Finished_key derivation. HMAC is described in RFC

2104.

If both the Requester and Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 1, this field shall

be absent.

585 10.16.1 Session-based mutual authentication

586 Mutual authentication for KEY_EXCHANGE occurs in the session handshake phase of a session.

587 To perform authentication of a Requester, the Responder sets the appropriate bit in the MutAuthRequested field of

the KEY_EXCHANGE_RSP message. When either Bit 1 or Bit 2 of MutAuthRequested are set, the encapsulated request

flow or the optimized encapsulated request flow shall be used accordingly to enable the Responder to obtain the

certificate chains and certificate chain digests of the Requester. For flow details and illustrations, see

GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

588 When either bit 1 or bit 2 of MutAuthRequested are set, the only allowed messages in this phase of the session shall

Security Protocol and Data Model (SPDM) Specification DSP0274

148 Published Version 1.3.0

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

be GET_DIGESTS , DIGESTS , GET_CERTIFICATE , CERTIFICATE , and ERROR . If the Requester receives other requests

during this flow, the Requester can respond with an ERROR message of ErrorCode=UnexpectedRequest and shall

terminate the session.

589 If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any

messages between KEY_EXCHANGE_RSP and FINISH request. This is useful for Responders that have obtained a

Requester’s certificate chains in a previous interaction.

590 10.16.1.1 Specify Requester certificate for session-based mutual authentication

591 The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages

exchanged. For Responder-only authentication and for mutual authentication where the Responder has obtained the

certificate chains of the Requester in a previous interaction, key exchange is carried out with two request/response

message pairs (KEY_EXCHANGE and KEY_EXCHANGE_RSP ; FINISH and FINISH_RSP). In other cases where mutual

authentication is desired, additional encapsulated messages are exchanged between KEY_EXCHANGE_RSP and

FINISH to enable the Responder to obtain the certificate chains and certificate chain digests of the Requester.

However, in all cases the certificate chain (or raw public key) the Requester should authenticate against is specified by

the Responder via the SlotID field in KEY_EXCHANGE_RSP , which precedes the aforementioned encapsulated

messages. This means that a Responder has no way of knowing in advance which SlotID value to use when

authenticating a Requester whose certificates it has not obtained in a previous interaction, other than the default

(Slot 0).

592 To address this case, the Responder explicitly designates the certificate chain to be used via the final

ENCAPSULATED_RESPONSE_ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in

MutAuthRequested is set to 1 , the Responder shall use an ENCAPSULATED_RESPONSE_ACK request with

Param2 = 0x02 and a 1-byte-long Encapsulated Request field containing the SlotID value. The Requester shall

use the certificate chain corresponding to the slot specified in the Encapsulated Request field.

593 If Bit 0 of MutAuthRequested is set, then no encapsulated messages are exchanged after KEY_EXCHANGE_RSP and

the certificate chain of the Requester is determined by the value of SlotIDParam in KEY_EXCHANGE_RSP .

594 10.17 FINISH request and FINISH_RSP response messages

595 This request message shall complete the handshake between Requester and Responder initiated by a KEY_EXCHANGE

request. The purpose of the FINISH request and FINISH_RSP response messages is to provide key confirmation,

bind the identity of each party to the exchanged keys and protect the entire handshake against manipulation by an

active attacker. Upon receiving a FINISH request, the Responder shall ensure the session and the corresponding

session ID were created through a KEY_EXCHANGE request and corresponding KEY_EXCHANGE_RSP response. Table 72

— FINISH request message format shows the FINISH request message format and Table 73 — Successful

FINISH_RSP response message format shows the FINISH_RSP response message format.

596 Table 72 — FINISH request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 149

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE5 = FINISH . See Table 4 — SPDM

request codes.

2 Param1 1

Bit 0. If set, the Signature field is included. This bit

shall be set when Session-based mutual

authentication occurs. All other bits reserved.

3 Param2 1

Shall be the SlotID . Only valid if Param1 = 0x01 ,

otherwise reserved. Slot number of the Responder

certificate chain that shall be used for authentication.

If the public key of the Responder was provisioned to

the Requester in a trusted environment, the value in

this field shall be 0xFF ; otherwise it shall be

between 0 and 7 inclusive.

4 Signature SigLen

Shall be the Signature over the transcript. SigLen

is the size of the asymmetric signing algorithm

(ReqBaseAsymAlg) output the Responder selected

via the last ALGORITHMS response message to the

Requester. If Param1 = 0x00 , SigLen is zero and

this field shall be absent. Transcript for FINISH

signature, mutual authentication defines the

construction of the transcript, signature generation,

and verification.

4 + SigLen RequesterVerifyData H

Shall be an HMAC of the transcript hash using the

finished_key as the secret key and using the

negotiated hash algorithm as the hash function. For

mutual authentication, the transcript hash shall be

the hash of the transcript for FINISH HMAC, mutual

authentication as the transcript for FINISH HMAC,

mutual authentication shows. Otherwise, it shall be

the hash of the transcript for FINISH HMAC,

Responder-only authentication as the transcript for

FINISH HMAC, Responder-only authentication shows.

The finished_key shall be derived from Request

Direction Handshake Secret and is described in

Finished_key derivation. HMAC is described in RFC

2104.

597 If the handshake is performed in the clear (that is, if HANDSHAKE_IN_THE_CLEAR_CAP = 1 for both Requester and

Responder), and if either Bit 1 or Bit 2 in KEY_EXCHANGE_RSP . MutAuthRequested is set, then upon receiving FINISH

the Responder shall confirm that the value in FINISH . Param2 matches the value that the Responder specified in the

final ENCAPSULATED_RESPONSE_ACK . EncapsulatedRequest .

598 Table 73 — Successful FINISH_RSP response message format

Security Protocol and Data Model (SPDM) Specification DSP0274

150 Published Version 1.3.0

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x65 = FINISH_RSP . See Table 5 — SPDM

response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 ResponderVerifyData H or 0

Conditional field.

If the Session Handshake Phase is encrypted and/or

message authenticated (that is, if either the

Requester or the Responder set

HANDSHAKE_IN_THE_CLEAR_CAP to 0), this field shall

be absent.

If both the Requester and Responder support

HANDSHAKE_IN_THE_CLEAR_CAP field, this field shall

be of length H and shall equal the HMAC of the

transcript hash using finished_key as the secret

key and using the negotiated hash algorithm as the

hash function. For Session-based mutual

authentication, the transcript hash shall be the hash

of the transcript for FINISH_RSP HMAC, as the

transcript for FINISH_RSP HMAC, mutual

authentication shows. Otherwise, the transcript hash

shall be the hash of the transcript for FINISH_RSP

HMAC, Responder-only authentication as the

transcript for FINISH_RSP HMAC, Responder-only

authentication shows. The finished_key shall be

derived from Response Direction Handshake Secret

and is described in Finished_key derivation. HMAC is

described in RFC 2104.

599 10.17.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE

600 Transcript for KEY_EXCHANGE_RSP signature shows the transcript for the KEY_EXCHANGE_RSP signature:

601 Transcript for KEY_EXCHANGE_RSP signature

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . * except the Signature and ResponderVerifyData fields.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 151

https://tools.ietf.org/html/rfc2104

602 The Responder shall generate the KEY_EXCHANGE_RSP signature from:

SPDMsign(PrivKey, transcript, "key_exchange_rsp signing");

603 where

• SPDMsign is described by the Signature generation clause.

• PrivKey shall be the private key of the Responder associated with the leaf certificate stored in SlotID in

KEY_EXCHANGE . If the public key of the Responder was provisioned to the Requester, then PrivKey shall be the

associated private key.

• transcript shall be the concatenation of the messages for a KEY_EXCHANGE_RSP signature.

604 The leaf certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY_EXCHANGE request.

605 Likewise, the Requester shall verify the KEY_EXCHANGE_RSP signature using SPDMsignatureVerify(PubKey,

signature, transcript, "key_exchange_rsp signing") , where transcript is the concatenation of the messages

for a KEY_EXCHANGE_RSP signature and PubKey is the public key of the leaf certificate of the Responder. The leaf

certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY_EXCHANGE request.

SPDMsignatureVerify is described in Signature verification. A successful verification shall be when

SPDMsignatureVerify returns success .

606 Transcript for KEY_EXCHANGE_RSP HMAC shows the transcript for KEY_EXCHANGE_RSP HMAC:

607 Transcript for KEY_EXCHANGE_RSP HMAC

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . * except the ResponderVerifyData field.

608 Transcript for FINISH signature, mutual authentication shows the transcript for the FINISH signature with mutual

authentication:

609 Transcript for FINISH signature, mutual authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGEST is issued and MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used.

Security Protocol and Data Model (SPDM) Specification DSP0274

152 Published Version 1.3.0

8. [FINISH] . SPDM Header Fields

610 The Requester shall generate the FINISH signature from SPDMsign(PrivKey, transcript, "finish signing") ,

where transcript is the concatenation of the messages for FINISH signature and the PrivKey is the private key

of the leaf certificate of the Requester. The leaf certificate of the Requester shall be the one indicated in SlotID in

Param2 of FINISH request. SPDMsign is described in Signature generation.

611 Likewise, the Responder shall verify the FINISH signature using SPDMsignatureVerify(PubKey, signature,

transcript, "finish signing") , where transcript is the concatenation of the messages for a FINISH signature

and the PubKey is the public key of the leaf certificate of the Requester. The leaf certificate of the Requester shall be

the one indicated in SlotID in Param2 of the FINISH request. SPDMsignatureVerify is described in Signature

verification. A successful verification is when SPDMsignatureVerify returns success .

612 Transcript for FINISH HMAC, Responder-only authentication shows the transcript for FINISH HMAC with Responder-

only authentication:

613 Transcript for FINISH HMAC, Responder-only authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [FINISH] . SPDM Header Fields

614 Transcript for FINISH HMAC, mutual authentication shows the transcript for FINISH HMAC with mutual

authentication:

615 Transcript for FINISH HMAC, mutual authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGEST is issued and MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used.

8. [FINISH] . SPDM Header Fields

9. [FINISH] . Signature

616 Transcript for FINISH_RSP HMAC, Responder-only authentication shows the transcript for FINISH_RSP HMAC with

Responder-only authentication:

617 Transcript for FINISH_RSP HMAC, Responder-only authentication

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 153

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [FINISH] . *

7. [FINISH_RSP] . SPDM Header fields

618 Transcript for FINISH_RSP HMAC, mutual authentication shows the transcript for FINISH_RSP HMAC with mutual

authentication:

619 Transcript for FINISH_RSP HMAC, mutual authentication

1. VCA

2. [DIGESTS].* (if issued and MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGEST is issued and MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used.

8. [FINISH] . *

9. [FINISH_RSP] . SPDM Header fields

620 When multiple session keys are being established between the same Requester-Responder pair, the Signature over

the transcript during FINISH request is computed using only the corresponding KEY_EXCHANGE ,

KEY_EXCHANGE_RSP , and FINISH request parameters.

621 For additional rules, see general ordering rules.

622 10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response
messages

623 The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

session key establishment with symmetric-key cryptography. This option is especially useful for endpoints that do not

support asymmetric-key cryptography or certificate processing. This option can also be leveraged to expedite session

key establishment even if asymmetric-key cryptography is supported.

624 This option requires the Requester and Responder to have prior knowledge of a common PSK before the handshake.

Essentially, the PSK serves as a mutual authentication credential and as the base of session key establishment. As

such, only the two endpoints and potentially a trusted third party that provisions the PSK to the two endpoints know

the value of the PSK. For these same reasons, the HANDSHAKE_IN_THE_CLEAR_CAP is not applicable in a PSK key

Security Protocol and Data Model (SPDM) Specification DSP0274

154 Published Version 1.3.0

Léon GALL

Léon GALL

Léon GALL

Léon GALL

exchange. Thus, for PSK-based session establishment, both the Responder and the Requester shall ignore the

HANDSHAKE_IN_THE_CLEAR_CAP bit.

625 A Requester can pair with multiple Responders. Likewise, a Responder can pair with multiple Requesters. A Requester-

Responder pair can be provisioned with one or more PSKs. An endpoint can act as a Requester to one device and

simultaneously a Responder to another device. If both endpoints can act as Requester or Responder, then the

endpoints shall use different PSKs for each role. It is the responsibility of the transport layer to identify the peer and

establish communication between the two endpoints before the PSK-based session key exchange starts.

626 The PSK can be provisioned in a trusted environment, for example, during the secure manufacturing process. In an

untrusted environment, the PSK can be agreed upon between the two endpoints using a secure protocol. The

mechanism for PSK provisioning is outside the scope of this specification. The size of the provisioned PSK is

determined by the security strength requirements of the application, but it should be at least 128 bits. It is

recommended to be at least 256 bits in order to resist dictionary attacks, particularly when the Requester and

Responder cannot both contribute sufficient entropy during the exchange.

627 Two message pairs are defined for this option:

• PSK_EXCHANGE / PSK_EXCHANGE_RSP

• PSK_FINISH / PSK_FINISH_RSP

628 The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.

2. Exchanges contextual information between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct session

keys.

629 Figure 17 — PSK_EXCHANGE: Example shows an example of the PSK_EXCHANGE message:

630 Figure 17 — PSK_EXCHANGE: Example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 155

Léon GALL

Léon GALL

Léon GALL

Léon GALL

631

NEGOTIATE_ALGORITHMS

ALGORITHMS

PSK_EXCHANGE

PSK_EXCHANGE_RSP

ResponderRequester

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

PSK_FINISH

PSK_FINISH_RSP

If supported

Optional

632 Table 74 — PSK_EXCHANGE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE6 = PSK_EXCHANGE . See Table 4 —

SPDM request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

156 Published Version 1.3.0

Byte offset Field Size (bytes) Description

2 Param1 1

Shall be the type of measurement summary hash

requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

0xFF : All measurements.

All other values reserved.

If a Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response), the

Requester shall set this value to 0x0 .

3 Param2 1
Shall be the session policy. See Table 70 — Session

policy.

4 ReqSessionID 2

Shall be the two-byte Requester contribution to allow

construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID = Concatenate(ReqSessionID,

RspSessionID).

6 P 2 Shall be the length of PSKHint in bytes.

8 R 2 Shall be the length of RequesterContext in bytes.

10 OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

12 PSKHint P
Shall be the information required by the Responder

to retrieve the PSK. Optional.

12 + P RequesterContext R

Shall be the context of the Requester. Shall include a

nonce or non-repeating counter of at least 32 bytes

and, optionally, relevant information contributed by

the Requester.

12 + P + R OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the

Requester is used to indicate any parameters that the

Requester wishes to pass to the Responder as part of

PSK-based key exchange. If present, this field shall

conform to the selected opaque data format in

OtherParamsSelection .

633 The field PSKHint is optional. It is absent if P is set to 0. It is introduced to address two scenarios:

• The Responder is provisioned with multiple PSKs and stores them in secure storage. The Requester uses

PSKHint as an identifier to specify which PSK will be used in this particular session.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 157

Léon GALL

Léon GALL

• The Responder does not store the actual value of the PSK but can derive the PSK using PSKHint . For example, if

the Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning a PSK can be

derived from the UDS (or a derivative value) and a non-secret salt known by the Requester. During session key

establishment, the salt value is sent to the Responder in PSKHint of PSK_EXCHANGE . This mechanism allows the

Responder to support any number of PSKs without consuming secure storage.

634 The RequesterContext is the contribution of the Requester to session key derivation. It shall contain a nonce or

non-repeating counter to ensure that the derived session keys are ephemeral to mitigate against replay attacks. If a

non-repeating counter is used, the counter shall not be reset for the lifetime of the device. The RequesterContext

can also contain other information from the Requester.

635 Upon receiving a PSK_EXCHANGE request, the Responder:

1. Generates PSK from PSKHint , if necessary.

2. Generates ResponderContext , if supported.

3. Derives the finished_key of the Responder by following the key schedule.

4. Constructs the PSK_EXCHANGE_RSP response message and sends it to the Requester.

636 Table 75 — PSK_EXCHANGE_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x66 = PSK_EXCHANGE_RSP . See Table 5 —

SPDM response codes.

2 Param1 1

Shall be HeartbeatPeriod.

The value of this field shall be zero if Heartbeat is not

supported by one of the endpoints. Otherwise, the

value shall be in units of seconds. Zero is a legal

value if Heartbeat is supported, and this means that a

heartbeat is not desired on this session.

3 Param2 1 Reserved.

4 RspSessionID 2

Shall be the two-byte Responder contribution to

allow construction of a unique four-byte session ID

between a Requester-Responder pair. The final

session ID (SessionID) = Concatenate(ReqSessionID,

RspSessionID).

6 Reserved 2 Reserved.

8 Q 2 Shall be the length of ResponderContext in bytes.

10 OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

Security Protocol and Data Model (SPDM) Specification DSP0274

158 Published Version 1.3.0

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Byte offset Field Size (bytes) Description

12 MeasurementSummaryHash MSHLength = H or 0

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or

requested Param1 = 0x0 , this field shall be absent.

If the requested Param1 = 0x1 , this field shall be the

combined hash of measurements of all measurable

components considered to be in the TCB required to

generate this response, computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...)) , where

MeasurementBlock[x] denotes a measurement of

an element in the TCB and hash is the negotiated

base hashing algorithm. Measurements are

concatenated in ascending order based on their

measurement index as Table 53 — Measurement

block format describes.

If the requested Param1 = 0x1 and if there are no

measurable components in the TCB required to

generate this response, this field shall be 0 .

If requested Param1 = 0xFF , this field shall be

computed as

hash(Concatenate(MeasurementBlock[0],

MeasurementBlock[1], ...,

MeasurementBlock[n])) of all supported

measurements available in the measurement index

range 0x01 - 0xFE , concatenated in ascending

index order. Indices with no associated

measurements shall not be included in the hash

calculation. See the Measurement index assignments

clause.

If the Responder supports both raw bit stream and

digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

12 + MSHLength ResponderContext Q

Shall be the context of the Responder. Optional. If

present, shall include a nonce and/or information

contributed by the Responder.

12 + MSHLength + Q OpaqueData OpaqueDataLength

Optional. If present, the OpaqueData sent by the

Responder is used to indicate any parameters that

the Responder wishes to pass to the Requester as

part of PSK-based key exchange. If present, this field

shall conform to the selected opaque data format in

OtherParamsSelection .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 159

Byte offset Field Size (bytes) Description

12 + MSHLength + Q

+ OpaqueDataLength
ResponderVerifyData H

Shall be the data to be verified by the Requester

using the finished_key of the Responder.

637 The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce or

non-repeating counter and other information from the Responder. If a non-repeating counter is used, the counter

shall not be reset for the lifetime of the device. Because the Responder can be a constrained device that cannot

generate a nonce, ResponderContext is optional. However, the Responder is required to use ResponderContext if it

can generate a nonce.

638 Note that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in ResponderContext ,

then the Responder is not challenging the Requester for real-time knowledge of the PSK. Such a session is subject to

replay attacks—that is, a person-in-the-middle attacker could record and replay prior PSK_EXCHANGE and

PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets, so

long as the PSK and session keys of the prior replayed session are not compromised.

639 If ResponderContext is absent, such as when PSK_CAP in the CAPABILITIES of the Responder is 01b , the

Requester shall not send PSK_FINISH , because the session keys are solely determined by the Requester and the

Session immediately enters the Application Phase. If and only if the ResponderContext is present in the response,

such as when PSK_CAP in the CAPABILITIES of the Responder is 10b , the Requester shall send PSK_FINISH with

RequesterVerifyData to prove that it has derived correct session keys.

640 To calculate ResponderVerifyData , the Responder calculates an HMAC. The HMAC key is the finished_key of the

Responder. The data is the hash of the concatenation of all messages sent up to this point between the Requester

and the Responder. For messages that are encrypted, the plaintext messages are used in calculating the hash.

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].* (if issued)
4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].* except the ResponderVerifyData field

641 Note that, even if CERTIFICATE and Responder-signed response messages (such as CHALLENGE_AUTH) were issued,

these messages would not be included in the data for calculating ResponderVerifyData . In other words, the identity

of the signer of the response messages is not bound to the identity of the sender of PSK_EXCHANGE_RSP . Therefore,

to mitigate Responder identity impersonation, if the Requester has received a response with a signature and if there is

no cryptographic binding between the signer of the Responder-signed response and the sender of

PSK_EXCHANGE_RSP , then the Requester should not issue PSK_EXCHANGE . The method of cryptographic binding

between the signer of the Responder-signed response and the sender of PSK_EXCHANGE_RSP is outside the scope of

this specification.

642 Upon receiving PSK_EXCHANGE_RSP , the Requester:

1. Derives the finished_key of the Responder by following the key schedule.

Security Protocol and Data Model (SPDM) Specification DSP0274

160 Published Version 1.3.0

Léon GALL

2. Verifies ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If

verification fails, the Requester terminates the session.

3. If the Responder contributes to session key derivation, such as when the ResponderContext field is

present in the PSK_EXCHANGE_RSP response, it constructs the PSK_FINISH request and sends it to the

Responder.

643 If a successful PSK_EXCHANGE_RSP has been received by the Requester, and the PSK_CAP of the Responder is 10b ,

and the ResponderContext field is present in the PSK_EXCHANGE_RSP response then, for the session ID created by

the PSK_EXCHANGE and PSK_EXCHANGE_RSP messages, the next request shall be PSK_FINISH .

644 10.19 PSK_FINISH request and PSK_FINISH_RSP response messages

645 These messages shall complete the mutually-authenticated handshake between Requester and Responder initiated

by a PSK_EXCHANGE request. The PSK_FINISH request proves to the Responder that the Requester knows the PSK

and has derived the correct session keys. This is achieved by an HMAC value calculated with the finished_key of

the Requester and messages of this session. The Requester shall send PSK_FINISH only if ResponderContext is

present in PSK_EXCHANGE_RSP . Upon receiving a PSK_FINISH request, the Responder shall ensure the session and

the corresponding session ID were created through a PSK_EXCHANGE request and corresponding PSK_EXCHANGE_RSP

response.

646 Table 76 — PSK_FINISH request message format describes the PSK_FINISH request message format:

647 Table 76 — PSK_FINISH request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE7 = PSK_FINISH . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 RequesterVerifyData H
Shall be the data to be verified by the Responder

using the finished_key of the Requester.

648 To calculate RequesterVerifyData , the Requester calculates an HMAC. The key is the finished_key of the

Requester, as described in the Key schedule clause. The data is the hash of the concatenation of all messages sent so

far between the Requester and the Responder. For messages that are encrypted, the plaintext messages are used in

calculating the hash.

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].* (if issued)

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 161

4. [CAPABILITIES].* (if issued)
5. [NEGOTIATE_ALGORITHMS].* (if issued)
6. [ALGORITHMS].* (if issued)
7. [PSK_EXCHANGE].*
8. [PSK_EXCHANGE_RSP].*
9. [PSK_FINISH].* except the RequesterVerifyData field

649 For additional rules, see general ordering rules.

650 Upon receiving the PSK_FINISH request, the Responder derives the finished_key of the Requester and calculates

the HMAC independently in the same manner and verifies that the result matches RequesterVerifyData . If

verification is successful, the Responder constructs the PSK_FINISH_RSP response and sends it to the Requester.

Otherwise, the Responder sends the Requester an ERROR message of ErrorCode=InvalidRequest .

651 Table 77 — Successful PSK_FINISH_RSP response message format describes the successful PSK_FINISH_RSP

response message format:

652 Table 77 — Successful PSK_FINISH_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x67 = PSK_FINISH_RSP . See Table 5 —

SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

653 10.20 HEARTBEAT request and HEARTBEAT_ACK response messages

654 This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The

HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either the KEY_EXCHANGE_RSP or

PSK_EXCHANGE_RSP response messages. The Responder shall terminate the session if session traffic is not received

for two successive HeartbeatPeriod s. Likewise, the Requester shall terminate the session if session traffic, including

ERROR responses, is not received for two successive HeartbeatPeriod s. Session traffic includes encrypted data at

the transport layer. How an SPDM endpoint is informed of encrypted data at the transport layer is outside the scope

of this specification. The Requester can retry HEARTBEAT requests.

655 The timer for the Heartbeat period shall start at either the transmission (for Responders) or the reception (for

Requesters) of either the FINISH_RSP or the PSK_FINISH_RSP response messages. When determining the value of

HeartbeatPeriod , the Responder should ensure this value is sufficiently greater than T1 .

656 For session termination details, see session termination phase.

657 Table 78 — HEARTBEAT request message format describes the message format.

Security Protocol and Data Model (SPDM) Specification DSP0274

162 Published Version 1.3.0

658 Table 78 — HEARTBEAT request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE8 = HEARTBEAT request. See Table 4 —

SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

659 Table 79 — HEARTBEAT_ACK response message format describes the format for the Heartbeat Response.

660 Table 79 — HEARTBEAT_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x68 = HEARTBEAT_ACK response. See Table

5 — SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

661 10.20.1 Heartbeat additional information

662 The transport layer might allow the HEARTBEAT request to be sent from the Responder to the Requester. This is

recommended for transports capable of asynchronous bidirectional communication.

663 10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages

664 This request shall be used to update session keys. There are many reasons for doing this, but an important one is

when the per-record nonce will soon reach its maximum value and roll over. The KEY_UPDATE request can also be

issued by the Responder using the GET_ENCAPSULATED_REQUEST mechanism. A KEY_UPDATE request shall perform

the operation given in Param1 and defined in Table 82 — KEY_UPDATE operations. Because the Responder can also

send this request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only

one KEY_UPDATE request for a single direction shall occur at a time. Until the session key update synchronization

successfully completes, subsequent KEY_UPDATE requests for the same direction shall be considered a retry of the

original KEY_UPDATE request.

665 Table 80 — KEY_UPDATE request message format describes the KEY_UPDATE request message format:

666 Table 80 — KEY_UPDATE request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 163

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xE9 = KEY_UPDATE Request. See Table 4 —

SPDM request codes.

2 Param1 1
Shall indicate the key operation. See Table 82 —

KEY_UPDATE operations.

3 Param2 1

Shall be the requesting SPDM endpoint assigned tag.

This field shall contain a unique number to aid the

responding SPDM endpoint in differentiating

between the original and any retry requests. A retry

request shall contain the same tag number as the

original.

667 Table 81 — KEY_UPDATE_ACK response message format describes the KEY_UPDATE_ACK response message format:

668 Table 81 — KEY_UPDATE_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x69 = KEY_UPDATE_ACK response. See

Table 5 — SPDM response codes.

2 Param1 1

Shall indicate the key operation. This field shall reflect

the Key Operation field of the request. See Table 82

— KEY_UPDATE operations

3 Param2 1
Shall be the tag. This field shall reflect the Tag

number (Param2) from the KEY_UPDATE request.

669 Table 82 — KEY_UPDATE operations describes the KEY_UPDATE operations:

670 Table 82 — KEY_UPDATE operations

Value Operation Description

0 Reserved Reserved.

1 UpdateKey
Shall update only the single-direction key associated with the direction of

the request.

2 UpdateAllKeys Shall update the keys for both directions.

3 VerifyNewKey
Shall ensure that the key update is successful and that old keys can be safely

discarded.

4 - 255 Reserved Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

164 Published Version 1.3.0

671 10.21.1 Session key update synchronization

672 In the key update process, to clarify, the term “sender” means the SPDM endpoint that issued the KEY_UPDATE

request, and the term “receiver” means the SPDM endpoint that received the KEY_UPDATE request. To ensure the key

update process is seamless while still allowing the transmission and reception of records, both sender and receiver

shall follow the prescribed method described in this clause.

673 The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct

keys are used before, during, and after the key update operation. How this is accomplished by the data transport

layer is outside the scope of this specification.

674 Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.

675 The sender shall not use the new transmit key until after reception of the KEY_UPDATE_ACK response.

676 The sender and receiver shall use the new key on the KEY_UPDATE request with the VerifyNewKey command and all

subsequent commands until another key update is performed.

677 In the case of a KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the

KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical

transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

678 If the sender has not received KEY_UPDATE_ACK , the sender can retry or end the session. The sender shall not

proceed to the next step until successfully receiving the corresponding KEY_UPDATE_ACK .

679 Upon the successful reception of the KEY_UPDATE_ACK , the sender shall transmit a KEY_UPDATE request with the

VerifyNewKey operation using the new session keys. The sender can retry until the corresponding KEY_UPDATE_ACK

response is received. However, the sender shall be prohibited, at this point, from restarting this process or going back

to a previous step. Its only recourse in error handling is either to retry the same request or to terminate the session.

680 For UpdateKey , upon successful reception and verification of the KEY_UPDATE with the VerifyNewKey operation,

the receiver can discard the old session keys. For UpdateAllKeys , upon successful reception and verification of the

KEY_UPDATE_ACK with the UpdateAllKeys operation, the sender can discard the old session keys that protect

receiver-sent messages. Upon successful reception and verification of the KEY_UPDATE with the VerifyNewKey

operation, the receiver can discard the old session keys that protect sender-sent messages.

681 In certain scenarios, the receiver might need additional time to process the KEY_UPDATE request such as when

processing data already in its buffer. Thus, the receiver can reply with an ERROR message of ErrorCode=Busy . The

sender should retry the request after a reasonable period of time and with a reasonable number of retries to prevent

premature session termination.

682 Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the

opposite direction. In this case, the aforementioned synchronization process occurs independently but simultaneously

for each direction.

683 Figure 18 — KEY_UPDATE protocol example flow illustrates a typical key update initiated by the Requester to update

its secret. In this example, the Responder and Requester are both capable of message authentication and encryption.

684 Figure 18 — KEY_UPDATE protocol example flow

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 165

685

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateKey,
Tag == 0x01

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateKey,
Tag == 0x01

 { KEY_UPDATE_ACK }::[[S
3
]]

Requester Responder

S3S2 S3S2

S
2,new

Key Operation == VerifyNewKey,
Tag == 0x02

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x02

 { KEY_UPDATE_ACK }::[[S
3
]]

S2

S2

{ Application Data }

{ Application Data }

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and Authenticated
by S

2,new
 and S

3
 depending

on direction.

Legend:

Authenticated and
Encrypted Session

S
2,new

Notice new
secrets used!

686 Figure 19 — KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the

Requester to update all secrets. In this example, the Responder and Requester are both capable of message

authentication and encryption.

687 Figure 19 — KEY_UPDATE protocol change all keys example flow

Security Protocol and Data Model (SPDM) Specification DSP0274

166 Published Version 1.3.0

688

. . .
…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S 0
]]

 { FINISH_RSP }::[[S
1
]]

Key Operation == UpdateAllKeys,
Tag == 0x01

{ KEY_UPDATE }::[[S
2
]]

Key Operation == UpdateAllKeys,
Tag == 0x01

 { KEY_UPDATE_ACK }::[[S
3,new

]]

Requester Responder

S3S2 S3S2

Key Operation == VerifyNewKey,
Tag == 0x02

{ KEY_UPDATE }::[[S
2,new

]]

Key Operation == VerifyNewKey,
Tag == 0x02

S2

S2

{ Application Data }

{ Application Data }

Encrypted and authenticated
by S

2
 and S

3
 depending on

direction.

Encrypted and authenticated
by S

2,new
 and S

3,new
depending

on direction.

Legend:

Authenticated and
Encrypted Session

Notice new
secrets used!

S
3,new

S
2,new S

3,new
S

2,new

S3
S3

 { KEY_UPDATE_ACK}::[[S
3,new

]]

689 10.21.2 KEY_UPDATE transport allowances

690 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport can

allow or disallow the KEY_UPDATE to be sent asynchronously without using the GET_ENCAPSULATED_REQUEST

mechanism. The transport should define the actual method to use. Such a definition is outside the scope of this

specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 167

691 Figure 20 — KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a

limitation whereby only a single device (often called the “primary”) is allowed to initiate all transactions on that bus.

This physical transport specifies that a Responder shall alert the Requester through a side-band mechanism and to

utilize the GET_ENCAPSULATED_REQUEST mechanism to fulfill SPDM-related requirements. Note also in this example

that the Requester and Responder are both capable of encryption and message authentication.

692 Figure 20 — KEY_UPDATE protocol example flow 2

Security Protocol and Data Model (SPDM) Specification DSP0274

168 Published Version 1.3.0

693

…

KEY_EXCHANGE

KEY_EXCHANGE_RSP

{ FINISH }::[[S
0
]]

Request == KEY_UPDATE
Key Operation == UpdateKey,

Tag == 0x01

{ ENCAPSULATED_REQUEST }
::[[S3]]

Response == KEY_UPDATE_ACK
Key Operation == UpdateKey,

Tag == 0x01

{ DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

Requester Responder

S3S2 S3S2

S3

S3

{ Application Data }

{ Application Data }

Responder seeks attention from
Requester via Transport-specific

Methodology

{ GET_ENCAPSULATED_REQUEST }
::[[S2]]

Request == KEY_UPDATE
Key Operation == VerifyNewKey,

Tag == 0x02

 { ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Response == KEY_UPDATE_ACK
Key Operation == VerifyNewKey,

Tag == 0x02

 { DELIVER_ENCAPSULATED_RESPONSE }
::[[S2]]

No More Requests

{ ENCAPSULATED_RESPONSE_ACK }
::[[S3, new]]

Legend:

Authenticated and
Encrypted Session

{ FINISH_RSP }::[[S
1
]]

Encrypted and Authenticated
by S

2
 and S

3
 depending on

direction.

S
3,new

S
3,new

Encrypted and
Authenticated by S

2

and S
3,new

 depending
on direction.

Notice new
secrets used!

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 169

694 10.22 GET_ENCAPSULATED_REQUEST request and
ENCAPSULATED_REQUEST response messages

695 In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request

messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that

transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester and

Responder as far as the transport is concerned but enables the Responder to issue its own requests to the Requester.

Message encapsulation is only allowed in certain scenarios, as described in various clauses in other parts of this

specification. For example, Figure 21 — Session-based mutual authentication example and Figure 22 — Optimized

session-based mutual authentication example illustrate the use of this scheme.

696 A Requester issues a GET_ENCAPSULATED_REQUEST request message to retrieve an encapsulated SPDM request

message from the Responder. The response to this message is an ENCAPSULATED_REQUEST that encapsulates the

SPDM request message as if the Responder were acting as a Requester. Table 83 — GET_ENCAPSULATED_REQUEST

request message format describes the request message format. The Responder shall use the same SPDM version the

Requester used.

697 10.22.1 Encapsulated request flow

698 The encapsulated request flow starts with the Requester sending a GET_ENCAPSULATED_REQUEST message and ends

with an ENCAPSULATED_RESPONSE_ACK that carries no more encapsulated requests. The GET_ENCAPSULATED_REQUEST

shall only be issued once, with the exception of retries. This is also illustrated in Figure 21 — Session-based mutual

authentication example.

699 When the Requester issues a GET_ENCAPSULATED_REQUEST , the encapsulated request flow shall start. Upon the

successful reception of the ENCAPSULATED_REQUEST and when the encapsulated response is ready, the Requester

shall continue the flow by issuing the DELIVER_ENCAPSULATED_RESPONSE . During this period, the Requester shall not

issue any other message, with the exception of GET_VERSION , RESPOND_IF_READY , or

DELIVER_ENCAPSULATED_RESPONSE . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE ,

RESPOND_IF_READY , or GET_VERSION , the Responder should respond with an ERROR message of

ErrorCode=RequestInFlight .

700 10.22.2 Optimized encapsulated request flow

701 The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of a

GET_ENCAPSULATED_REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-

Exchange responses; thereby removing the obligation on the Requester to issue a GET_ENCAPSULATED_REQUEST .

When the Responder includes an encapsulated request with a Session-Secrets-Exchange response, the optimized

encapsulated request flow shall start. See Figure 22 — Optimized session-based mutual authentication example.

702 When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated

request, the Requester shall send a DELIVER_ENCAPSULATED_RESPONSE after processing the encapsulated request.

The Requester shall not issue any other requests except for DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY ,

Security Protocol and Data Model (SPDM) Specification DSP0274

170 Published Version 1.3.0

and GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE ,

RESPOND_IF_READY , or GET_VERSION , the Responder should respond with an ERROR message of

ErrorCode=RequestInFlight .

703 Figure 21 — Session-based mutual authentication example shows an example of session-based mutual

authentication:

704 Figure 21 — Session-based mutual authentication example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 171

705

Session-Based
MUTUAL AUTH

ResponderRequester

GET_VERSION

GET_CAPABILITIES

CAPABILITIES

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_DIGESTS

DIGESTS

GET_CERTIFICATE

CERTIFICATE

KEY_EXCHANGE

KEY_EXCHANGE_RSP()

ENCAPSULATED_REQUEST (GET_DIGEST)

ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK ()

FINISH

FINISH_RSP

GET_ENCAPSULATED_REQUEST()

DELIVER_ENCAPSULATED_RESPONSE (DIGEST)

VERSION

Encapsulated

Request

Flow

706 Figure 22 — Optimized session-based mutual authentication example shows an example of optimized session-based

mutual authentication:

707 Figure 22 — Optimized session-based mutual authentication example

Security Protocol and Data Model (SPDM) Specification DSP0274

172 Published Version 1.3.0

708

ResponderRequester

Session-Based
MUTUAL AUTH

ENCAPSULATED_RESPONSE_ACK()

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE)

ENCAPSULATED_RESPONSE_ACK(GET_CERTIFICATE)

DELIVER_ENCAPSULATED_RESPONSE(DIGEST)

KEY_EXCHANGE_RSP+GET_DIGEST

KEY_EXCHANGE

CERTIFICATE

GET_CERTIFICATE

DIGESTS

GET_DIGESTS

NEGOTIATE_ALGORITHMS

ALGORITHMS

GET_VERSION

VERSION

GET_CAPABILITIES

CAPABILITIES

FINISH_RSP

FINISH

Optimized

Encapsulated

Request

Flow

709 Table 83 — GET_ENCAPSULATED_REQUEST request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 173

Byte offset Field Size (bytes) Description

1 RequestResponseCode 1
Shall be 0xEA = GET_ENCAPSULATED_REQUEST . See

Table 4 — SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

710 Table 84 — ENCAPSULATED_REQUEST response message format describes the format of this response.

711 Table 84 — ENCAPSULATED_REQUEST response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6A = ENCAPSULATED_REQUEST response.

See Table 5 — SPDM response codes.

2 Param1 1

Shall be the Responder-allocated Request ID.

This field should be unique to help the Responder

match response to request.

3 Param2 1 Reserved.

4 EncapsulatedRequest Variable

Shall be the SPDM Request Message.

The value of this field shall represent a valid SPDM

request message. The length of this field is

dependent on the SPDM Request message. The field

shall start with the SPDMVersion field. The

SPDMVersion field of the Encapsulated Request

shall be the same as the SPDMVersion of the

ENCAPSULATED_REQUEST response. Both

GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid

requests, and the Requester should respond with an

ERROR message of ErrorCode=UnexpectedRequest

if these requests are encapsulated.

712 10.22.3 Triggering GET_ENCAPSULATED_REQUEST

713 Once a session has been established, the Responder might wish to send a request asynchronously, such as a

KEY_UPDATE request, but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon

receiving the alert, the Requester shall issue a GET_ENCAPSULATED_REQUEST to the Responder.

714 If the physical transport cannot define an alerting mechanism to the Requester, the Requester can still use the

encapsulated request flow as a polling mechanism by periodically sending the GET_ENCAPSULATED_REQUEST

Security Protocol and Data Model (SPDM) Specification DSP0274

174 Published Version 1.3.0

message. If the Responder receives a GET_ENCAPSULATED_REQUEST and has no request pending, the Responder

should respond with an ERROR message of ErrorCode=NoPendingRequests .

715 10.22.4 Additional constraints

716 The GET_ENCAPSULATED_REQUEST and ENCAPSULATED_REQUEST messages shall only be allowed to encapsulate

certain requests in certain scenarios. For details about these constraints, see the Session, Basic mutual authentication,

and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

717 10.23 DELIVER_ENCAPSULATED_RESPONSE request and
ENCAPSULATED_RESPONSE_ACK response messages

718 As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding response.

That mechanism shall be the DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages. The

DELIVER_ENCAPSULATED_RESPONSE , which is an SPDM request, encapsulates the response and delivers it to the

Responder. The ENCAPSULATED_RESPONSE_ACK , which is an SPDM response, acknowledges the reception of the

encapsulated response.

719 Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the

ENCAPSULATED_RESPONSE_ACK response message.

720 In an encapsulated request flow, the Requester shall not send any other requests after the successful reception of the

first encapsulated request, with the exception of DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY , or

GET_VERSION . If a Responder receives a request other than DELIVER_ENCAPSULATED_RESPONSE , RESPOND_IF_READY ,

or GET_VERSION after the successful reception of the first DELIVER_ENCAPSULATED_RESPONSE , the Responder should

respond with an ERROR message of ErrorCode=RequestInFlight .

721 If Param2 of ENCAPSULATED_RESPONSE_ACK is set to 0x00 or 0x02 , then this shall be the final encapsulated flow

message that the Responder shall issue and the encapsulated flow shall be completed.

722 The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to

process the response before delivering the next request. See Additional information.

723 Table 85 — DELIVER_ENCAPSULATED_RESPONSE request message format describes the request message format.

724 Table 85 — DELIVER_ENCAPSULATED_RESPONSE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xEB = DELIVER_ENCAPSULATED_RESPONSE

Request. See Table 4 — SPDM request codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 175

Byte offset Field Size (bytes) Description

2 Param1 1

Shall be the Request ID.

The Requester shall use the same Request ID (that

is, Param1) that was provided by the Responder in

the corresponding ENCAPSULATED_REQUEST or

ENCAPSULATED_RESPONSE_ACK .

If the value was not provided by the Responder (for

example, in the first message of an optimized

encapsulated request flow), Request ID shall be 0.

3 Param2 1 Reserved.

4 EncapsulatedResponse Variable

Shall be the SPDM Response Message.

The value of this field shall represent a valid SPDM

response message. The length of this field is

dependent on the SPDM Response message. The

field shall start with the SPDMVersion field. The

SPDMVersion field of the Encapsulated Response

shall be the same as the SPDMVersion of the

DELIVER_ENCAPSULATED_RESPONSE request. Both

ENCAPSULATED_REQUEST and

ENCAPSULATED_RESPONSE_ACK shall be invalid

responses, and the Responder should respond with

an ERROR message of

ErrorCode=InvalidResponseCode if these

responses are encapsulated.

725 Table 86 — ENCAPSULATED_RESPONSE_ACK response message format describes the response message format.

726 Table 86 — ENCAPSULATED_RESPONSE_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6B = ENCAPSULATED_RESPONSE_ACK . See

Table 5 — SPDM response codes.

2 Param1 1

Shall be the Request ID.

If EncapsulatedRequest is present and if

Param2 = 0x01 , this field should contain a unique

non-zero number to help the Responder match

response to request. Otherwise, this field shall be

0x00 .

Security Protocol and Data Model (SPDM) Specification DSP0274

176 Published Version 1.3.0

Byte offset Field Size (bytes) Description

3 Param2 1

Shall indicate the payload Type.

If set to 0x00 , no request message is encapsulated

and the EncapsulatedRequest field is absent.

If set to 0x01 , the EncapsulatedRequest field

follows.

If set to 0x02 , a 1-byte EncapsulatedRequest field

follows containing the SlotID of the Requester’s

certificate chain used for mutual authentication. The

value in this field shall be between 0 and 7 inclusive.

All other values reserved.

4 AckRequestID 1

Shall be the same as Param1 of the

DELIVER_ENCAPSULATED_RESPONSE request message.

The purpose of this field is to help the Requester

distinguish between new requests and retries.

5 Reserved 3 Reserved.

8 EncapsulatedRequest Variable

If Param2 = 0x01 , the value of this field shall

represent a valid SPDM request message. The length

of this field is dependent on the SPDM Request

message. The field shall start with the SPDMVersion

field. The SPDMVersion field of the

EncapsulatedRequest shall be the same as the

SPDMVersion of the ENCAPSULATED_REQUEST

response. Both GET_ENCAPSULATED_REQUEST and

DELIVER_ENCAPSULATED_RESPONSE shall be invalid

requests, and the Requester shall respond with an

ERROR message of ErrorCode=UnexpectedRequest

if these requests are encapsulated.

If Param2 = 0x02 , the value of this field shall contain

the SlotID corresponding to the certificate chain

the Requester shall use for mutual authentication.

The field size shall be 1 byte.

If Param2 = 0x00 , this field shall be absent.

727 10.23.1 Additional information

728 Using unique Request ID s is highly recommended to aid the Responder in differentiating between retries and new

DELIVER_ENCAPSULATED_RESPONSE messages. For example, if the Responder sent an ENCAPSULATED_RESPONSE_ACK

message with a new encapsulated request and the message failed in transmission over the wire, the Requester would

send a retry but that retry would still contain the response to the previous encapsulated request. Without a different

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 177

Request ID , the Responder might mistake the retried DELIVER_ENCAPSULATED_RESPONSE for a new request. This

mistake might cause further mistakes to occur.

729 The response timing for ENCAPSULATED_RESPONSE_ACK shall have the same timing constraints as the encapsulated

request. For example, if the encapsulated request is CHALLENGE_AUTH , the Responder, too, would adhere to CT

timing rules when it has a subsequent request. If necessary, the Requester can return an ERROR message of

ErrorCode=ResponseNotReady .

730 The DELIVER_ENCAPSULATED_RESPONSE and ENCAPSULATED_RESPONSE_ACK messages shall only be allowed to

encapsulate certain requests in certain scenarios. For details about these constraints, see the Session, Basic mutual

authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

731 10.23.2 Allowance for encapsulated requests

732 Only certain requests can be encapsulated in any encapsulated request flow. Their corresponding responses,

including ERROR , can also be encapsulated. Additionally, these requests are only allowed in certain flows as

described in various parts of this specification. This consolidated list shall be the requests that are allowed to be

encapsulated:

• CHALLENGE

• GET_CERTIFICATE

• GET_DIGESTS

• KEY_UPDATE

• SUBSCRIBE_EVENT_TYPES

• SEND_EVENT

• GET_SUPPORTED_EVENT_TYPES

• GET_ENDPOINT_INFO

733 If a request is not in this list, the request and its corresponding response shall be prohibited from being encapsulated.

734 10.23.3 Certain error handling in encapsulated flows

735 These clauses describe special error scenarios and their handling requirements.

736 10.23.3.1 Response not ready

737 In an encapsulated request flow, a Responder can issue an encapsulated request that can take up to CT time to

fulfill. When the Requester delivers an ERROR message of ErrorCode=ResponseNotReady , the Responder shall not

encapsulate another request by setting Param2 in ENCAPSULATED_RESPONSE_ACK to a value of zero. This effectively

and naturally terminates the encapsulated request flow.

738 The Responder should wait the amount of time indicated in the ERROR message for the particular error code.

739 When the timeout is near expiration, the Responder should perform the following:

1. Trigger its transport-defined alert mechanism to initiate the Encapsulated request flow.

Security Protocol and Data Model (SPDM) Specification DSP0274

178 Published Version 1.3.0

2. When the Requester issues a GET_ENCAPSULATED_REQUEST , the Responder should encapsulate the

RESPOND_IF_READY request populated with the information from the previous ERROR with

ResponseNotReady message.

◦ If the Responder does not do this, the Requester can drop the original response.

740 10.23.3.2 Timeouts

741 If the Responder is not receiving a response to its encapsulated request, the Responder can trigger its transport-

defined alert mechanism. When this occurs, if the Requester is in the middle of an existing encapsulated request flow

with the same Responder, then the existing flow shall terminate and the Requester shall restart the encapsulated

request flow.

742 Both Responder and Requester should comply with the timing requirements prescribed in Timing requirements.

743 10.24 END_SESSION request and END_SESSION_ACK response messages

744 This request shall terminate a session. See the Session termination phase clause.

745 Table 87 — END_SESSION request message format and Table 88 — End session request attributes describe this

format.

746 Table 87 — END_SESSION request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xEC = END_SESSION . See Table 4 — SPDM

request codes.

2 Param1 1 See Table 88 — End session request attributes.

3 Param2 1 Reserved.

747 Table 88 — End session request attributes

Bit offset Value Field Description

0 0
Negotiated State

Preservation Indicator

If the Responder supports Negotiated State caching

(CACHE_CAP=1), the Responder shall preserve the

cached Negotiated State. Otherwise, this field shall

be ignored.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 179

Bit offset Value Field Description

0 1
Negotiated State

Preservation Indicator

If the Responder supports Negotiated State caching

(CACHE_CAP=1), the Responder shall also clear the

cached Negotiated State as part of session

termination. If there is no cached Negotiated State to

be cleared due to a previous END_SESSION request

message with this field set to 1, this field shall be

ignored. If the Responder does not support

Negotiated State caching (CACHE_CAP=0), this field

shall be ignored.

[7:1] Reserved Reserved Reserved.

748 Table 89 — END_SESSION_ACK response message format describes the response message.

749 Table 89 — END_SESSION_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6C = END_SESSION_ACK . See Table 5 —

SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

750 Figure 23 — END_SESSION protocol flow shows the END_SESSION protocol flow:

751 Figure 23 — END_SESSION protocol flow

Security Protocol and Data Model (SPDM) Specification DSP0274

180 Published Version 1.3.0

752

ResponderRequester

KEY_EXCHANGE

KEY_EXCHANGE_RSP

FINISH(K1)

FINISH_RSP(K1)

END_SESSION(K1)

END_SESSION_ACK(K1)

Enables authenticated and/or
 encrypted data transfer (K1)

753 10.25 Certificate provisioning

754 These clauses describe the request and response messages used for provisioning a device with certificate chains.

Provisioning of Slot 0 should only be done in a trusted environment (such as a secure manufacturing environment).

755 10.25.1 GET_CSR request and CSR response messages

756 The GET_CSR request message shall retrieve a Certificate Signing Request (CSR) from the Responder.

757 A Responder shall only process a GET_CSR request if it already possesses an appropriate asymmetric key pair for the

signature suite (that is, the algorithms and associated parameters) required by the request. If more than one

signature suite are supported, selection of the appropriate signature suite (and, thus, the key pair) shall be

determined via the most recent ALGORITHMS response. Upon receiving a GET_CSR request, a Responder shall

generate and sign a CSR for the corresponding public key. The CSR shall be populated with a combination of

attributes provided by the Requester via the RequesterInfo field and other attributes contributed by the Responder

itself. The RequesterInfo format shall comply with the PKCS #10 specification in RFC 2986, specifically the

CertificationRequestInfo format. OEM extensions (that is, OEM OIDs) shall be encoded using the Attributes

type. The Responder shall return an ERROR message of ErrorCode=InvalidRequest if it cannot support all the

fields included in the RequesterInfo . If the Responder receives a GET_CSR request while another GET_CSR request

is outstanding and if Overwrite is not specified (that is, Bit 7 of Param2 is set to 0b), the Responder can either

overwrite the existing request and process the new GET_CSR request or respond with an ERROR message of

ErrorCode=Busy . If the Responder receives a GET_CSR request while another GET_CSR request is outstanding and

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 181

if Overwrite is specified (that is, Bit 7 of Param2 is set to 1b), the Responder shall overwrite the existing request

and process the new GET_CSR request.

758 If the device requires a reset to complete the GET_CSR request, the device shall respond with an ERROR message of

ErrorCode=ResetRequired with Bit[2:0] of the Error Data field set to a Responder-assigned CSRTrackingTag

in the range of 1 to 7 , inclusive. If the Responder requires a reset to process a GET_CSR request, but does not have

any available CSRTrackingTag s, it shall respond with an ERROR message of ErrorCode=Busy . After the Responder

has processed the reset, the Requester sends a GET_CSR request with Bit[5:3] in Param2 set to the

CSRTrackingTag that the Responder provided in the corresponding ERROR response, which signals to the

Responder to send the CSR response associated with the previous request. After a Requester has retrieved a CSR

response from a previous GET_CSR request, the Responder can discard any associated CSR data and reuse the

CSRTrackingTag . If the Requester sends a GET_CSR request with a CSRTrackingTag that the Responder did not

generate, the Responder shall either respond with an ERROR message of ErrorCode=UnexpectedRequest or drop

the request.

759 The attributes of the resulting CSR and their values shall comply with the clauses presented in SPDM certificate

requirements and recommendations. If the GET_CSR request conforms to the DeviceCert model, the resulting CSR

shall be for a Device Certificate. If the GET_CSR request conforms to the AliasCert model, the resulting CSR shall

be for a Device Certificate CA. If the GET_CSR request conforms to the GenericCert model, the resulting CSR shall

be for a Generic Leaf Certificate. See Identity provisioning for more details.

760 Table 90 — GET_CSR request message format shows the GET_CSR request message format.

761 Table 92 — CSR response message format shows the CSR response message format.

762 The CSRdata contained in a successful CSR response should be signed by an appropriate Certificate Authority. The

details of the Public Key Infrastructure used to verify and sign the CSR and make the final certificate available for

provisioning are outside the scope of this specification.

763 Table 90 — GET_CSR request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xED = GET_CSR . See Table 4 — SPDM

request codes.

2 Param1 1

KeyPairID. The value of this field shall be the key pair

ID identifying the desired asymmetric key pair to use

in generating the CSR. If MULTI_KEY_CONN_RSP is

false, the value shall be zero; otherwise, the value

shall be non-zero.

3 Param2 1
Request Attributes. Shall be the format as Get CSR

request attributes defines.

4 RequesterInfoLength 2
Shall be the length of the RequesterInfo field in

bytes provided by the Requester. This field can be 0 .

Security Protocol and Data Model (SPDM) Specification DSP0274

182 Published Version 1.3.0

Byte offset Field Size (bytes) Description

6 OpaqueDataLength 2

Shall be the size of the OpaqueData field that

follows in bytes. The value should not be greater

than 1024 bytes. Shall be 0 if no OpaqueData is

provided.

8 RequesterInfo RequesterInfoLength
Shall be the optional information provided by the

Requester. This field shall be DER-encoded.

8 +

RequesterInfoLength
OpaqueData OpaqueDataLength

The Requester can include vendor-specific

information for the Responder to generate the CSR.

This field is optional. If present, this field shall

conform to the selected opaque data format in

OtherParamsSelection .

764 Table 91 — Get CSR request attributes

Bit offset Field Description

[2:0] CSRCertModel

This field indicates the desired certificate model of the CSR. The

value and format of this field shall be the same as CertModel in

Certificate info.

[5:3] CSRTrackingTag

If the Requester is requesting a previously requested GET_CSR

after a reset has completed, this field shall contain the

CSRTrackingTag of the associated GET_CSR request.

6 Reserved Reserved.

7 Overwrite

If set, the Responder shall stop processing any existing GET_CSR

request and overwrite it with this request, and the Responder shall

discard all previously generated CSRTrackingTag s.

765 The CSRCertModel field in GET CSR request attributes helps the Responder determine the content of the CSR. For

example, if the CSRCertModel indicates a device certificate model, the Responder may add additional OIDs such as

those OIDs defined in this specification. If the CSRCertModel indicates an alias certificate model, the Responder sets

the CA constraint to TRUE in the CSR.

766 Table 92 — CSR response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6D = CSR . See Table 5 — SPDM response

codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 183

Byte offset Field Size (bytes) Description

4 CSRLength 2 Shall be the length of the CSRdata in bytes.

6 Reserved 2 Reserved.

8 CSRdata CSRLength
Shall be the requested contents of the CSR. This field

shall be DER-encoded.

767 The CSRdata format shall comply with the PKCS #10 specification in RFC 2986, specifically the

CertificationRequest format. When the Responder supports multiple asymmetric keys (MULTI_KEY_CONN_RSP is

true) in the SPDM connection, the SubjectPublicKeyInfo as defined in RFC 5280 shall contain values consistent

with the requested asymmetric key pair (KeyPairID) in the corresponding request.

768 10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

769 For Slot 0 provisioning, the Requester should issue SET_CERTIFICATE only in a trusted environment (such as a

secure manufacturing environment). For slots 1-7, if the provisioning happens in a trusted environment, the

Requester should issue SET_CERTIFICATE inside a secure session. If the provisioning for slots 1-7 is done outside of

a trusted environment, the Requester shall issue SET_CERTIFICATE inside a secure session. Mutual authentication

and/or other means for checking the authorization of the Requester that issues the SET_CERTIFICATE request

should be performed. Requester authorization is outside the scope of this specification. The device might require a

reset to complete the SET_CERTIFICATE request, potentially so that the device can generate AliasCert certificates

using lower firmware layers. If the device requires a reset to complete the SET_CERTIFICATE request, then the device

shall respond with an ERROR message of ErrorCode=ResetRequired . If the device temporarily cannot write to a

slot, including in the case when it receives overlapping SET_CERTIFICATE requests from different Requesters, then

the device shall respond with an ERROR message of ErrorCode=Busy .

770 If Bit 7 of SET_CERTIFICATE . Param1 is set to 1 , the Responder shall erase the certificate chain present in the

slot identified by bits [3:0] of SET_CERTIFICATE . Param1 and report it as unpopulated until it is re-provisioned. If the

operation completes successfully, the Responder shall respond with a SET_CERTIFICATE_RSP response message with

bits [3:0] of Param1 identifying the SlotID of the slot that was erased. If the operation failed, the Responder shall

respond with an ERROR message of ErrorCode=OperationFailed .

771 Table 93 — SET_CERTIFICATE request message format shows the SET_CERTIFICATE request message format.

772 Table 95 — Successful SET_CERTIFICATE_RSP response message format shows the SET_CERTIFICATE_RSP response

message format.

773 Table 93 — SET_CERTIFICATE request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0xEE = SET_CERTIFICATE . See Table 4 —

SPDM request codes.

Security Protocol and Data Model (SPDM) Specification DSP0274

184 Published Version 1.3.0

Léon GALL

Léon GALL

Byte offset Field Size (bytes) Description

2 Param1 1
Request attributes. Shall be the format that the set

certificate request attributes table defines.

3 Param2 1

KeyPairID. The value of this field shall be the unique

key pair number identifying the desired asymmetric

key pair to associate with SlotID . If support for

multiple asymmetric keys (MULTI_KEY_CONN_RSP) is

false, the value of this field shall be zero.

4 CertChain Variable

Shall be the contents of the target certificate chain,

as specified in Certificates and certificate chains, with

the additional requirement that it include the root

certificate. If the Responder uses the AliasCert

model (ALIAS_CERT_CAP=1b in its CAPABILITIES

response) and SetCertModel is set to AliasCert ,

this field shall contain a partial certificate chain from

the root CA to the Device Certificate CA. If the

Request attributes . Erase bit is set, this field

shall be absent.

774 Table 94 — Set certificate request attributes

Bit offset Field Description

[3:0] SlotID
The certificate slot where the new certificate is written. The value in

this field shall be between 0 and 7 inclusive.

[6:4] SetCertModel

This field indicates the certificate model of the certificate chain.

The value and format of this field shall be the same as CertModel

in Certificate info. The value in this field shall match the value in

the CSRCertModel field from the corresponding GET_CSR

request.

7 Erase

If set, the certificate chain in the certificate slot identified by bits

[3:0] shall be deleted. Additionally, if this bit is set, the CertChain

field shall be absent and the value of SetCertModel shall be zero.

775 The Responder should verify that contents of the certificate chain meet the requirements in this specification for the

requested certificate model and key pair.

776 Table 95 — Successful SET_CERTIFICATE_RSP response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x6E = SET_CERTIFICATE_RSP . See Table 5

— SPDM response codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 185

Byte offset Field Size (bytes) Description

2 Param1 1

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID where the new

certificate is written. If the Erase bit is set in the

Request attributes field, this field shall contain

the SlotID of the slot that was erased. The value in

this field shall be between 0 and 7 inclusive.

3 Param2 1 Reserved.

777 10.26 Large SPDM message transfer mechanism

778 A large SPDM message is an SPDM message whose size is either greater than the DataTransferSize of the

receiving SPDM endpoint or greater than the transmit buffer size of the sending SPDM endpoint. These clauses

provide a transport-agnostic mechanism to transfer large SPDM messages. This mechanism will be used only if the

size of an SPDM message exceeds either the DataTransferSize of the receiving SPDM endpoint or the transmit

buffer size of the sending SPDM endpoint. Additionally, the transport may provide an alternative method to transfer

large SPDM messages. For SPDM messages that are less than or equal to both the DataTransferSize of the

receiving SPDM endpoint and the transmit buffer size of the sending SPDM endpoint, the sending SPDM endpoint

shall not utilize this transfer mechanism.

779 This transfer mechanism divides a large SPDM message into smaller fragments called chunks. The chunks shall be

numbered and shall be transferred in sequence. The chunks and their sequence of transfer are described thus:

• The first chunk shall be assigned a numeric value of 0, the second chunk shall be assigned a numeric value of 1,

the third chunk shall be assigned a numeric value of 2, and this pattern shall continue up to and including the

last chunk. Each of these numeric values is called a chunk sequence number.

• The first chunk shall contain the first set of bytes of the large SPDM message, the second chunk shall contain the

second set of bytes, the third chunk shall contain the third set of bytes, and this pattern shall continue up to and

including the last chunk.

• All chunks shall represent all bytes of the large SPDM message without altering the message in any way.

• The sequence of transfer shall start with chunk sequence number 0 and shall continue with sequentially

increasing chunk sequence numbers up to and including the last chunk.

• CHUNK_SEND , CHUNK_GET , and their corresponding Responses shall be used to transfer these chunks.

780 The ChunkSeqNo fields indicate the chunk sequence number for a given chunk.

781 The requests and responses, which these clauses define, handle the transfer of each chunk.

782 10.26.1 CHUNK_SEND request and CHUNK_SEND_ACK response message

783 The CHUNK_SEND request and the CHUNK_SEND_ACK response shall be used to send a request to an SPDM endpoint

when the size of the request is greater than either the DataTransferSize of the receiving SPDM endpoint or the

transmit buffer size of the sending SPDM endpoint.

Security Protocol and Data Model (SPDM) Specification DSP0274

186 Published Version 1.3.0

784 Table 96 — CHUNK_SEND request format describes the format for the request.

785 Table 97 — Chunk sender attributes describes the chunk sender attributes.

786 Table 96 — CHUNK_SEND request format table

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x85 = CHUNK_SEND request. See Table 4 —

SPDM request codes.

2 Param1 1
Shall be the Request Attributes. See Table 97 —

Chunk sender attributes.

3 Param2 1

Shall be the handle. This field should uniquely

identify the transfer of a large SPDM message. The

value of this field shall be the same for all chunks of

the same large SPDM message. The value of this field

should either sequentially increase or sequentially

decrease with each large SPDM message and with

the expectation that it will wrap around after

reaching the maximum or minimum value,

respectively, of this field.

4 ChunkSeqNo 2
Shall identify the chunk sequence number associated

with SPDMchunk .

6 Reserved 2 Reserved.

8 ChunkSize 4
Shall indicate the size of SPDMchunk . See Additional

chunk transfer requirements.

12 LargeMessageSize L0 = 0 or 4

Shall indicate the size of the large SPDM message

being transferred. This field shall only be present

when ChunkSeqNo is zero and shall have a non-zero

value. The value of this field shall be greater than the

DataTransferSize of the receiving SPDM endpoint.

12 + L0 SPDMchunk Variable
Shall contain the chunk of the large SPDM request

message associated with ChunkSeqNo .

787 Table 97 — Chunk sender attributes

Bit offset Field Description

0 LastChunk

If set, the chunk indicated by ChunkSeqNo shall

represent the last chunk of the large SPDM

message.

[7:1] Reserved Reserved.

788 Table 98 — CHUNK_SEND_ACK response message format describes the format for the response.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 187

789 Table 98 — CHUNK_SEND_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x05 = CHUNK_SEND_ACK response. See Table 5 —

SPDM response codes.

2 Param1 1
Shall be the Response attributes. See Table 99 —

Chunk receiver attributes.

3 Param2 1

Shall contain the handle from the corresponding

CHUNK_SEND request. This field should uniquely

identify the transfer of a large SPDM message. The

value of this field shall be the same for all chunks of

the same SPDM message.

4 ChunkSeqNo 2
Shall be the same as ChunkSeqNo in the

corresponding request.

6 ResponseToLargeRequest Variable

Shall be present on the last chunk (that is, when

LastChunk is set), or when the

EarlyErrorDetected bit in Param1 is set. This field

shall contain the response to the large SPDM request

message. When the EarlyErrorDetected bit in

Param1 is set, this field shall contain an ERROR

message.

790 Table 99 — Chunk receiver attributes describes the chunk receiver attributes:

791 Table 99 — Chunk receiver attributes

Bit offset Field Description

0 EarlyErrorDetected

If set, the receiver of a large SPDM

request message detected an error in

the Request before the last chunk was

received. If set, the sender of the large

SPDM request message shall terminate

the transfer of any remaining chunks.

After addressing the issue, the sender

of the failed large SPDM request

message can transfer the fixed large

SPDM request message as a new

transfer.

[7:1] Reserved Reserved.

792 Table 98 — CHUNK_SEND_ACK response message format describes the format for the response.

793 Upon reception of the last chunk, the receiving SPDM endpoint shall respond with the response corresponding to the

large SPDM request message in ResponseToLargeRequest . If placing the response in ResponseToLargeRequest

Security Protocol and Data Model (SPDM) Specification DSP0274

188 Published Version 1.3.0

causes the size of the CHUNK_SEND_ACK to exceed the DataTransferSize , the receiving end point shall, instead,

respond to CHUNK_SEND with an ERROR message of ErrorCode=LargeResponse . An ERROR message of

ErrorCode=LargeResponse shall not be allowed in ResponseToLargeRequest . ERROR messages with other error

codes can be placed in ResponseToLargeRequest to distinguish between an ERROR message to the CHUNK_SEND

request and an ERROR message that is a response to the large SPDM request message.

794 Figure 24 — Large SET_CERTIFICATE example illustrates the sending of a large SPDM request message to a

Responder.

795 Figure 24 — Large SET_CERTIFICATE example

796

Large SET_CERTIFICATE Message

SPDM Header

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Requester Responder

CHUNK_SEND
Handle 5
Chunk Sequence 0
Chunk Size 250 Bytes
Large Message Size 800 Bytes
Chunk 0 Data

(DataTransferSize 266 Bytes)

Total Message Size = 800

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 0

CHUNK_SEND
Handle 5
Chunk Sequence 1
Chunk Size 254 Bytes
Chunk 1 Data

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 1

CHUNK_SEND
Handle 5
Chunk Sequence 3
Last Chunk
Chunk Size 42 Bytes
Chunk 3 Data

...

Handle 5
Chunk Sequence 3
Last Chunk
Response: SET_CERTIFICATE_RSP

CHUNK_SEND_ACK

Chunk Size is DataTransferSize minus
the sizes of all the fields (except for SPDMchunk) of
CHUNK_SEND_REQUEST. Thus, 266 - 12 = 254 bytes.

Chunk Sequence 0 contains an extra field. Thus,
the Chunk Size for the first chunk is 266 - 16 = 250 bytes.

SET_CERTIFICATE_RSP

SPDM Header

797 10.26.2 CHUNK_GET request and CHUNK_RESPONSE response message

798 CHUNK_GET request and CHUNK_RESPONSE response shall be used to retrieve a Large SPDM Response from an SPDM

endpoint when the size of the Response is greater than the DataTransferSize of the SPDM endpoint receiving the

Response.

799 When responding to a Request of any size, if the corresponding response will be a Large SPDM Response, the

responding SPDM endpoint shall respond with an ERROR message of ErrorCode=LargeResponse . This ERROR

message contains a handle to uniquely identify the given Large SPDM Response. The handle shall be used for all

CHUNK_GET Requests retrieving the same large SPDM message. The value of the handle is indicated in the Handle

field of this ERROR message.

800 Table 100 — CHUNK_GET request format describes the format for the request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 189

801 Table 100 — CHUNK_GET request format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x86 = CHUNK_GET request. See Table 4 —

SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1

Shall contain a handle. This field shall be the same

value as given in the Handle field of the ERROR

message of ErrorCode=LargeResponse .

4 ChunkSeqNo 2
Shall indicate the desired chunk sequence number of

the Large SPDM Response to retrieve.

802 Table 101 — CHUNK_RESPONSE response format describes the format for the response.

803 Table 101 — CHUNK_RESPONSE response format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
Shall be 0x06 = CHUNK_RESPONSE response. See

Table 5 — SPDM response codes.

2 Param1 1
Shall be the Response attributes. See Table 97 —

Chunk sender attributes.

3 Param2 1

Shall be the handle. This field shall be the same for

all chunks of the same Large SPDM Response. The

value of this field shall be the same value as in

Param2 field of CHUNK_GET .

4 ChunkSeqNo 2

Shall identify the chunk sequence number associated

with SPDMchunk . The value of this field shall be the

same value as ChunkSeqNo in the CHUNK_GET .

6 Reserved 2 Reserved.

8 ChunkSize 4
Shall indicate the size of SPDMchunk . See Additional

chunk transfer requirements.

12 LargeMessageSize L0 = 0 or 4

Shall indicate the size of the large SPDM message

being transferred. Shall only be present when

ChunkSeqNo is zero and shall have a non-zero value.

The value of this field should be greater than the

DataTransferSize of the receiving SPDM endpoint.

Security Protocol and Data Model (SPDM) Specification DSP0274

190 Published Version 1.3.0

Byte offset Field Size (bytes) Description

12 + L0 SPDMchunk Variable
Shall contain the chunk of the large SPDM request

message associated with ChunkSeqNo .

804 Figure 25 — Large MEASUREMENT example illustrates the sending and retrieval of a Large SPDM Response that was

the result of a Requester issuing a GET_MEASUREMENTS request.

805 Figure 25 — Large MEASUREMENT example

806
Requester Responder

GET_MEASUREMENTS
Measurement Type Raw Bits

(DataTransferSize 312 Bytes)

CHUNK_RESPONSE
Handle 17
Chunk Sequence 0
Chunk Size 296 Bytes
Large Message Size 1000 Bytes
Chunk 0 Data

CHUNK_GET
Handle 17
Chunk Sequence 1

CHUNK_RESPONSE
Handle 17
Chunk Sequence 1
Chunk Size 300 Bytes
Chunk 1 Data

CHUNK_GET
Handle 17
Chunk Sequence 3

CHUNK_RESPONSE
Handle 17
Chunk Sequence 3
Chunk Size: 104 Bytes
Chunk 3 Data
Last Chunk

...
Responder creates the
MEASUREMENTS response with a
total size of 1000 bytes.
This is > 312 bytes

Chunk Size is DataTransferSize
minus the sizes of all the fields
(except for SPDMchunk) of
CHUNK_RESPONSE.
Thus, 312 - 12 = 300 bytes.

Chunk Sequence 0 contains an extra
field. Thus, the Chunk Size for the first
chunk is 312 - 16 = 296 bytes.

ERROR
ErrorCode=LargeResponse
Handle = 17

CHUNK_GET
Handle 17
Chunk Sequence 0

Large MEASUREMENTS Message

SPDM Header

Chunk 0

Chunk 1

Chunk 2

Chunk 3

Total Message Size = 1000

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 191

807 10.26.3 Additional chunk transfer requirements

808 When transferring a large SPDM message, an SPDM endpoint shall be prohibited from transferring a chunk sequence

number (that is, a ChunkSeqNo) less than the current chunk sequence number. In other words, an SPDM endpoint

cannot go backwards in the transfer or re-send or re-retrieve a chunk sequence number less than the current one in

the transfer. However, due to retries, an SPDM endpoint might re-send or re-retrieve the current chunk number in the

transfer. Additionally, if the receiving SPDM endpoint receives an out-of-order chunk sequence number, the receiving

SPDM endpoint shall either silently discard the request or respond with an ERROR message of

ErrorCode=InvalidRequest .

809 The value of ChunkSize fields shall be one that ensures the total size of CHUNK_SEND or CHUNK_RESPONSE does not

exceed the DataTransferSize of the receiving SPDM endpoint. For all chunks that are not the last chunk,

ChunkSize shall be a value where the total size of CHUNK_SEND or CHUNK_RESPONSE shall be from

MinDataTransferSize to the DataTransferSize of the receiving SPDM endpoint. For the last chunk, ChunkSize

shall be a value where the total size of CHUNK_SEND or CHUNK_RESPONSE shall be equal to or less than the

DataTransferSize of the receiving SPDM endpoint.

810 While this transfer mechanism can carry any Request or Response, this transfer mechanism shall prohibit

CHUNK_SEND , CHUNK_GET , and their corresponding responses to be transferred as chunks themselves. Additionally to

ensure the general interoperability and reliability of this transfer mechanism, these messages shall be prohibited from

being transferred in chunks using this transfer mechanism:

• GET_VERSION

• VERSION

• GET_CAPABILITIES

• CAPABILITIES with Param1 in the GET_CAPABILITIES request set to 0.

• ERROR

◦ An ERROR message with an ErrorCode other than LargeResponse can be placed in the

ResponseToLargeRequest of a CHUNK_SEND_ACK response.

811 This transfer mechanism can carry Requests and Responses that are involved in signature generation or verification

and other cryptographic computations. However, this transfer mechanism is not part of any signature generation or

verification or cryptographic computation. In other words, CHUNK_SEND , CHUNK_GET , and their corresponding

responses shall not become part of any data or bit stream, such as message transcript, transcript, and so on, that are

used to verify or generate a signature or other cryptographic information. Signature generation, signature

verification, and other cryptographic computations operate on the large SPDM messages, themselves, which other

parts of this specification define.

812 The ERROR message of ErrorCode=ResponseNotReady shall not be used to directly respond to CHUNK_SEND and

CHUNK_GET requests. However, the ResponseToLargeRequest can contain an ERROR message of

ErrorCode=ResponseNotReady .

813 While a large SPDM message is being transferred in chunks, this large SPDM message is not considered a complete

SPDM message until the last chunk is received. Therefore, as soon as the CHUNK_SEND request begins transmission,

this large SPDM request message is considered to be outstanding.

Security Protocol and Data Model (SPDM) Specification DSP0274

192 Published Version 1.3.0

814 10.27 Key configuration

815 Key configuration is the ability to retrieve or configure various parameters pertaining to asymmetric keys for a given

SPDM endpoint. These clauses describe the requests and responses that provide key-configuration capabilities.

816 SPDM endpoints can contain key pair ID(s) (KeyPairID) that are fixed and already provisioned, key pair IDs that are

configurable, or an assortment of both types. For configurable key pair IDs, one or more parameters related to the

key pair are configurable. The requests and responses in these clauses provide the details for each KeyPairID . An

SPDM endpoint shall contain KeyPairID s starting from 1 to TotalKeyPairs inclusive and without gaps.

817 The Responder should authorize the Requester before allowing it to retrieve or change information related to a key

pair. The method of authorization is outside the scope of this specification.

818 In general, if a key pair ID is configurable, the high-level flow for provisioning and configuring a key pair ID to a

usable state should follow these steps:

1. Use the GET_KEY_PAIR_INFO request and its corresponding response to retrieve information about

one or more key pair ID(s).

2. Use the SET_KEY_PAIR_INFO request and its corresponding response to configure the key pair ID.

◦ Ensure the key pair ID is associated with one or more certificate slots.

3. Use the GET_CSR and/or SET_CERTIFICATE requests and their corresponding responses to provision

a certificate chain to one or more of the certificate slots the key pair ID is associated with.

819 To return a key pair ID to its initial or default values, follow these steps:

1. Use the GET_KEY_PAIR_INFO request and its corresponding response to retrieve information about

the desired key pair ID.

◦ In particular, note all the certificate slots the key pair ID is associated with.

2. Use the SET_CERTIFICATE request and its corresponding response to erase all certificate chains

associated with the key pair ID.

3. Use the SET_KEY_PAIR_INFO request and its corresponding response to erase the key pair ID.

820 Outside of a session, the Requester and Responder should only issue GET_KEY_PAIR_INFO , SET_KEY_PAIR_INFO ,

and their corresponding responses while in a trusted environment.

821 10.27.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response

822 The GET_KEY_PAIR_INFO request shall retrieve key pair information from the Responder. This request and its

response shall report information for all key pairs on the Responder independent of any negotiated parameters of the

current SPDM connection. This allows the Requester to inquire about key pair information for all key pair IDs without

restarting the SPDM connection.

823 Table 102 — GET_KEY_PAIR_INFO request message format shows the GET_KEY_PAIR_INFO request message format.

824 Table 102 — GET_KEY_PAIR_INFO request message format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 193

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
GET_KEY_PAIR_INFO=0xFC . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 KeyPairID 1
The value of this field shall indicate which key pair

ID’s information to retrieve.

825 The corresponding successful response shall be the KEY_PAIR_INFO response as Table 103 — KEY_PAIR_INFO

response message format describes.

826 Table 103 — KEY_PAIR_INFO response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
KEY_PAIR_INFO = 0x7C . See Table 4 — SPDM

request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 TotalKeyPairs 1
The value of this field shall indicate the total number

of key pairs on the Responder.

5 KeyPairID 1

The value of this field shall be the same value as the

KeyPairID field in the corresponding request. The

remaining fields in this response shall pertain to the

requested key pair ID in the corresponding Request.

6 Capabilities 2

This field indicates the capabilities of the requested

key pair (KeyPairID). The format of this field shall

be as Table 104 — Key pair capabilities format

defines.

8 KeyUsageCapabilities 2

This field shall indicate the key usages the Responder

allows. The format of this field shall be as Key usage

bit mask defines. At least one bit shall be set. The

Responder shall indicate support for one or more key

usages by setting the corresponding bits.

Security Protocol and Data Model (SPDM) Specification DSP0274

194 Published Version 1.3.0

Byte offset Field Size (bytes) Description

10 CurrentKeyUsage 2

This field shall indicate the currently configured key

usage for the requested key pair ID. The format of

this field shall be as Key usage bit mask defines. If no

bits are set, this field shall indicate that the key usage

for this key pair ID has not yet been configured. More

than one bit can be set. If a bit is set, the Responder

shall support cryptographic operations (such as

signature generation) for the corresponding key

usage.

12 AsymAlgoCapabilities 4

This field shall indicate the asymmetric algorithms

the Responder supports for this key pair ID. The

format of this field shall be as Table 105 —

Asymmetric algorithm capabilities format defines.

The Responder shall indicate support for one or

more asymmetric algorithms by setting the

corresponding bits. At least one bit shall be set.

16 CurrentAsymAlgo 4

This field shall indicate the currently configured

asymmetric algorithm for this key pair ID. The format

of this field shall be as Table 105 — Asymmetric

algorithm capabilities format defines. No more than

one bit shall be set. If no bits are set, this field shall

indicate that the asymmetric algorithm for this key

pair has not yet been selected. The set bit shall

indicate that the corresponding asymmetric

algorithm is currently configured.

20 PublicKeyInfoLen 2

This field shall indicate the size in bytes of the

PublicKeyInfo field in this request. A value of zero

shall indicate that the actual key pair is absent or has

yet to be generated. Otherwise, the value of this field

shall be non-zero.

22 AssocCertSlotMask 1

This field is a bit mask representing the currently

associated certificate slots. A set bit at position X

shall indicate an association between certificate slot

X and the requested KeyPairID . If ShareableCap is

not set, no more than one bit shall be set.

23 PublicKeyInfo Variable

The field shall contain the public key information for

the requested key pair ID. The format of this field

shall be the DER encoding of the

AlgorithmIdentifier structure in an X.509 v3

certificate. See the “4.1.2.7. Subject Public Key Info”

clauses in RFC 5280 for additional details. Within the

AlgorithmIdentifier structure, the parameters

member shall be present and contain values

consistent with the information pertaining to the

requested key pair ID.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 195

827 Table 104 — Key pair capabilities format defines the format for capabilities associated with a key pair ID.

828 Table 104 — Key pair capabilities format

Bit offset Field Description

0 GenKeyCap

If set, this key pair identified by

the given KeyPairID can be

generated or regenerated.

1 ErasableCap

If set, this key pair identified by

the given KeyPairID can be

erased.

2 CertAssocCap

If set, the Responder allows a

Requester to change the

association between the given

KeyPairID and CertSlot .

3 KeyUsageCap

If set, the Responder allows a

Requester to change the key

usage for the given

KeyPairID .

4 AsymAlgoCap

If set, the Responder allows a

Requester to change the

asymmetric algorithm for the

given KeyPairID .

5 ShareableCap

If set, the Responder allows a

Requester to associate the

given KeyPairID with more

than one CertSlot . This bit

shall not be set if

CertAssocCap is not set.

All other bits Reserved Reserved.

829 Table 105 — Asymmetric algorithm capabilities format defines the bit mapping for asymmetric algorithms support.

See Table 136 — SPDM Asymmetric Signature Reference Information for references for the asymmetric algorithms.

830 Table 105 — Asymmetric algorithm capabilities format

Bit offset Asymmetric Algorithm

0 RSA 2048

1 RSA 3072

2 RSA 4096

3 ECC NIST P256

4 ECC NIST P384

Security Protocol and Data Model (SPDM) Specification DSP0274

196 Published Version 1.3.0

Bit offset Asymmetric Algorithm

5 ECC NIST P521

6 SM2 P256

7 Ed25519

8 Ed448

All other bits Reserved.

831 10.27.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response

832 The SET_KEY_PAIR_INFO request and the corresponding successful SET_KEY_PAIR_INFO_ACK response shall

configure one or more parameters for one key pair ID (KeyPairID).

833 Table 106 — SET_KEY_PAIR_INFO request message format defines the format for the SET_KEY_PAIR_INFO request.

834 Table 106 — SET_KEY_PAIR_INFO request message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
SET_KEY_PAIR_INFO = 0xFD . See Table 4 — SPDM

request codes.

2 Param1 1

Operation. This field shall indicate the desired

operation. The format of this field shall be the format

as Table 107 — Key pair operations defines. If the

operation is KeyPairErase , all fields after

KeyPairID field in this request shall be absent.

3 Param2 1 Reserved.

4 KeyPairID 1
The value of this field shall indicate the key pair ID’s

information to change.

5 Reserved 1 Reserved.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 197

Byte offset Field Size (bytes) Description

6 DesiredKeyUsage 2

This field shall indicate the desired key usage

(KEY_PAIR_INFO . CurrentKeyUsage) for the

requested key pair ID (KeyPairID). The format of

this field shall be as Key usage bit mask defines. If no

bits are set, the Responder shall not change the

current key usage. More than one bit can be set. The

Requester shall only select from bits that are set in

the KeyUsageCapabilities field of the

KEY_PAIR_INFO response for the requested

KeyPairID . If KeyUsageCap is not set for the

requested KeyPairID , this field shall be zero.

8 DesiredAsymAlgo 4

This field shall indicate the desired asymmetric

algorithm (KEY_PAIR_INFO . CurrentAsymAlgo) for

the requested key pair ID. The format of this field

shall be as Table 105 — Asymmetric algorithm

capabilities format defines. If no bits are set, the

Responder shall not change the current configuration

for the asymmetric algorithm. No more than one bit

shall be set. The Requester shall only select from bits

that are set in the AsymAlgoCapabilities field of

the KEY_PAIR_INFO response for the requested

KeyPairID . If AsymAlgoCap is not set for the

requested KeyPairID , this field shall be zero.

12 DesiredAssocCertSlotMask 1

This field is a bit mask representing the desired

certificate slot association. A set bit at position X shall

indicate an association between certificate slot X and

the requested KeyPairID . An unset bit at position X

shall indicate no association between certificate slot

X and the requested KeyPairID . The Responder

shall either remove an association or create an

association between the corresponding certificate

slot and the requested KeyPairID , depending on

the value of each bit in this field. If ShareableCap is

not set, no more than one bit shall be set.

835 Table 107 — Key pair operations defines a numeric mapping to an operation.

836 Table 107 — Key pair operations

Value Operation Name Description

0 ParameterChange

Shall indicate an operation that

modifies one or more key-related

parameters. The

DesiredKeyUsage ,

DesiredAsymAlgo , and

DesiredAssocCertSlotMask

fields shall be present.

Security Protocol and Data Model (SPDM) Specification DSP0274

198 Published Version 1.3.0

Value Operation Name Description

1 KeyPairErase

Shall indicate an operation that

erases all information relating to a

KeyPairID . The

DesiredKeyUsage ,

DesiredAsymAlgo , and

DesiredAssocCertSlotMask

fields shall be absent.

2 GenerateKeyPair

Shall indicate an operation that

generates a new key pair for this

KeyPairID . The

DesiredKeyUsage ,

DesiredAsymAlgo , and

DesiredAssocCertSlotMask

fields shall be present.

837 Table 108 — SET_KEY_PAIR_INFO_ACK response message format defines the format for SET_KEY_PAIR_INFO_ACK

response.

838 Table 108 — SET_KEY_PAIR_INFO_ACK response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
SET_KEY_PAIR_INFO_ACK = 0x7D . See Table 4 —

SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

839 10.27.3 Key pair ID modification error handling

840 These clauses describe some basic configuration error scenarios an SPDM endpoint should handle.

841 The first error scenario is a request for key generation (GenerateKeyPair) when no asymmetric algorithm has been

selected yet. A Responder should respond with an ERROR message of ErrorCode=OperationFailed .

842 Key usage for a key pair ID does not need to be specified until the key pair ID is associated with a certificate slot, so

this information is not needed for a GenerateKeyPair operation. The Responder should decide when it needs to

know the key usage information for a configurable key usage.

843 For a KeyPairErase or GenerateKeyPair operation request, the Responder shall ensure that the requested

KeyPairID has no association with any certificate slot. Otherwise, the Responder should respond with an ERROR

message of ErrorCode=OperationFailed .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 199

844 10.28 Event mechanism

845 An SPDM endpoint may want to be notified of changes from another SPDM endpoint. These change notifications are

called events. The SPDM event mechanism provides a framework for the asynchronous notification of events over a

secure session. An Event Notifier is an SPDM endpoint sending an event, and an Event Recipient is an SPDM endpoint

receiving an event. An SPDM endpoint can be both an Event Notifier and an Event Recipient in the same secure

session. See Session for details on secure sessions. There can be multiple sessions between the same Responder and

same Requester. The event mechanism applies to each session individually.

846 An event is identified by its event group, event type, and an event instance ID. An event group is a group of all event

types a given standards body or vendor defines. An event type classifies the event by indicating its type. The event

instance ID is a unique numeric value that represents that occurrence of the event.

847 An Event Recipient can select the event types that it wants to receive. An event subscription is a list of event types an

Event Recipient wants to receive. The Event Notifier manages the event subscription. An Event Notifier shall only send

events of event types that match the event types in the event subscription. See DMTF Event Types for DMTF-defined

event types.

848 An Event Notifier shall not send any events in a session until an Event Recipient subscribes to one or more events.

849 The Event Flow diagram illustrates a typical event flow for event subscription and event delivery over a transport

capable of asynchronous bidirectional communication.

850 Figure 26 — Event flow diagram

Security Protocol and Data Model (SPDM) Specification DSP0274

200 Published Version 1.3.0

851

…

SUBSCRIBE_EVENTS

,

SUBSCRIBE_EVENTS_ACK

Event Group ID indicates DMTF
Event Instance ID == 0

Measurement Event Details

SEND_EVENT

Ack-ed Event Instance ID == 0

EVENT_ACK

…

Event Group ID indicates DMTF
Event Instance ID == 1

Measurement Event Details

SEND_EVENT

Ack-ed Event Instance ID == 1

EVENT_ACK

…

Session-Secrets-Exchange

GET_SUPPORTED_EVENTS

SUPPORTED_EVENTS

Event
Notifier

Event
Recipient

Legend:

Secure Session

852 For transports that prohibit a Responder from asynchronously sending out data, the Event Notifier and Event

Recipient can use the encapsulated request flow to deliver or receive events. The encapsulated request flow allows for

a polling methodology as Triggering GET_ENCAPSULATED_REQUEST describes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 201

853 When EVENT_CAP is set, an Event Notifier shall support SUBSCRIBE_EVENT_TYPES , GET_SUPPORTED_EVENT_TYPES ,

SEND_EVENT , and their corresponding response messages.

854 10.28.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES
response message

855 These request and response messages retrieve the list of all event types supported by the Event Notifier. Each event

type belongs in an event group. An event group contains all event types belonging to the standards body or vendor

that defines them. The SVH identifies the event group. Within an event group, an event type ID identifies the event

type uniquely within the event group. Both the SVH and the event type ID ensure uniqueness for all event types in

this specification.

856 Usually, the Event Notifier does not need to support all event types within an event group or within all event groups.

However, the standards body or vendor defines the requirements for the event types they define.

857 Table 109 — GET_SUPPORTED_EVENT_TYPES request message format describes the message format.

858 Table 109 — GET_SUPPORTED_EVENT_TYPES request message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1 0xE2 = GET_SUPPORTED_EVENT_TYPES

2 Param1 1 Reserved.

3 Param2 1 Reserved.

859 Table 110 — SUPPORTED_EVENT_TYPES response message format describes the message format for this response.

860 Table 110 — SUPPORTED_EVENT_TYPES response message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as

described in SPDM version.

1 RequestResponseCode 1
0x62 = SUPPORTED_EVENT_TYPES

Response

2 Param1 1

EventGroupCount. Shall be the

number of event groups listed in

SupportedEventGroupsList .

3 Param2 1 Reserved.

4 SupportedEventGroupsListLen 4

The value of this field shall be the

size in bytes of the

SupportedEventGroupsList

and shall be greater than zero.

Security Protocol and Data Model (SPDM) Specification DSP0274

202 Published Version 1.3.0

Byte Offset Field Size (bytes) Description

8 SupportedEventGroupsList SupportedEventGroupsListLen

Shall be a list of all event types

grouped by event group

supported by the Event Notifier.

The format of this field shall be a

list of Event group. In this format,

each event group contains a list

of event types the Event Notifier

supports. If an event group is

present, it shall be present

exactly once to avoid duplicates

and to minimize the size of this

response. The size of this field

shall be the value in

SupportedEventGroupsListLen .

See Event group format

additional information for

additional details.

861 Table 111 — Event group format defines the format for listing event types in a single event group.

862 Table 111 — Event group format

Byte Offset Field Size (bytes) Description

0 EventGroupId 2 + VendorIDLen

Shall indicate the event

group the event type

belongs to. The format of

this field shall be the SVH

format. The size of this

field shall be the size of

the SVH.

2 + VendorIDLen EventTypeCount 2

Shall be the total number

of event types listed in

the EventTypeList field

and belonging to

EventGroupId . The value

of this field shall be

greater than zero.

4 + VendorIDLen EventGroupVer 2

Shall be the standards

body or vendor-assigned

version number that

indicates the version of

the event types belonging

to EventGroupId .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 203

Byte Offset Field Size (bytes) Description

6 + VendorIDLen Attributes 4

Attributes. The format of

this field shall be defined

by the messages using

this Event groups format.

For the

SUPPORTED_EVENT_TYPES

response message, see

Event group format

additional information.

For the

SUBSCRIBE_EVENT_TYPES

request message, see

Additional subscription

list information.

10 + VendorIDLen EventTypeList Variable

Shall be a list of event

types in this Event Group

(EventGroupId). The

value in EventTypeCount

field shall indicate the

number of event types in

this list. The format of this

field shall be a list of

Event Type Information.

If an event type is

present, it shall be

present exactly once.

863 Table 112 — Event type information format defines the format for a single event type.

864 Table 112 — Event type information format

Byte Offset Field Size (bytes) Description

0 EventTypeId 2

Shall be a

numeric value

that uniquely

identifies this

event type

within the

corresponding

event group.

2 Reserved 2 Reserved.

865 The EventGroupVer field allows for updates to the event type list such as a new event type. An Event Notifier should

add new event types to the end of the list.

Security Protocol and Data Model (SPDM) Specification DSP0274

204 Published Version 1.3.0

866 10.28.1.1 Event group format additional information

867 This clause describes further information for various fields in the Event groups format table. This format is present in

more than one SPDM message.

868 Many fields in the Event group format table have different definitions depending on which SPDM message uses this

table. For SUBSCRIBE_EVENT_TYPES , see Additional subscription list information for requirements on the Event group

format.

869 The following requirements shall apply to the Event group format table contained in SUPPORTED_EVENT_TYPES .

• The value of EventTypeCount field shall be greater than zero.

• The presence of an event type in the EventTypeList field shall indicate that the Event Notifier can send events

of this type.

• The value of Attributes shall be reserved.

870 10.28.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response
message

871 The SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response messages allow an Event

Recipient to communicate the list of SPDM event types it is interested in receiving. This request replaces the current

subscription list.

872 An event subscription is a list of all event types to which an Event Recipient subscribes. Thus, an Event Notifier shall

send events when they occur to an Event Recipient if at least one event type is present in the event subscription of

the corresponding Event Recipient.

873 To subscribe or unsubscribe to an event group, an Event Recipient shall send the SUBSCRIBE_EVENT_TYPES request

message with a complete list of all event types to which the Event Recipient subscribes. An Event Notifier shall replace

the current event subscription with the new subscription from the latest SUBSCRIBE_EVENT_TYPES message. If the

new subscription contains an unsupported or invalid event type, the Responder should respond with an ERROR

message of ErrorCode=InvalidRequest . If an Event Notifier supports multiple Event Recipients, the Event Notifier

shall support a unique event subscription list per session for each subscribed Event Recipient. The

SUBSCRIBE_EVENT_TYPES request message format describes the message format.

874 Table 113 — SUBSCRIBE_EVENT_TYPES request message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in

SPDM version.

1 RequestResponseCode 1 0xF0 = SUBSCRIBE_EVENT_TYPES

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 205

Byte Offset Field Size (bytes) Description

2 Param1 1

SubscribeEventGroupCount. Shall be the

number of event groups in SubscribeList .

A value of zero shall indicate that the Event

Recipient no longer subscribes to any events.

This is the equivalent of an empty event

subscription or the removal of all event types

in an event subscription. If the value of this

field is zero, SubscribeListLen and

SubscribeList fields shall be absent.

3 Param2 1 Reserved.

4 SubscribeListLen 4

The value of this field shall be the size in

bytes of SubscribeList . The value of this

field shall be greater than zero.

8 SubscribeList SubscribeListLen

Shall be a list of event types grouped by

event group that the Event Notifier supports

and to which the Event Recipient is

subscribing. The format of this field shall be a

list of Event group. In this format, each event

group contains a list of event types to which

the Event Recipient subscribes. If an event

group is present, it shall be present exactly

once. The size of this field shall be the value

in SubscribeListLen field.

See Additional subscription list information

for additional requirements.

875 Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format describes the response format for the

SUBSCRIBE_EVENT_TYPES request.

876 Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as

described in SPDM version.

1 RequestResponseCode 1
0x70 = SUBSCRIBE_EVENT_TYPES_ACK

Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

877 For event types defined by this specification, see DMTF event types.

Security Protocol and Data Model (SPDM) Specification DSP0274

206 Published Version 1.3.0

878 10.28.2.1 Additional subscription list information

879 These clauses describe further information for various fields in SubscribeList whose format is the Event group

format.

880 The value of the EventTypeCount field shall be greater than or equal to zero. If EventTypeCount is zero, then

AllEventTypes shall also be set.

881 The presence of an event type in the EventTypeList field shall subscribe the Event Recipient to that event type.

Likewise, the absence of an event type in the EventTypeList field shall indicate that the Event Recipient does not or

no longer subscribes to this event type. Additionally, the absence of an event group in the SubscribeList shall

indicate that the Event Recipient does not or no longer subscribes to any event types in this event group.

882 The format of the Attributes field shall be as the SUBSCRIBE_EVENT_TYPES request attributes format table defines.

883 Table 115 — SUBSCRIBE_EVENT_TYPES request attributes format

Byte Offset Bit Offset Field Description

0 0 AllEventTypes

If set, the Event

Notifier shall

subscribe the

Event Recipient to

all event types

supported by the

Event Notifier in

the corresponding

Event Group and

the value of

EventTypeCount

shall be zero.

0 [7:1] Reserved Reserved

1 [7:0] Reserved Reserved

2 [7:0] Reserved Reserved

3 [7:0] Reserved Reserved

884 If an Event Recipient sets AllEventTypes , it can receive events of event types it does not understand. In this

scenario, the Event Recipient shall respond with an EVENT_ACK message as SEND_EVENT request and EVENT_ACK

response message describes and stop processing the unknown event type.

885 10.28.3 SEND_EVENT request and EVENT_ACK response message

886 To deliver subscribed events to an Event Recipient, the Event Notifier shall use the SEND_EVENT request message.

This request can contain more than one event.

887 Table 116 — SEND_EVENT request message format describes this request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 207

888 Table 116 — SEND_EVENT request message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1 0xF1 = SEND_EVENT

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 EventCount 4
Shall be the number of elements in

EventsList .

8 EventsList Variable

Shall be a list of Event Data. The list should be

sorted in numerically increasing event instance

ID order. The size of this field shall be the size of

this list.

889 Table 117 — Event data table describes the format for details of each event.

890 Table 117 — Event data table

Byte Offset Field Size (bytes) Description

0 EventInstanceId 4
Shall be the event instance id for the

event.

4 Reserved 4 Reserved.

8 EventGroupId 2 + VendorIDLen

Shall indicate the event group the

event type belongs to. The format of

this field shall be SVH format.

10 + VendorIDLen EventTypeId 2

Shall be the numeric value identifying

the event type of this event in

EventGroupId .

12 + VendorIDLen EventDetailLen 2 Shall be the length of EventDetail .

Security Protocol and Data Model (SPDM) Specification DSP0274

208 Published Version 1.3.0

Byte Offset Field Size (bytes) Description

14 + VendorIDLen EventDetail Variable

Shall be the event-specific details of

the event indicated by

EventInstanceId , EventGroupId

and EventTypeId . The format and

further definition of this field is

specific to the event type indicated

by EventTypeId in the event group

indicated by EventGroupId . For the

DMTF event group, see Event type

details for further information. The

size of this field shall be the size of

the event-specific details for this

event.

891 Table 118 — EVENT_ACK response message format describes the format for the response.

892 Table 118 — EVENT_ACK response message format

Byte Offset Field Size (bytes) Description

0 SPDMVersion 1

Shall be the

SPDMVersion as

described in SPDM

version.

1 RequestResponseCode 1
0x71 = EVENT_ACK

Response

2 Param1 1 Reserved.

3 Param2 1 Reserved.

893 The Event Notifier shall only send unacknowledged event instance IDs.

894 The size of SEND_EVENT data can exceed the DataTransferSize of the Event Recipient, especially if multiple events

happen concurrently. While it is possible to use the Large SPDM message transfer mechanism, the Event Notifier

should try to divide the events into multiple SEND_EVENT requests to ensure efficient delivery of the events instead

of combining all events into a single SEND_EVENT request.

895 An Event Notifier shall send a SEND_EVENT request with only the Event Lost event (EventTypeId =EventLost) as an

indication that the original event was too big in size under any of these conditions:

• The Event Notifier does not support the Large SPDM message transfer mechanism and the SEND_EVENT request

with only one event exceeds the DataTransferSize of the Event Recipient.

• The size of a SEND_EVENT request with only one event is greater than the MaxSPDMmsgSize of the Event

Recipient.

896 The Event Notifier shall follow the requirements in Timing requirements as a Requester for SEND_EVENT . Likewise, the

Event Recipient shall follow the timing requirements as a Responder when receiving a SEND_EVENT request.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 209

897 10.28.4 Event Instance ID

898 Event Instance ID typically reflects the order of events in the Event Notifier from a chronological perspective. The

event instance ID shall start at zero for each secure session and sequentially increase with each occurrence of an

event. This method also allows the Event Recipient to determine if an event was lost.

899 When the event instance ID reaches the maximum value, the Event Notifier shall terminate the session after sending a

SEND_EVENT request containing an event with the maximum value and receiving the corresponding response. An

Event Recipient can also terminate the session.

900 10.29 GET_ENDPOINT_INFO request and ENDPOINT_INFO response
messages

901 The GET_ENDPOINT_INFO request message shall retrieve general information from an endpoint. The SubCode

parameter is used to differentiate between operations, and a request message shall specify only one SubCode . If the

Responder does not support the specified SubCode , the responder shall return an ERROR message of

ErrorCode=UnsupportedRequest .

902 Table 119 — GET_ENDPOINT_INFO request format shows the format of the GET_ENDPOINT_INFO request message.

903 Table 122 — ENDPOINT_INFO response format shows the format of the ENDPOINT_INFO response message.

904 Table 119 — GET_ENDPOINT_INFO request format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x87 = GET_ENDPOINT_INFO . See Table 4 —

SPDM request codes.

2 Param1 1

Shall be the GET_ENDPOINT_INFO SubCode. See

GET_ENDPOINT_INFO SubCodes for the list of

valid values.

3 Param2 1

Bit [7:4]. Reserved.

Bit [3:0]. SlotID that identifies the certificate

chain whose leaf certificate is used to sign the

response. If a signature is not requested (Bit[0] of

the RequestAttributes field is 0), this field

shall be ignored. If the Responder’s public key was

provisioned to the Requester previously, this field

shall be 0xF .

4 RequestAttributes 1
Request attributes.

See GET_ENDPOINT_INFO request attributes.

5 Reserved 3 Reserved.

Security Protocol and Data Model (SPDM) Specification DSP0274

210 Published Version 1.3.0

Byte offset Field Size (bytes) Description

8 Nonce NL = 32 or 0

The Requester should choose a random value. This

field shall only be present if a signature is

requested (SignatureRequested=1b).

905 Table 120 — GET_ENDPOINT_INFO SubCodes

SubCode Value Description

Reserved 0x00 Reserved.

DeviceClassIdentifier 0x01

The DeviceClassIdentifier response returns information that can

be used to identify the class of device for the Responder in question.

See ENDPOINT_INFO device class identifier list format for the

definition of the response data.

Reserved All other values
SPDM implementations compatible with this version shall not use

the reserved SubCode s.

906 Table 121 — GET_ENDPOINT_INFO request attributes

Bit offset Field Description

0 SignatureRequested

If the Responder can generate a signature (EP_INFO_CAP=10b

in its CAPABILITIES response and either BaseAsymSel or

ExtAsymSelCount is non-zero), a value of 1 indicates that a

signature on the response is required. When this bit is set to

1 , the Requester shall include the Nonce field in the request,

and the Responder shall generate a signature and send the

signature in the response.

A value of 0 indicates that the Requester does not require a

signature. The Responder shall not generate a signature in the

response. The Nonce field shall be absent in the request and

response.

For Responders that cannot generate a signature

(EP_INFO_CAP=01b in their CAPABILITIES response or both

BaseAsymSel and ExtAsymSelCount are zero), the Requester

shall always set this bit to 0 .

[7:1] Reserved Reserved.

907 Table 122 — ENDPOINT_INFO response format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x07 = ENDPOINT_INFO . See Table 5 — SPDM

response codes.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 211

Byte offset Field Size (bytes) Description

2 Param1 1 Reserved.

3 Param2 1

Bit [7:4]. Reserved.

Bit [3:0]. SlotID that identifies the certificate

chain whose leaf certificate is used to sign the

response. If a signature is not requested

(SignatureRequested=0b), this field shall be 0 .

If the Responder’s public key was provisioned to

the Requester previously, this field shall be 0xF .

4 Reserved 4 Reserved.

8 Nonce NL = 32 or 0

The Responder should choose a random value.

This field shall only be present if Bit[0] of the

RequestAttributes field is 1 .

8 + NL EPInfoLen 4 Shall contain the length of the EPInfo field.

12 + NL EPInfo EPInfoLen

Shall contain endpoint information, as described

in the endpoint information format for the

specified SubCode . The size of this field shall be

the size of the returned endpoint information.

12 + NL +

EPInfoLen
Signature SigLen

Signature of the endpoint information,

excluding the Signature field and signed using

the private key associated with the leaf certificate.

The Responder shall use the asymmetric signing

algorithm it selected during the last ALGORITHMS

response message to the Requester, and SigLen

is the output size for that asymmetric signing

algorithm. This field is conditional and only

present in the ENDPOINT_INFO response

corresponding to a GET_ENDPOINT_INFO request

with the SignatureRequested bit set to 1 in the

RequestAttributes field. See ENDPOINT_INFO

signature generation and ENDPOINT_INFO

signature verification for more details.

908 The Device Class Identifier format is an extended form of the standards body or vendor-defined header. For a Device

Class Identifier list response, EPInfoLen shall have a size of 4 + IDElemSize . The IDElemSize shall be the sum of

the sizes of the NumIdentifiers of the Device Class Identifier elements. Each Device Class Identifier shall have a size

of 4 + VendorIDLen + the sum of the sizes of the subordinate Device Class Identifiers. Each of the subordinate

Device Class Identifiers shall have a size of 1 + SubIDLen , where SubIDLen may be different for each element.

909 Table 123 — ENDPOINT_INFO device class identifier list format

Security Protocol and Data Model (SPDM) Specification DSP0274

212 Published Version 1.3.0

Byte offset Field Size (bytes) Description

0 NumIdentifiers 1

Shall be the number of Device Class Identifier

elements in this response message. Each identifier

shall be unique.

1 Reserved 3 Reserved.

4 IdentifierElements IDElemSize

Shall contain Device Class Identifier elements, as

defined in ENDPOINT_INFO device class identifier

element format.

910 Table 124 — ENDPOINT_INFO device class identifier element format

Byte offset Field Size (bytes) Description

0 IDElemLength 1

Shall be the size of this ID element. The value of

IDElemLength shall be the number of bytes from

the SVH . ID field through the last

SubordinateID , inclusive.

1 SVH 2 + VendorIDLen

Shall be a standards body or vendor-defined

header, as described in Table 64 — Standards

body or vendor-defined header (SVH).

3 + VendorIDLen NumSubIDs 1
Shall be the number of subordinate Device Class

Identifiers.

4 + VendorIDLen SubordinateID

NumSubIDs entries of 1

+ SubIDLen for a given

entry

Shall contain NumSubIDs of subordinate Device

Class Identifiers, of the format described in Device

class identifier subordinate identifier format. If

NumSubIDs is 0, this field shall be absent.

911 If present, one or more subordinate identifier fields contain identifiers that further identify the device. These

identifiers shall be valid in the namespace defined by the standards body specified in the ID field and by the vendor

ID specified in the VendorID field.

912 Table 125 — Device class identifier subordinate identifier format

Byte offset Field Size (bytes) Description

0 SubIDLen 1
Shall contain the length in bytes of this

subordinate identifier.

1 SubIdentifier SubIDLen

Shall contain one subordinate device identifier

that is valid in the namespace of the vendor

identified in the VendorID field. This field shall be

size SubIDLen .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 213

913 10.29.1 ENDPOINT_INFO signature generation

914 The signature for an ENDPOINT_INFO response is generated per request and response pair. To complete the

ENDPOINT_INFO signature generation process, the Responder shall complete these steps:

1.915 The Responder shall construct an information log IL1, and the Requester shall construct an information

log IL2 over their observed messages:

IL1/IL2 = Concatenate(VCA, GET_ENDPOINT_INFO, ENDPOINT_INFO)

916 where:

◦ Concatenate is the standard concatenation function.

◦ GET_ENDPOINT_INFO is the entire GET_ENDPOINT_INFO request message under consideration

where the Requester has set the SignatureRequested bit in the RequestAttributes field.

◦ ENDPOINT_INFO is the entire ENDPOINT_INFO response message under consideration, except for

the signature field.

2.917 The Responder shall generate:

Signature = SPDMsign(PrivKey, IL1, "endpoint_info signing")

918 where:

◦ SPDMsign is described in Signature generation.

◦ PrivKey shall be the private key of the Responder associated with the leaf certificate stored in

SlotID of Param2 in GET_ENDPOINT_INFO . If the public key of the Responder was provisioned

to the Requester, then PrivKey shall be the associated private key.

919 10.29.2 ENDPOINT_INFO signature verification

920 To complete the ENDPOINT_INFO signature verification process, the Requester shall complete this step:

1.921 The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, IL2, "endpoint_info signing")

922 where:

◦ SPDMsignatureVerify is described in Signature verification. A successful verification is when

result is success .

Security Protocol and Data Model (SPDM) Specification DSP0274

214 Published Version 1.3.0

◦ PubKey shall be the public key associated with the leaf certificate stored in SlotID of Param2

in GET_ENDPOINT_INFO , and it is extracted from the CERTIFICATE response. If the public key of

the Responder was provisioned to the Requester, then PubKey shall be the provisioned public

key.

923 10.30 Measurement extension log mechanism

924 A Responder device may create and maintain a Measurement Extension Log (MEL) to record device information such

as measurements of firmware and/or software modules loaded during the boot, firmware and/or software updates,

configurations, status of the system, and so on. To construct the MEL, when certain events occur, the Responder

appends data associated with the events to the end of the MEL. The events that cause the MEL update are specific to

and are determined by individual Responder implementations. For example, the Responder may append the digest

and version number of a firmware module to the end of the MEL when the firmware module is loaded. The MEL

grows as entries are added. At reset, the Responder may reset the MEL or preserve the MEL. If the Responder

preserves the MEL across resets, the reset events themselves may be added as new entries to the MEL. Accordingly,

the corresponding HEM should also be preserved across resets. The Responder should ensure that the MEL will not

overrun memory or wrap under normal uses.

925 If the MEL_CAP bit in CAPABILITIES is set, the Requester may acquire the MEL of the Responder by issuing a

GET_MEASUREMENT_EXTENSION_LOG request message. The Responder shall respond with the

MEASUREMENT_EXTENSION_LOG response message. If a Requester acquires the hash-extend measurements outside of

a secure session, the Requester should set SignatureRequested=1 in the GET_MEASUREMENTS request or secure the

response using other means outside of this specification.

926 The Hash-extend measurements clause introduces a method of constructing a hash value (type 0x8 of

DMTFSpecMeasurementValueType[6:0]) by extending measurements. The resulting hash guarantees the integrity of

the data participating in the extend operations. Leveraging this mechanism can ensure the integrity of the MEL. To do

this, an entry of the MEL serves as the DataToExtend in calculating HEM . After all entries of the MEL are processed,

the resulting HEM is the hash-extend measurement.

927 To avoid circular dependencies and race conditions, the DataToExtend for calculating HEM shall not include the

GET_MEASUREMENTS request, MEASUREMENTS response, GET_MEASUREMENT_EXTENSION_LOG request, or

MEASUREMENT_EXTENSION_LOG response messages.

928 Figure 27 — Flow for acquiring Hash-Extend Measurement and Measurement Extension Log demonstrates an

example flow for the Requester to obtain hash-extend measurement and the MEL from the Responder.

929 Figure 27 — Flow for acquiring Hash-Extend Measurement and Measurement Extension Log

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 215

930

ResponderRequester

GET_MEASUREMENTS
(Param2=an index of type 08h;

SignatureRequested)

MEASUREMENTS
(hash-extended measurement)

GET_MEASUREMENT_EXTENSION_LOG

MEASUREMENT_EXTENSION_LOG

Sign hash-extended
measurement with
private keyVerify signature of

the Responder

Replicate extend
operations and verify
MEL against hash-
extended measurement

Construct MEL during boot and
runtime.

Extend MEL entries to hash-
extended measurement as
entries are added to MEL.

931 As the example flow shows, a Responder that supports MEL would construct the MEL at runtime independently of the

Requester. The Requester would first issue GET_MEASUREMENTS to obtain the hash-extend measurement and verify

the signature of the Responder, and then it would issue GET_MEASUREMENT_EXTENSION_LOG to obtain the MEL from

the Responder. With both hash-extend measurement and MEL, the Requester replicates the extend operations with

entries of the MEL in ascending MEL index order for the corresponding HEM received in the

MEASUREMENT_EXTENSION_LOG . If the result of extend operations does not match the hash-extend measurement, then

it indicates that the verification of HEM has failed.

932 10.30.1 GET_MEASUREMENT_EXTENSION_LOG request and
MEASUREMENT_EXTENSION_LOG response messages

933 Table 126 — GET_MEASUREMENT_EXTENSION_LOG message format shows the GET_MEASUREMENT_EXTENSION_LOG

request message format.

934 Table 127 — Successful MEASUREMENT_EXTENSION_LOG message format shows the MEASUREMENT_EXTENSION_LOG

response message format.

935 Table 126 — GET_MEASUREMENT_EXTENSION_LOG message format

Security Protocol and Data Model (SPDM) Specification DSP0274

216 Published Version 1.3.0

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0xEF = GET_MEASUREMENT_EXTENSION_LOG . See Table

4 — SPDM request codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 Offset 4

Shall be the offset in bytes from the start of the MEL

to where the read request message begins. The

Responder shall send the MEL starting from this

offset. Offset 0 shall be the first byte of the MEL.

8 Length 4
Shall be the length of the MEL, in bytes, to be

returned in the corresponding response.

936 Note that the large SPDM message transfer mechanism can be used for the MEASUREMENT_EXTENSION_LOG

message.

937 Table 127 — Successful MEASUREMENT_EXTENSION_LOG response message format

Byte offset Field Size (bytes) Description

0 SPDMVersion 1
Shall be the SPDMVersion as described in SPDM

version.

1 RequestResponseCode 1
0x6F = MEASUREMENT_EXTENSION_LOG . See Table 5

— SPDM response codes.

2 Param1 1 Reserved.

3 Param2 1 Reserved.

4 PortionLength 4

Shall be the number of bytes of this portion of the

MEL. This shall be less than or equal to the Length

received as part of the request. For example, the

Responder might set this field to a value less than the

Length received as part of the request due to

limitations on the transmit buffer of the Responder.

8 RemainderLength 4

Shall be the number of bytes remaining in the MEL

from the requested offset + PortionLength . A value

of 0 shall indicate there are no more bytes beyond

the requested offset + PortionLength .

12 MEL PortionLength

Requested contents of the MEL. This field shall follow

the format negotiated in the most recent

ALGORITHMS message.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 217

938 10.30.2 DMTF Measurement Extension Log Format

939 This clause specifies the format of MEL in the MEASUREMENT_EXTENSION_LOG response when the MEL specification

(MELspecificationSel) is “DMTFmelSpec” and the measurement specification (MeasurementSpecificationSel) is

“DMTFmeasSpec” in the most recent ALGORITHMS message (see Table 21 — Successful ALGORITHMS response

message format). The MEL format shown in Table 128 — DMTF Measurement Extension Log format leverages the

DMTF measurement specification format for its entries.

940 Table 128 — DMTF Measurement Extension Log Format

Byte offset Field Size (bytes) Description

0 NumberOfEntries 4 Shall be the number of entries in the MEL.

4 MELEntriesLength 4
Shall be the total number of bytes in all entries of the

MEL.

8 Reserved 8 Reserved.

16 MELEntries MELEntriesLength

Shall be the concatenation of all entries of the MEL.

The size of this field shall be equal to

MELEntriesLength .

941 The MELEntries field of the DMTF Measurement Extension Log consists of all entries of the MEL. Each MEL entry shall

follow the format that Table 129 — DMTF Measurement Extension Log Entry Format defines. In the calculation of

hash-extend measurement, DataToExtend shall be one MEL entry at a time.

942 Table 129 — DMTF Measurement Extension Log Entry Format

Byte offset Field Size (bytes) Description

0 MELIndex 4

Shall be the index of this entry in the MEL. This

field shall be a non-negative integer. The

MELIndex shall be in increasing order.

Security Protocol and Data Model (SPDM) Specification DSP0274

218 Published Version 1.3.0

Byte offset Field Size (bytes) Description

4 MeasIndex 1

Shall be the index of the hash-extend

measurement which this entry extends, that is,

the Index of Table 53 — Measurement block

format for this hash-extend measurement

(DMTFSpecMeasurementValueType[6:0] = 0x8)

in the MEASUREMENTS response. MeasIndex

values of MEL entries can interleave. For example,

it is legitimate that a MELIndex of 2 has a

MeasIndex of 0x04, but a MELIndex of 1 and a

MELIndex of 3 both have a MeasIndex of 0x05.

If this entry does not extend to any index, then

the Responder shall set this field to 0x00 . In this

case, the entry shall not be used in the extend

operation for calculating HEM.

Some indices are reserved for specific purpose

(see Table 51 — Measurement index assigned

range).

5 Reserved 3 Reserved.

8 Entry
DMTFSpecMeasurementValueSize

+ 3

Shall be the entry data of the DMTF

measurement specification format.

943 10.30.3 Example: Verifying Measurement Extension Log Against Hash-Extend
Measurement

944 Figure 28 — Example for Measurement Extension Log illustrates an example of an MEL with 11 entries and two

corresponding hash-extend measurements at MEASUREMENTS response indices 1 and 2 to which the log entries

extend. The MEL in this example is constructed by the Responder during boot. The Responder implements a simple

ROM–firmware secure boot architecture.

945 Figure 28 — Measurement Extension Log Example

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 219

946

Index DMTFMeas
urementVal
ueType

DMTFMeasure
mentValue
Value

1 08h (HEM) <digest-1>

2 08h (HEM) <digest-2>

SPDM MEASUREMENTS
response

DMTF Measurement Extension Log MELEntries Field

MEL
Index

Meas
Index

rese
rved

DMTFMeasurement
ValueType

DMTFMeasure
mentValueSize

DMTFMeasurement
Value

1 0 0 89h: raw bits; informational 3 “ROM”

2 1 0 00h: digest; ROM 48 <digest of ROM>

3 1 0 82h: raw bits; hardware config 128 <hardware config data
of ROM>

4 0 0 89h: raw bits; informational 7 “Boot FW”

5 2 0 87h: raw bits; security version 8 0x0000000000000002

6 2 0 86h: raw bits; version 4 0x0100030A

7 2 0 01h: digest; firmware 48 <digest of boot
firmware>

8 0 0 89h: raw bits; informational 9 “ROM patch”

9 1 0 00h: digest; ROM 48 <digest of ROM patch>

10 0 0 89h: raw bits; informational 14 “Application FW”

11 2 0 01h: digest; firmware 48 <digest of application
firmware>

“Entry” following Table “DMTF Measurement Specification Format”

947 The MEL entries of indices 1, 4, 8, and 10 have a value type of 0x9 (informational). Since these are informational and

do not apply to any measurement index, they are ignored in calculating HEM.

948 The hash-extend measurement at MEASUREMENTS index 1 is used for recording digests of ROM, patch, and hardware

configuration. The MEL entries with MEL indices 2, 3, and 9 fit in this category and they extend to MEASUREMENTS

index 1. Note that an extend operation shall consume the entire entry, including MELIndex , MeasIndex , Reserved ,

and Entry .

949 The hash-extend measurement at MEASUREMENTS index 2 is used for recording the digest of the firmware, firmware

configuration, and version information. The MEL entries with MEL indices 5, 6, 7, and 11 fit in this category, and they

extend to MEASUREMENTS index 2.

950 The Requester verifies the MEL entries by performing the checks illustrated in Figure 29 — Example for Verifying

Measurement Extension Log Entries.

951 Figure 29 — Example for Verifying Measurement Extension Log Entries

Security Protocol and Data Model (SPDM) Specification DSP0274

220 Published Version 1.3.0

952
HEM=hash(Concatenation(00...00, MEL index 2 entry))

HEM, MEL index 3 entry))

HEM, MEL index 9 entry))

HEM <digest-1>compare and

If not equal, do not trust MEL indices 2,
3, and 9

HEM=hash(Concatenation(00...00, MEL index 5 entry))

HEM <digest-2>compare and

If not equal, do not trust MEL indices 5,
6, 7, and 11

HEM=hash(Concatenation(

HEM=hash(Concatenation(

HEM, MEL index 6 entry))HEM=hash(Concatenation(

HEM, MEL index 7 entry))HEM=hash(Concatenation(

HEM, MEL index 11 entry))HEM=hash(Concatenation(

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 221

953 11 Session

954 Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it

enables a Requester and Responder to build a secure communication channel with cryptographic information that is

bound ephemerally. Specifically, an SPDM session provides either encryption or message authentication or both.

955 A session has three phases, as Figure 30 — Session phases shows:

• The handshake

• The application

• Termination

956 Figure 30 — Session phases

957

Requester

END_SESSION and END_SESSION_ACK

Session-Secrets-Exchange

Session Handshake Phase

Application Phase

Legend

Session Terminated!

Responder

Secure
Session

Session-Secrets-Finish

958 11.1 Session handshake phase

959 The session handshake phase begins with either KEY_EXCHANGE or PSK_EXCHANGE . This phase also allows for the

authentication of the Requester if the Responder indicated this earlier in its ALGORITHMS response. Furthermore, this

phase of the session uses the handshake secrets to secure the communication as described in the Key schedule

clause.

960 The purpose of this phase is to first build trust between the Responder and Requester before either side sends

Security Protocol and Data Model (SPDM) Specification DSP0274

222 Published Version 1.3.0

application data. Additionally, it also ensures the integrity of the handshake and, to a certain degree, synchronicity

with the derived handshake secrets.

961 In this phase of the session, GET_ENCAPSULATED_REQUEST and DELIVER_ENCAPSULATED_RESPONSE shall be used to

obtain requests from the Responder to complete the authentication of the Requester, if the Responder indicated this

in its ALGORITHMS response. During this phase, the Responder shall not asynchronously send requests to the

Requester. The only requests allowed to be encapsulated shall be GET_DIGESTS and GET_CERTIFICATE . The

Requester shall provide a signature in the FINISH request, as the FINISH request and FINISH_RSP response

messages clause describes.

962 If an ERROR message of ErrorCode=DecryptError occurs in this phase, the session shall immediately terminate and

proceed to session termination.

963 A successful handshake ends with either FINISH_RSP or PSK_FINISH_RSP and the application phase begins.

964 11.2 Application phase

965 Once the handshake completes and all validation passes, the session reaches the application phase where either the

Responder or the Requester can send application data.

966 During this phase, a Requester can send SPDM messages such as GET_MEASUREMENTS . These messages might involve

transcript calculations. If such calculations are required, they shall be calculated on a per session basis. Once a session

has been established, subsequent messages sent outside of a session shall not contribute to the transcript within a

session.

967 The application phase ends when the HEARTBEAT requirements fail, or with an END_SESSION message, or with an

ERROR message of ErrorCode=DecryptError . The next phase is the session termination phase.

968 11.3 Session termination phase

969 This phase signals the end of the application phase and the enactment of internal clean-up procedures by the

endpoints. Requesters and Responders can have various reasons for terminating a session, which are outside the

scope of this specification.

970 SPDM provides the END_SESSION / END_SESSION_ACK message pair to explicitly trigger the session termination phase

if needed but, depending on the transport, it might simply be an internal phase with no explicit SPDM messages sent

or received.

971 When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as

derived major secrets, DHE secrets and encryption keys. Endpoints might have other internal data associated with a

session that they should also clean up.

972 11.4 Simultaneous active sessions

973 If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be at least 1. If a

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 223

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

KEY_EXCHANGE or PSK_EXCHANGE request would cause the Responder’s number of simultaneous active sessions to

exceed this maximum, the Responder shall respond with an ERROR message of ErrorCode=SessionLimitExceeded .

974 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverse roles.

For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is

acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session to

SPDM endpoint ABC, now acting as a Responder. Because these two sessions are distinct and separate, the two

endpoints would ensure they do not mix sessions. To ensure proper session handling, each endpoint would ensure

that their portion of the session IDs are unique at the time of Session-Secrets-Exchange. This would form a final

unique session ID for that new session. Additionally, the endpoints can use information at the transport layer to

further ensure proper handling of sessions.

975 11.5 Records and session ID

976 When the session starts, the communication of secured data is done using records. A record represents a chunk or

unit of data that is either encrypted or authenticated or both. This data can be either an SPDM message or

application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange

messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

977 The actual format and other details of a record are outside the scope of this specification. It is generally assumed that

the transport protocol will define the format and other details of the record.

Security Protocol and Data Model (SPDM) Specification DSP0274

224 Published Version 1.3.0

978 12 Key schedule

979 A key schedule describes how the various keys such as encryption keys used by a session are derived and when each

key is used. The default SPDM key schedule makes heavy use of HKDF-Extract and HKDF-Expand , which RFC 5869

describes. SPDM defines this additional function:

BinConcat(Length, Version, Label, Context)

980 where

• BinConcat shall be the concatenation of binary data in the order that Table 130 — BinConcat details shows:

981 Table 130 — BinConcat details

Order Data Type Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash . Length

982 If Context is null , BinConcat is the concatenation of the first three components only.

983 Table 131 — Version details describes the version details.

984 Table 131 — Version details

SPDM version Version text

SPDM 1.1 “spdm1.1”

SPDM 1.2 “spdm1.2”

SPDM 1.3 “spdm1.3”

985 The HKDF-Expand function prototype as used by the default SPDM key schedule is as follows:

HKDF-Expand(secret, context, Hash.Length)

986 The HKDF-Extract function prototype is described as follows:

HKDF-Extract(salt, IKM);

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 225

https://tools.ietf.org/html/rfc5869

987 where

• IKM is the Input Keying Material.

988 For HKDF-Expand and HKDF-Extract , the hash function shall be the selected hash function in the ALGORITHMS

response. Hash . Length shall be the length of the output of the hash function selected by the ALGORITHMS

response.

989 Both Responder and Requester shall use the key schedule that Figure 31 — Key schedule shows.

990 Figure 31 — Key schedule

991

HKDF-Extract (Salt_0, _____)

Handshake-Secret

HKDF-Expand (Handshake-Secret, bin_str1, Hash.Length)
Request Direction
Handshake Secret

HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length)
Response Direction Handshake

Secret

DHE Secret or Pre-shared Key

HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)

Master-Secret

HKDF-Expand (Master-Secret, bin_str3, Hash.Length) Requester Direction Data Secret

HKDF-Expand (Master-Secret, bin_str4, Hash.Length) Responder Direction Data Secret

HKDF-Extract (Salt_1, 0_filled)

Salt_1

HKDF-Expand (Master-Secret, bin_str8, Hash.Length)
Export Master Secret

992 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single

output and are given names for clarity.

993 Table 132 — Key schedule accompanies the figure to complete the key schedule. The Responder and Requester shall

also adhere to the definition of this table.

994 Table 132 — Key schedule

Security Protocol and Data Model (SPDM) Specification DSP0274

226 Published Version 1.3.0

Variable Definition Value is secret?

Salt_0
A zero-filled array of Hash . Length length for KEY_EXCHANGE session.

A 0xFF-filled array of Hash . Length length for PSK_EXCHANGE session.
No

Salt_1 Used to generate the Master-Secret. Yes

0_filled A zero-filled array of length Hash . Length . No

bin_str0 BinConcat(Hash.Length, Version, "derived", NULL) No

bin_str1 BinConcat(Hash.Length, Version, "req hs data", TH1) No

bin_str2 BinConcat(Hash.Length, Version, "rsp hs data", TH1) No

bin_str3 BinConcat(Hash.Length, Version, "req app data", TH2) No

bin_str4 BinConcat(Hash.Length, Version, "rsp app data", TH2) No

DHE Secret
This shall be the secret derived from KEY_EXCHANGE/

KEY_EXCHANGE_RSP .
Yes

Pre-Shared Key PSK Yes

995 Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the

hash function to compute. As in RFC 8446, the previously defined labels have all been chosen to fit within this

limit.

996 12.1 DHE secret computation

997 The DHE secret is a shared secret, and its computation is different per algorithm or algorithm class. These clauses

define the format and computation for DHE algorithms.

998 For ffdhe2048 , ffdhe3072 , ffdhe4096 , secp256r1 , secp384r1 , and secp521r1 , the format and computation

of the DHE secret shall be the shared secret, which section 7.4 of RFC 8446 defines.

999 For SM2_P256 , the parameters of this curve are defined in the TCG Algorithm Registry. The DHE secret shall be KA

and KB as defined in GB/T 32918.3-2016. The Requester shall compute KA, and the Responder shall compute KB to

arrive at the same secret value. KA and KB are the results of a KDF. This specification shall use the KDF as defined by

GB/T 32918.3-2016. The size of the DHE secret, referred to as klen in the KDF of GB/T 32918.3 specification, shall be

the key size of the selected AEAD algorithm in RespAlgStruct . Lastly, GB/T 32918.3 allows for a flexible hash

algorithm. The hash algorithm shall be the selected hash algorithm in BaseHashSel or ExtHashSel .

1000 12.2 Transcript hash in key derivation

1001 The key schedule uses two transcript hashes:

• TH1

• TH2

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 227

1002 12.3 TH1 definition

1003 If the Requester and Responder used KEY_EXCHANGE / KEY_EXCHANGE_RSP to exchange initial keying information,

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [DIGESTS].* (if issued and if MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . * except for the ResponderVerifyData field

1004 If the Requester and Responder used PSK_EXCHANGE / PSK_EXCHANGE_RSP to exchange initial keying information,

TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [PSK_EXCHANGE] . *

3. [PSK_EXCHANGE_RSP] . * except for the ResponderVerifyData field

1005 12.4 TH2 definition

1006 If the Requester and Responder used KEY_EXCHANGE / KEY_EXCHANGE_RSP to exchange initial keying information,

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [DIGESTS].* (if issued and if MULTI_KEY_CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY_EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *

5. [KEY_EXCHANGE_RSP] . *

6. [DIGESTS].* (if encapsulated DIGEST is issued and if MULTI_KEY_CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public

key in its provisioned format, if a certificate is not used. (Valid only in mutual authentication)

8. [FINISH] . *

9. [FINISH_RSP] . *

1007 If the Requester and Responder used PSK_EXCHANGE / PSK_EXCHANGE_RSP to exchange initial keying information,

TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA

2. [PSK_EXCHANGE] . *

3. [PSK_EXCHANGE_RSP] . *

Security Protocol and Data Model (SPDM) Specification DSP0274

228 Published Version 1.3.0

4. [PSK_FINISH] . * (if issued)

5. [PSK_FINISH_RSP] . * (if issued)

1008 12.5 Key schedule major secrets

1009 The key schedule produces four major secrets:

• Request-direction handshake secret (S0)

• Response-direction handshake secret (S1)

• Request-direction data secret (S2)

• Response-direction data secret (S3)

1010 Each secret applies in a certain direction of transmission and is only valid during a certain time frame. Each of these

four major secrets will be used to derive their respective encryption keys and IV values to be used in the AEAD

function as selected in the ALGORITHMS response.

1011 12.5.1 Request-direction handshake secret

1012 This secret shall only be used during the session handshake phase and shall be applied to all requests after

KEY_EXCHANGE or PSK_EXCHANGE up to and including FINISH or PSK_FINISH .

1013 12.5.2 Response-direction handshake secret

1014 This secret shall only be used during the session handshake phase and shall be applied to all responses after

KEY_EXCHANGE_RSP or PSK_EXCHANGE_RSP up to and including FINISH_RSP or PSK_FINISH_RSP .

1015 12.5.3 Requester-direction data secret

1016 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Requester to the Responder.

1017 12.5.4 Responder-direction data secret

1018 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only

be applied for all data traveling from the Responder to the Requester.

1019 Figure 32 — Secrets usage illustrates where each of the major secrets are used, as described previously.

1020 Figure 32 — Secrets usage

1021

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 229

Secure
Session

Requester

Session Terminated!

Responder

S
0

S
2

S
1

S
3

Session Handshake Phase

Application Phase

Legend

END_SESSION
END_SESSION_ACK

Session-Secrets-Exchange Request
Session-Secrets-Exchange Response

Session-Secrets-Finish Request

Session-Secrets-Finish Response

1022 12.6 Encryption key and IV derivation

1023 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV value.

EncryptionKey = HDKF-Expand(major-secret, bin_str5, key_length);
IV = HKDF-Expand(major-secret, bin_str6, iv_length);

bin_str5 = BinConcat(key_length, Version, "key", NULL);
bin_str6 = BinConcat(iv_length, Version, "iv", NULL);

1024 Both key_length and iv_length shall be the lengths associated with the selected AEAD algorithm in the

ALGORITHMS message.

1025 12.7 finished_key derivation

1026 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various

SPDM messages. The key, finished_key , is defined as follows:

Security Protocol and Data Model (SPDM) Specification DSP0274

230 Published Version 1.3.0

finished_key = HKDF-Expand(handshake-secret, bin_str7, Hash.Length);
bin_str7 = BinConcat(Hash.Length, Version, "finished", NULL);

1027 The handshake-secret shall be either a request-direction handshake secret or a response-direction handshake secret.

1028 12.8 Deriving additional keys from the Export Master Secret

1029 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys are

derived from this secret is outside the scope of this specification. The Export Master Secret is not a major secret and

is not updated through a major secrets update. How the Export Master Secret is updated, if required, is outside the

scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin_str8, Hash.Length);
bin_str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

1030 12.9 Major secrets update

1031 The major secrets can be updated during an active session to avoid the overhead of closing down a session and

recreating the session. This is achieved by issuing the KEY_UPDATE request.

1032 The major secrets shall be re-keyed as a result of this request. To compute the new secret for each new major data

secret, the following algorithm shall be applied.

new_secret = HKDF-Expand(current_secret, bin_str9, Hash.Length);
bin_str9 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

1033 In computing the new secret, current_secret shall be either the current Requester-Direction Data Secret or the

Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall be

derived from the new secrets and used immediately.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 231

1034 13 Application data

1035 SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that

TLS 1.3 does to protect the confidentiality and integrity of data that shall remain secret as well as to protect the

integrity of data that needs to be transmitted in the clear but shall still be protected from manipulation, as is the case

for protocol headers. AEAD algorithms provide both encryption and message authentication. Each algorithm specifies

details such as the size of the nonce, the position and length of the MAC, and many other factors to ensure a strong

cryptographic algorithm.

1036 AEAD functions shall provide the following functions and comply with the requirements defined in RFC 5116:

AEAD_Encrypt(encryption_key, nonce, associated_data, plaintext);
AEAD_Decrypt(encryption_key, nonce, associated_data, ciphertext);

1037 where

• AEAD_Encrypt is the function that fully encrypts the plaintext , computes the MAC across both the

associated_data and plaintext , and produces the ciphertext , which includes the MAC.

• AEAD_Decrypt is the function that verifies the MAC and, if validation is successful, fully decrypts the

ciphertext and produces the original plaintext .

• encryption_key is the derived encryption key for the respective direction. See the Key schedule clause.

• nonce is the nonce computation. See the Nonce derivation clause.

• associated_data is the associated data.

• plaintext is the data to encrypt.

• ciphertext is the data to decrypt.

1038 13.1 Nonce derivation

1039 Certain AEAD ciphers have specific requirements for nonce construction because their security properties can be

compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as

those provided in RFC 5116 for nonce derivation.

Security Protocol and Data Model (SPDM) Specification DSP0274

232 Published Version 1.3.0

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

1040 14 General opaque data format

1041 The general opaque data format allows for a variety of data defined by an assortment of vendors, standards bodies,

and transport mechanisms to accompany an SPDM message without namespace collisions.

1042 If the OpaqueDataFmt1 bit is selected in OtherParamsSelection of ALGORITHMS , then all opaque data fields in

SPDM messages shall use the format that Table 133 — General opaque data format defines.

1043 Table 133 — General opaque data format

Byte offset Field Size (bytes) Description

0 TotalElements 1
Shall be the total number of elements in

OpaqueList .

1 Reserved 3 Reserved.

4 OpaqueList Variable
Shall be a list of opaque elements. See Table 134 —

Opaque element.

1044 Table 134 — Opaque element defines the format for each element in OpaqueList .

1045 Table 134 — Opaque element

Byte offset Field Size (bytes) Description

0 ID 1

Shall be one of the values in the ID

column of Table 60 — Registry or

standards body ID.

1 VendorIDLen 1

Shall be the length in bytes of the

VendorID field.

If the data in OpaqueElementData

belongs to a standards body, this field

shall be 0.

Otherwise, the data in

OpaqueElementData belongs to the

vendor and therefore, this field shall

be the length indicated in the “Vendor

ID length” column of Table 60 —

Registry or standards body ID for the

respective ID .

2 VendorID VendorIDLen

If VendorIDLen is greater than zero,

this field shall be the ID of the vendor

corresponding to the ID field.

Otherwise, this field shall be absent.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 233

Byte offset Field Size (bytes) Description

2 + VendorIDLen OpaqueElementDataLen 2
Shall be the length of

OpaqueElementData .

4 + VendorIDLen OpaqueElementData OpaqueElementDataLen
Shall be the data defined by the

vendor or standards body.

4 + VendorIDLen + OpaqueElementDataLen AlignPadding
AlignPaddingSize = 0,

1, 2, or 3

If 4 + VendorIDLen +

OpaqueElementDataLen does not fall

on a 4-byte boundary, this field shall

be present and of the correct length

to ensure that 4 + VendorIDLen +

OpaqueElementDataLen +

AlignPaddingSize is a multiple of 4.

The value of this field shall be all

zeros, and the size of this field shall be

0, 1, 2, or 3.

Security Protocol and Data Model (SPDM) Specification DSP0274

234 Published Version 1.3.0

1046 15 Signature generation

1047 The SPDMsign function used in various part of this specification defines the signature generation algorithm while

accounting for the differences in the various supported cryptographic signing algorithms in the ALGORITHMS

message.

1048 The signature generation function takes this form:

signature = SPDMsign(PrivKey, data_to_be_signed, context);

1049 The SPDMsign function shall take these input parameters:

• PrivKey : a secret key

• data_to_be_signed : a bit stream of the data that will be signed

• context : a string

1050 The function shall output a signature using PrivKey and a selected cryptographic signing algorithm.

1051 The signing function shall follow these steps to create spdm_prefix and spdm_context (See Text or string

encoding for encoding rules):

1. Create spdm_prefix . The spdm_prefix shall be the repetition, four times, of the concatenation of

“dmtf-spdm-v”, SPDMversionString and “.*”. This will form a 64-character string.

2. Create spdm_context . If the Requester is generating the signature, spdm_context shall be the

concatenation of “requester-” and context . If the Responder is generating the signature, the

spdm_context shall be the concatenation of “responder-” and context .

1052 Now follows an example, designated Example 1, of creating a combined_spdm_prefix .

1053 The version of this specification for this example is 1.4.3, the Responder is generating a signature, and the context

is “my example context”. Thus, the spdm_prefix is “dmtf-spdm-v1.4.*dmtf-spdm-v1.4.*dmtf-spdm-v1.4.*dmtf-spdm-

v1.4.*”. The spdm_context is “responder-my example context”.

1054 Next, the combined_spdm_prefix is formed. The combined_spdm_prefix shall be the concatenation of four

elements: spdm_prefix , a byte with a value of zero, zero_pad , and spdm_context . The size of zero_pad shall be

the number of bytes needed to ensure that the length of combined_spdm_prefix is 100 bytes. The size of zero_pad

can be zero. The value of zero_pad shall be zero.

1055 Continuing Example 1, Table 135 — Combined SPDM prefix shows the combined_spdm_prefix with offsets. Offsets

increase from left to right and top to bottom. As shown, the length of combined_spdm_prefix is 100 bytes.

Furthermore, a number surrounded by double quotation marks indicates that the ASCII value of that number is used.

See Text or string encoding for encoding rules. Table 94 concludes Example 1.

1056 Table 135 — Combined SPDM prefix

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 235

Offset 0x0 0x1 0x2 0x3 0x4 0x5 0x6 0x7 0x8 0x9 0xA 0xB 0xC 0xD 0xE 0xF

0 d m t f - s p d m - v “1” . “4” . *

0x10 d m t f - s p d m - v “1” . “4” . *

0x20 d m t f - s p d m - v “1” . “4” . *

0x30 d m t f - s p d m - v “1” . “4” . *

0x40 0x0 0x0 0x0 0x0 0x0 0x0 0x0 0x0 r e s p o n d e

0x50 r - m y space (0x20) e x a m p l e space (0x20) c o n

0x60 t e x t

1057 The next step is to form the message_hash . The message_hash shall be the hash of data_to_be_signed using the

selected hash function in either BaseHashSel or ExtHashSel . Many hash algorithms allow implementations to

compute an intermediate hash, sometimes called a running hash. An intermediate hash allows for the updating of the

hash as each byte of the ordered data of the message becomes known. Consequently, the ability to compute an

intermediate hash allows for memory utilization optimizations where an SPDM endpoint can discard bytes of the

message that are already covered by the intermediate hash while waiting for more bytes of the message to be

received.

1058 If the Responder is generating the signature, the selected cryptographic signing algorithm is indicated in either

BaseAsymSel or ExtAsymSel (but not both) in the ALGORITHMS message. If the Requester is generating the

signature, the selected cryptographic signing algorithm is indicated in ReqBaseAsymAlg of RespAlgStruct in the

ALGORITHMS message.

1059 Because each cryptographic signing algorithm is vastly different, these clauses define the binding of SPDMsign to

those algorithms.

1060 15.1 Signing algorithms in extensions

1061 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in

the ALGORITHMS response, its binding is outside the scope of this specification.

1062 15.2 RSA and ECDSA signing algorithms

1063 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

hash function selected by the Responder in BaseHashSel or ExtHashSel .

1064 The private key, defined by the specification for these algorithms, shall be PrivKey .

1065 In the specification for these algorithms, the letter M denotes the message to be signed. M shall be the

concatenation of combined_spdm_prefix and message_hash .

1066 RSA and ECDSA algorithms are described in Signature algorithm references.

Security Protocol and Data Model (SPDM) Specification DSP0274

236 Published Version 1.3.0

1067 The FIPS PUB 186-5 supports deterministic ECDSA as a variant of ECDSA. RFC 6979 describes this deterministic

digital signature generation procedure. This variant does not impact the signature verification process. How an

implementation chooses to support ECDSA or deterministic ECDSA is outside the scope of this specification.

1068 15.3 EdDSA signing algorithms

1069 These algorithms are described in RFC 8032.

1070 The private key, defined by RFC 8032, shall be PrivKey .

1071 In the specification for these algorithms, the letter M denotes the message to be signed.

1072 15.3.1 Ed25519 sign

1073 This specification only defines Ed25519 usage and not its variants.

1074 M shall be the concatenation of combined_spdm_prefix and message_hash .

1075 15.3.2 Ed448 sign

1076 This specification only defines Ed448 usage and not its variants.

1077 M shall be the concatenation of combined_spdm_prefix and message_hash .

1078 Ed448 defines a context string, C . C shall be the spdm_context .

1079 15.4 SM2 signing algorithm

1080 This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable M and IDA.

1081 The private key defined by GB/T 32918.2-2016 shall be PrivKey .

1082 In the specification for SM2, the letter M denotes the message to be signed. M shall be the concatenation of

combined_spdm_prefix and message_hash .

1083 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel .

1084 Lastly, SM2 expects a distinguishing identifier, which identifies the signer and is indicated by the variable IDA. If this

algorithm is selected, the ID shall be an empty string of size 0.

1085 15.5 Signature algorithm references

1086 These clauses provide basic information about each asymmetric algorithms SPDM supports, as Table 136 — SPDM

Asymmetric Signature Reference Information shows. SPDM endpoints shall use the references in the References

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 237

column for signature-related operations and the key size as indicated in the Key Size columns for the respective

algorithm. The byte order for a signature when placing it into an SPDM signature field shall be signature byte order.

1087 Table 136 — SPDM Asymmetric Signature Reference Information

Algorithm Name Key Size (bits) References

TPM_ALG_RSASSA_2048 2048 Section 8.2 of IETF RFC 8017

TPM_ALG_RSASSA_3072 3072 Section 8.2 of IETF RFC 8017

TPM_ALG_RSASSA_4096 4096 Section 8.2 of IETF RFC 8017

TPM_ALG_RSAPSS_2048 2048 Section 8.1 of IETF RFC 8017

TPM_ALG_RSAPSS_3072 3072 Section 8.1 of IETF RFC 8017

TPM_ALG_RSAPSS_4096 4096 Section 8.1 of IETF RFC 8017

TPM_ALG_ECDSA_ECC_NIST_P256 256

Section 6 of FIPS PUB 186-5 using

TPM_ECC_NIST_P256 curve

parameters as TCG Algorithm

Registry defines.

TPM_ALG_ECDSA_ECC_NIST_P384 384

Section 6 of FIPS PUB 186-5 using

TPM_ECC_NIST_P384 curve

parameters as TCG Algorithm

Registry defines.

TPM_ALG_ECDSA_ECC_NIST_P521 521

Section 6 of FIPS PUB 186-5 using

TPM_ECC_NIST_P521 curve

parameters as TCG Algorithm

Registry defines.

TPM_ALG_SM2_ECC_SM2_P256 256

Section 6 of GB/T 32918.2-2016

using TPM_ECC_SM2_P256 curve

parameters as TCG Algorithm

Registry defines.

EdDSA ed25519 256 IETF RFC 8032

EdDSA ed448 456 IETF RFC 8032

Security Protocol and Data Model (SPDM) Specification DSP0274

238 Published Version 1.3.0

1088 16 Signature verification

1089 The SPDMsignatureVerify function, used in various part of this specification, defines the signature verification

algorithm while accounting for the differences in the various supported cryptographic signing algorithms in the

ALGORITHMS message.

1090 The signature verification function takes this form:

SPDMsignatureVerify(PubKey, signature, unverified_data, context);

1091 The SPDMsignatureVerify function shall take these input parameters:

• PubKey : the public key

• signature : a digital signature

• unverified_data : a bit stream of data that needs to be verified

• context : a string

1092 The function shall verify the unverified_data using signature , PubKey , and a selected cryptographic signing

algorithm. SPDMsignatureVerify shall return success if the signature verifies correctly and failure otherwise. Each

cryptographic signing algorithm states the verification steps or criteria for successful verification.

1093 The verifier of the signature shall create spdm_prefix , spdm_context , and combined_spdm_context as described

in Signature generation.

1094 The next step is to form the unverified_message_hash . The unverified_message_hash shall be the hash of

unverified_data using the selected hash function in either BaseHashSel or ExtHashSel .

1095 If the Responder generated the signature, the selected cryptographic signature verification algorithm is indicated in

either BaseAsymSel or ExtAsymSel (but not both) in the ALGORITHMS message. If the Requester generated the

signature, the selected cryptographic signature verification algorithm is indicated in ReqBaseAsymAlg of

RespAlgStruct in the ALGORITHMS message.

1096 Because each cryptographic signature verification algorithm is vastly different, these clauses define the binding of

SPDMsignatureVerify to those algorithms.

1097 16.1 Signature verification algorithms in extensions

1098 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in

the ALGORITHMS response, its binding is outside the scope of this specification.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 239

1099 16.2 RSA and ECDSA signature verification algorithms

1100 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the

hash function selected by the Responder in BaseHashSel or ExtHashSel .

1101 The public key, defined in the specification for these algorithms, shall be PubKey .

1102 In the specification for these algorithms, the letter M denotes the message that is signed. M shall be concatenation

of the combined_spdm_prefix and unverified_message_hash .

1103 For RSA algorithms, SPDMsignatureVerify shall return success when the output of the signature verification

operation, as defined in the RSA specification, is “valid signature”. Otherwise, SPDMsignatureVerify shall return a

failure.

1104 For ECDSA algorithms, SPDMsignatureVerify shall return success when the output of “ECDSA Signature Verification

Algorithm” as defined in FIPS PUB 186-5 is "accept" . Otherwise, SPDMsignatureVerify shall return failure.

1105 RSA and ECDSA algorithms are described in Signature algorithm references.

1106 16.3 EdDSA signature verification algorithms

1107 RFC 8032 describes these algorithms. RFC 8032, also, defines the M , PH , and C variables.

1108 The public key, also defined in RFC 8032, shall be PubKey .

1109 In the specification for these algorithms, the letter M denotes the message to be signed.

1110 16.3.1 Ed25519 verify

1111 M shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

1112 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and when the

constraints of the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise,

SPDMsignatureVerify shall return failure.

1113 16.3.2 Ed448 verify

1114 M shall be the concatenation of combined_spdm_prefix and unverified_message_hash .

1115 Ed448 defines a context string, C . C shall be the spdm_context .

1116 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and when the

constraints of the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise,

SPDMsignatureVerify shall return failure.

Security Protocol and Data Model (SPDM) Specification DSP0274

240 Published Version 1.3.0

1117 16.4 SM2 signature verification algorithm

1118 This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDA.

1119 The public key, also defined in GB/T 32918.2-2016, shall be PubKey .

1120 In the specification for SM2, the variable M' is used to denote the message that is signed. M' shall be the

concatenation of combined_spdm_prefix and unverified_message_hash .

1121 The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash

function selected by the Responder in BaseHashSel or ExtHashSel .

1122 Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDA. See

SM2 signing algorithm to create the value for IDA.

1123 SPDMsignatureVerify shall return success when the Digital signature verification algorithm, as described in GB/T

32918.2-2016, outputs an “accept”. Otherwise, SPDMsignatureVerify shall return failure.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 241

1124 17 General ordering rules

1125 These general ordering rules apply to SPDM messages that form a transcript that eventually gets signed.

1126 When requests are received out of order, the Responder can either silently discard all requests (with the exception of

GET_VERSION) or return an ERROR message of ErrorCode=RequestResynch until the Requester issues a

GET_VERSION . Out-of-order requests shall nullify the transcript.

1127 A Requester can retry messages. The retries shall be identical to the first message, excluding transport variances. If

the Responder sees two or more non-identical NEGOTIATE_ALGORITHMS , the Responder shall either return an ERROR

message of ErrorCode=UnexpectedRequest or silently discard non-identical messages. Because a retried message is

identical to the first, a retried message shall not be used in transcript hash calculations.

1128 If a Requester wants to retrieve a CAPABILITIES response with the Supported Algorithms included, the Requester

should first issue GET_CAPABILITIES with Bit 1 in Param1 set to 1. If the Responder does not support the

Supported Algorithms block in its CAPABILITIES response, it responds with an ERROR response. At this point, the

Requester can issue a second GET_CAPABILITIES with Bit 1 in Param1 cleared to 0. In this case, the second request

is not considered a retry, and both requests and their corresponding responses are used in transcript hash

calculations. After a successful CAPABILITIES response, if the Responder sees two or more non-identical

GET_CAPABILITIES requests, the Responder shall either return an ERROR message of

ErrorCode=UnexpectedRequest or silently discard non-identical messages.

1129 For CHALLENGE and Session-Secrets-Exchange, the Responder should ensure it can distinguish between the

respective retry and the respective original message. Failure to distinguish correctly might lead to an authentication

failure, session handshake failures, and other failures. The response to a retried request should be identical to the

original response.

Security Protocol and Data Model (SPDM) Specification DSP0274

242 Published Version 1.3.0

1130 18 DMTF event types

1131 The DMTF-defined event types are sent using the Event mechanism.

1132 The DMTF event types table shows the supported DMTF event types for the DMTF event group. The values in the

Event Type ID column shall be the same values for EventTypeId field in Event data table for the DMTF event group

for the corresponding event in the Event Name column. The version (EventGroupVer) of the DMTF Event Group

shall be 1 .

1133 Table 137 — DMTF event types table

Event Type ID Event Name Requirement Description

0 Reserved Reserved Reserved.

1 EventLost Mandatory Events were lost.

2 MeasurementChanged Optional
One or more measurements

changed.

3 MeasurementPreUpdate Optional

A pending update will change

one or more measurements.

However, the update has not yet

taken effect.

4 CertificateChanged Optional

Information in one or more

certificate slots has changed.

This could be the certificate or

the associated key.

All others Reserved Reserved Reserved.

1134 18.1 Event type details

1135 Each DMTF event type has its own event-specific information, referred to as EventDetail , to describe the event.

These clauses describe the format for each DMTF event type. The event types are listed in the DMTF event types

table.

1136 18.1.1 Event Lost

1137 This event (EventTypeId=EventLost) shall notify the Event Recipient that one or more events were lost. The reasons

for event loss are varied and numerous, but one example is loss due to insufficient resources. This event should be

retried until the Event Recipient acknowledges it. Retrying this event means that this event was not acknowledged

previously.

1138 The Event lost format table describes the format for EventDetail .

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 243

1139 Table 138 — Event lost format

Offset Field Size (bytes) Description

0 LastAckedEventInstID 4

Shall be the last

event instance ID

acknowledged by

the Event

Recipient.

4 LastLostEventInstID 4

Shall be the last

lost event instance

ID.

1140 The range of lost events shall be the range from (LastAckedEventInstID + 1) to LastLostEventInstID inclusive.

1141 If the Event Notifier cannot or can no longer track the information in Event lost format, then LastAckedEventInstID

and LastLostEventInstID shall both be 0xFFFF_FFFF.

1142 When resending an “event lost” event, the Event Notifier can update fields in Event lost format if new events are lost

since the last time the “event lost” event was sent.

1143 18.1.2 Measurement changed event

1144 The measurement changed event (EventTypeId=MeasurementChanged) shall notify the Event Recipient when one or

more measurement blocks have changed. The MeasurementChanged event is applicable only when

TerminationPolicy = 1 in KEY_EXCHANGE or PSK_EXCHANGE . If TerminationPolicy = 0 , the session will be

terminated upon measurement update. The EventDetail format for this event type shall be as Measurement

changed event details format defines.

1145 Table 139 — Measurement changed event details format describes the format for EventDetail for the

MeasurementChanged event.

1146 Table 139 — Measurement changed event details format

Security Protocol and Data Model (SPDM) Specification DSP0274

244 Published Version 1.3.0

Offset Field Size (bytes) Description

0 ChangedMeasurements 32

This field is a bit

mask where each

bit indicates

changes to its

corresponding

measurement

index. Specifically,

the bit at bit offset

X shall be set to

indicate a change

to the

Measurement

block at

measurement

index X. At least

one bit in this field

shall be set. Bits 0

and 255 shall be

reserved.

1147 The Event Recipient can issue GET_MEASUREMENTS to obtain further details on the change.

1148 18.1.3 Measurement pre-update event

1149 The measurement pre-update event (EventTypeId=MeasurementPreUpdate) notifies the Event Recipient when one

or more Measurement blocks will change due to a pending update. The EventDetail format for this event type

shall be as Measurement pre-update event details format defines.

1150 Table 140 — Measurement pre-update event details format describes the format for EventDetail for the

MeasurementPreUpdate event.

1151 Table 140 — Measurement pre-update event details format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 245

Offset Field Size (bytes) Description

0 PreUpdateMeasurementChanges 32

This field is a bit

mask where each

bit indicates

pending changes

to the

corresponding

measurement

index in an update

scenario such as a

firmware update

or pending

configuration

change.

Specifically, the bit

at bit offset X shall

be set to indicate

a potential change

to the

Measurement

block at

measurement

index X as a result

of an update. At

least one bit in this

field shall be set.

Bits 0 and 255

shall be reserved.

1152 Upon receiving the MeasurementPreUpdate event, the Event Recipient may send GET_MEASUREMENTS with the

NewMeasurementRequested option (see Table 50 — GET_MEASUREMENTS request attributes) to acquire and

evaluate the Event Notifier’s pending new measurements. If the Event Recipient deems the Event Notifier’s new

measurements unacceptable, the Event Recipient may terminate the session.

1153 The pre-update notification mechanism does not allow the Event Recipient to stop the Event Notifier from applying

the update. However, an Event Notifier that has sent MeasurementPreUpdate to the Event Recipient should not

apply the update until one of the following events happens:

• Arrival of EVENT_ACK from the Event Recipient

• Arrival of END_SESSION from the Event Recipient

• Event Recipient timeout (per Timing requirements)

1154 18.1.4 Certificate changed event

1155 The certificate changed event (EventTypeId=CertificateChanged) shall notify the Event Recipient when data

associated with one or more fields in the DIGESTS response have changed. The EventDetail format for this event

type shall be the Certificate changed event details format.

Security Protocol and Data Model (SPDM) Specification DSP0274

246 Published Version 1.3.0

1156 Table 141 — Certificate changed event details format table describes the format for EventDetail for the

CertificateChanged event.

1157 Table 141 — Certificate changed event details format

Offset Field Size (bytes) Description

0 CertificateChanged 1

This field is a bit

mask where each

bit indicates

certificate related

changes to the

corresponding

certificate slot.

Specifically, the bit

at bit offset X shall

be set to indicate

a change to data

associated with

one or more fields

in DIGESTS for

certificate slot X.

At least one bit in

this field shall be

set.

1158 The Event Recipient can issue GET_DIGESTS or GET_CERTIFICATE to obtain further details on the change.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 247

1159 19 ANNEX A (informative) TLS 1.3

1160 This specification heavily models TLS 1.3. TLS 1.3, and consequently this specification, assumes the transport layers

provide the following capabilities or attributes:

• Reliability in transmission and reception of data.

• Transmission of data is either in order or the order of data can be reconstructed at reception.

1161 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3.

Security Protocol and Data Model (SPDM) Specification DSP0274

248 Published Version 1.3.0

1162 20 ANNEX B (informative) Device certificate example

1163 Device certificate example shows an example device certificate:

1164 Device certificate example

Certificate:

Data:
Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256
Issuer: C = CA, ST = NC, L = city, O = ACME, OU = ACME Devices, CN = CA
Validity

Not Before: Jan 1 00:00:00 1970 GMT
Not After : Dec 31 23:59:59 9999 GMT

Subject: C = US, ST = NC, O = ACME Widget Manufacturing, OU = ACME Widget Manufacturing
Unit, CN = w0123456789

Subject Public Key Info:
Public Key Algorithm: rsaEncryption

RSA Public-Key: (2048 bit)
Modulus:

00:ba:67:47:72:78:da:28:81:d9:81:9b:db:88:03:
e1:10:a4:91:b8:48:ed:6b:70:3c:ec:a2:68:a9:3b:
5f:78:fc:ae:4a:d1:1c:63:76:54:a8:40:31:26:7f:
ff:3e:e0:bf:95:5c:4a:b4:6f:11:56:ca:c8:11:53:
23:e1:1d:a2:7a:a5:f0:22:d8:b2:fb:43:da:dd:bd:
52:6b:e6:a5:3f:0f:3b:60:b8:74:db:56:08:d9:ee:
a0:30:4a:03:21:1e:ee:60:ad:e4:00:7a:6e:6b:32:
1c:28:7e:9c:e8:c3:54:db:63:fd:1f:d1:46:20:9e:
ef:80:88:00:5f:25:db:cf:43:46:c6:1f:50:19:7f:
98:23:84:38:88:47:5d:51:8e:11:62:6f:0f:28:77:
a7:20:0e:f3:74:27:82:70:a7:96:5b:1b:bb:10:e7:
95:62:f5:37:4b:ba:20:4e:3c:c9:18:b2:cd:4b:58:
70:ab:a2:bc:f6:2f:ed:2f:48:92:be:5a:cc:5c:5e:
a8:ea:9d:60:e8:f8:85:7d:c0:0d:2f:6a:08:74:d1:
2f:e8:5e:3d:b7:35:a6:1d:d2:a6:04:99:d3:90:43:
66:35:e1:74:10:a8:97:3b:49:05:51:61:07:c6:08:
01:1c:dc:a8:5f:9e:30:97:a8:18:6c:f9:b1:2c:56:
e8:67

Exponent: 65537 (0x10001)
X509v3 extensions:

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

X509v3 Subject Alternative Name:
othername: 1.3.6.1.4.1.412.274.1::ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 249

Signature Value:
30:45:02:20:1e:5a:a6:ed:5c:b6:2b:f5:9e:22:28:9c:ef:c7:
aa:db:1c:87:83:48:c1:50:cb:25:04:ab:c9:6e:7c:f5:6b:01:
02:21:00:da:48:d4:49:a5:65:5c:2c:83:fc:05:00:66:48:98:
f8:f0:cb:63:b7:2e:87:db:c8:63:58:6c:21:91:7a:68:95

-----BEGIN CERTIFICATE-----
MIIC4jCCAoigAwIBAgIBCDAKBggqhkjOPQQDAjBcMQswCQYDVQQGEwJDQTELMAkG
A1UECAwCTkMxDTALBgNVBAcMBGNpdHkxDTALBgNVBAoMBEFDTUUxFTATBgNVBAsM
DEFDTUUgRGV2aWNlczELMAkGA1UEAwwCQ0EwIBcNNzAwMTAxMDAwMDAwWhgPOTk5
OTEyMzEyMzU5NTlaMH0xCzAJBgNVBAYTAlVTMQswCQYDVQQIDAJOQzEiMCAGA1UE
CgwZQUNNRSBXaWRnZXQgTWFudWZhY3R1cmluZzEnMCUGA1UECwweQUNNRSBXaWRn
ZXQgTWFudWZhY3R1cmluZyBVbml0MRQwEgYDVQQDDAt3MDEyMzQ1Njc4OTCCASIw
DQYJKoZIhvcNAQEBBQADggEPADCCAQoCggEBALpnR3J42iiB2YGb24gD4RCkkbhI
7WtwPOyiaKk7X3j8rkrRHGN2VKhAMSZ//z7gv5VcSrRvEVbKyBFTI+Edonql8CLY
svtD2t29UmvmpT8PO2C4dNtWCNnuoDBKAyEe7mCt5AB6bmsyHCh+nOjDVNtj/R/R
RiCe74CIAF8l289DRsYfUBl/mCOEOIhHXVGOEWJvDyh3pyAO83QngnCnllsbuxDn
lWL1N0u6IE48yRiyzUtYcKuivPYv7S9Ikr5azFxeqOqdYOj4hX3ADS9qCHTRL+he
Pbc1ph3SpgSZ05BDZjXhdBColztJBVFhB8YIARzcqF+eMJeoGGz5sSxW6GcCAwEA
AaNNMEswCQYDVR0TBAIwADALBgNVHQ8EBAMCBeAwMQYDVR0RBCowKKAmBgorBgEE
AYMcghIBoBgMFkFDTUU6V0lER0VUOjAxMjM0NTY3ODkwCgYIKoZIzj0EAwIDSAAw
RQIgHlqm7Vy2K/WeIiic78eq2xyHg0jBUMslBKvJbnz1awECIQDaSNRJpWVcLIP8
BQBmSJj48Mtjty6H28hjWGwhkXpolQ==
-----END CERTIFICATE-----

Security Protocol and Data Model (SPDM) Specification DSP0274

250 Published Version 1.3.0

1165 21 ANNEX C (informative) OID reference

1166 Table 142 — Object identifiers (OIDs) lists all object identifiers (OIDs) that this specification defines:

1167 Table 142 — Object identifiers (OIDs)

OID Identifier Definition Use

{ 1 3 6 1 4 1 412 } id-DMTF DMTF OID Enterprise ID for DMTF

{ id-DMTF 274 } id-DMTF-spdm SPDM OID Base OID for all SPDM OIDs

{ id-DMTF-spdm 1 } id-DMTF-device-info

SPDM certificate

requirements and

recommendations

Certificate device information.

{ id-DMTF-spdm 2 } id-DMTF-hardware-identity Identity provisioning Hardware certificate identifier.

{ id-DMTF-spdm 3 } id-DMTF-eku-responder-auth
Extended Key Usage

authentication OIDs

Certificate Extended Key Usage - SPDM Responder

Authentication.

{ id-DMTF-spdm 4 } id-DMTF-eku-requester-auth
Extended Key Usage

authentication OIDs

Certificate Extended Key Usage - SPDM Requester

Authentication.

{ id-DMTF-spdm 5 } id-DMTF-mutable-certificate Identity provisioning Mutable certificate identifier.

{ id-DMTF-spdm 6 } id-DMTF-SPDM-extension
SPDM Non-Critical

Certificate OID
To contain other OIDs in a certificate extension.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 251

1168 22 ANNEX D (informative) variable name reference

1169 Throughout this document, various sizes and offsets are referred to by a variable. Table 143 — Variables lists variables

used in this document, the definition of the variable, and the location in this document that shows how the variable

is set.

1170 Table 143 — Variables

Symbol Definition Set location

A
Number of Requester-supported extended

asymmetric key signature algorithms.

Table 15 — NEGOTIATE_ALGORITHMS request message

format

A’
Number of extended asymmetric key signature

algorithms selected by the Requester.

Table 21 — Successful ALGORITHMS response message

format

D
The size of D (and C for ECDHE) that is derived

from the selected DHE group.

See the KEY_EXCHANGE request message format in

Table 69 — KEY_EXCHANGE request message format.

E
Number of Requester-supported extended

hashing algorithms.

Table 15 — NEGOTIATE_ALGORITHMS request message

format

E’
The number of Requester-supported extended

hashing algorithms selected by the Responder.

Table 21 — Successful ALGORITHMS response message

format

Lx where x is a number

A generic variable used to indicate the sizes of a

field. The x is a number starting with zero. An

example of Lx is L0 , L1 and so forth. The

scope of this variable is always local to the table

that uses it. For example, L0 often appears in

more than one table but there is no relationship

between an L0 in one table and an L0 in

another table.

Numerous tables

H
The output size, in bytes, of the hash algorithm

agreed upon in NEGOTIATE_ALGORITHMS .

Table 21 — Successful ALGORITHMS response message

format

HEM Hash-extend measurement. Hash-extend measurements clause.

MS

The length of the cryptographic hash or raw bit

stream, as indicated in

DMTFSpecMeasurementValueType[7] .

Table 45 — DMTF measurement specification format

MSHLength

The length of the MeasurementSummaryHash

field in the CHALLENGE_AUTH ,

KEY_EXCHANGE_RSP , and PSK_EXCHANGE_RSP

messages.

Table 45 — Successful CHALLENGE_AUTH response

message format

NL

The length of the Nonce field in the

GET_MEASUREMENTS request and the

MEASUREMENTS response.

GET_MEASUREMENTS request attributes

Security Protocol and Data Model (SPDM) Specification DSP0274

252 Published Version 1.3.0

Symbol Definition Set location

n
Number of version entries in the VERSION

response message.

Table 9 — Successful VERSION response message

format

Q Length of the ResponderContext.
Table 75 — PSK_EXCHANGE_RSP response message

format

P Length of the PSKHint . Table 74 — PSK_EXCHANGE request message format

R Length of the RequesterContext . Table 74 — PSK_EXCHANGE request message format

SigLen

The size of the asymmetric-signing algorithm

output, in bytes, that the Responder selected in

the last ALGORITHMS response message.

Table 21 — Successful ALGORITHMS response message

format

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 253

1171 23 ANNEX E (informative) change log

1172 23.1 Version 1.0.0 (2019-10-16)

• Initial Release

1173 23.2 Version 1.1.0 (2020-07-15)

• Minor typographical fixes

• USB Authentication Specification 1.0 link updated

• Tables are no longer numbered. They are now named.

• Fix internal document links in SPDM response codes table.

• Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

• Removed text at paragraph 181.

• Subject Alternative Name otherName field in Optional fields references DMTF OID section.

• DMTFOtherName definition changed to properly meet ASN.1 syntax.

• Text in figures is now searchable.

• Corrected example of a leaf certificate in Annex A.

• Minor edits to figures for clarity.

• Clarified that transcript hash could include hash of the raw public key if a certificate is not used.

• New:

◦ Added Session support.

▪ Added SPDM request and response messages to support initiating, maintaining and terminating a

secure session.

▪ Added Key schedule for session secrets derivation.

▪ Added Application Data to provide overview of how data is encrypted and authenticated in a session.

◦ Introduce new terms and definitions.

◦ Added Measurement Manifest to DMTFSpecMeasurementValueType .

◦ Added mutual authentication.

◦ Added Encapsulated request flow to support master-slave types of transports.

1174 23.3 Version 1.2.0 (2021-11-01)

• Clarified SPDM version selection after receiving VERSION Response with error handling for certain scenarios.

• Fix improper reference in DMTFSpecMeasurementValue field in “Measurement field format when

MeasurementSpecification field is Bit 0 = DMTF” table.

Security Protocol and Data Model (SPDM) Specification DSP0274

254 Published Version 1.3.0

• Certificate digests in DIGESTS calculation clarified.

• Format of certificate in CertChain parameter of CERTIFICATE message clarified.

• Validity period of X.509 v3 certificate clarified in Required Fields

• Remove InvalidSession error code.

• Clarified transport responsibilities in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Clarified the usage of MutAuthRequested field in KEY_EXCHANGE_RSP .

• Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

• Added recommendation for usage of RequesterContext in PSK scenarios.

• Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.

• Clarified timing requirements for encapsulated requests.

• Clarified out of order and retries

• Clarified error handling actions when unexpected requests occur during various mutual authentication flows.

• Refer to slot number fields as SlotID and normalize SlotID fields to 4 bits where possible.

• Changed PSK_FINISH and FINISH changes in Table 6 — SPDM request and response messages validity.

• Clarified HANDSHAKE_IN_THE_CLEAR_CAP usage in PSK_EXCHANGE .

• Change SPDMVersion field in every request and response message, except GET_VERSION / VERSION messages,

to point to a central location in this specification where it explains the appropriate value to populate for this field.

• Clarified use case for Token field in ResponseNotReady .

• Clarified the format of the certificate chain used in the Transcript hash calculation in Transcript hash calculation

rules.

• Renamed Measurement field format when MeasurementSpecification field is Bit 0 = DMTF table to

Table 45 — DMTF measurement specification format.

• Clarified the ENCAP_CAP field in the capabilities of the Requester and Responder.

• Renamed Mutual Authentication in KEY_EXCHANGE to Session-based mutual authentication.

• ERROR responses are no longer required in most error scenarios.

• Clarify the definition of backward-compatible changes in Version encoding.

• Enhanced requirements for when a firmware update occurred on a Responder in GET_VERSION request and

VERSION response messages.

• Clarified error code ResponseNotReady for M1/M2 and L1/L2 computation.

• Clarified byte order for ASN.1 encoded data, hashes and digests.

• Requester should not use PSK_EXCHANGE if CHALLENGE_AUTH and/or MEASUREMENTS with signature was

received from Responder.

• Required GET_VERSION , VERSION , GET_CAPABILITIES , CAPABILITIES , NEGOTIATE_ALGORITHMS , and

ALGORITHMS in transcript even if negotiated state is supported.

• Enhanced signature generation and verification with a prefix to mitigate signature misuse attacks.

• Clarified behavior of END_SESSION with respect to Negotiated State when there are multiple active sessions.

• Added new defined term Reset to mean device reset. Updated use of the word reset for M1/M2, L1/L2.

• Clarified that a Measurement Manifest should support both hash and raw bit stream formats.

• Clarified Measurement Summary Hash construction rules.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 255

• Clarified minimum timing for HEARTBEAT request and HEARTBEAT_ACK response messages to be sufficiently

greater than T1 . Removed command-specific guidance on retry timing.

• Table codification changed to be consistent with DMTF template.

• New:

◦ Added support for AliasCert s.

▪ Compliant Requesters must support a Responder that uses either DeviceCert s or AliasCert s.

◦ Added Certain error handling in encapsulated flows

◦ Added Slot 0 certificate-provisioning methodology.

◦ Added Allowance for encapsulated requests.

◦ Allowed GET_CERTIFICATE followed by CHALLENGE flow after a reset in M1 and M2 message transcript.

◦ Added new features for GET_MEASUREMENTS and MEASUREMENTS :

▪ More measurement value types.

▪ Allow Requester to request hash or raw bit stream for measurement from the Responder.

◦ Added Advice.

◦ Added structured representation of device mode Device mode field of a measurement block.

◦ Added Text or string encoding.

◦ Signature Clarification:

▪ Added Signature generation and Signature verification for clarity and interoperability.

▪ Change Sign and Verify abstract function to SPDMsign and SPDMsignatureVerify respectively.

◦ Added General ordering rules and references to it, to describe additional requirements for the various

transcript and message transcripts.

◦ Added additional clause for checking FINISH . Param2 if handshake is in the clear.

◦ Added OIDs to represent:

▪ Hardware certificate identifier (Identity provisioning)

▪ Certificate Extended Key Usage - SPDM Responder Authentication (Extended Key Usage authentication

OIDs)

▪ Certificate Extended Key Usage - SPDM Requester Authentication (Extended Key Usage authentication

OIDs)

▪ Mutable certificate identifier (Identity provisioning)

◦ Added SM2 to Base Asymmetric Algorithms and Key Exchange Protocols.

◦ Added SM3 to Base Hash Algorithms and Measurement Hash Algorithms.

◦ Added SM4 to AEAD Algorithms.

◦ Changed symbol “S” denoting signature size to “SigLen” throughout document.

◦ Removed potentially confusing mention of “mutual authentication” in PSK_EXCHANGE section.

◦ Add method to transfer large SPDM messages. See Large SPDM message transfer mechanism.

◦ Changed Measurement Summary Hash concatenation function inputs.

◦ Clarified requirements for compliant certificate chains.

◦ Tables and figures are now numbered. Though these numbers might change in future versions of

specification, the titles will remain the same.

Security Protocol and Data Model (SPDM) Specification DSP0274

256 Published Version 1.3.0

◦ Allowed Requester to specify session termination policy when Responder completes firmware or

configuration update.

1175 23.4 Version 1.3.0 (2023-04-05)

• Change attribution for this standard from the Platform Management Communications Infrastructure (PMCI)

Working Group to the Security Protocols and Data Models Working Group.

• Fix minor typographical errors.

• Clarified CSRdata requirements.

• Correct indication that Identity Provisioning OIDs are in the certificate Extended Key Usage, and add SPDM Non-

Critical Certificate Extension OID to Table 43 — Optional fields.

• Added Signature Algorithm References clauses to clarify basic information about asymmetric algorithms.

• Clarified Offset and Length fields in GET_CERTIFICATE message.

• Clarified measurement specification related fields in NEGOTIATE_ALGORITHMS , ALGORITHMS and Table 53 —

Measurement block format.

• Added recommended ErrorCode for the case when the Responder detects overlapping SET_CERTIFICATE

commands.

• Clarified DataTransferSize and MaxSPDMmsgSize in GET_CAPABILITIES and CAPABILITIES messages.

• Updated General ordering rules to include discussion of the CAPABILITIES response with the Support

Algorithms block.

• Allow the sender to utilize the Large SPDM message transfer mechanism when the transmit buffer size of the

sender is less than the DataTransferSize of the receiving SPDM endpoint.

• Clarified that ENCRYPT_CAP and MAC_CAP apply to all phases of a secure session.

• Clarified the relationship between MAC_CAP and ResponderVerifyData or RequesterVerifyData in Session-

Secret-Exchange and Session-Secret-Finish messages.

• Provide more description for HANDSHAKE_IN_THE_CLEAR_CAP in GET_CAPABILITIES and CAPABILITIES

messages.

• Added VERSION to the chunking forbidden list.

• Added definition of opaque data.

• Make the layout of tables 62 and 63 consistent with other tables.

• Clarified DER encoding for ‘RequesterInfo’

• Added more guidance to RawBitStreamRequested in GET_MEASUREMENTS request.

• Changed ANNEX B from “normative” to “informative”.

• Corrected Requester to Responder in Table 71 Successful KEY_EXCHANGE_RSP response message format.

• Correct values in Field and Size columns of Table 61

• Changed the message validity of VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE to “Vendor-

defined”.

• Clarified measurement method for various timing parameters in Timing specification table.

• Corrected the signing algorithm in the FINISH request’s Signature field.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 257

https://www.dmtf.org/standards/pmci
https://www.dmtf.org/standards/spdm

• Correct Figure 1 — SPDM certificate chain models to show AliasCert model.

• Clarify how retried messages affect transcript hash in General ordering rules.

• Update Table 7 — Timing specification for SPDM messages to clarify that Responders can exceed ST1 and CT

using ErrorCode=ResponseNotReady .

• Clarified rules around when the old key can be discarded during KEY_UPDATE .

• Updated link and information for IETF DTLS 1.3.

• Clarified that AlgCount field in Algorithm request and response structures shall be a value of 2.

• Edit Figure 22 so that a Secure Session does not encompass Session-Secrets-Exchange.

• Clarified measurement signing capabilities in SignatureRequested field of GET_MEASUREMENTS .

• Clarified retries from the perspective Responder and Requester in Timing requirements.

• Changed “or” to “and” in Large SPDM message transfer mechanism section.

• Clarified that MeasurementHashAlgo should be zero if MeasurementSpecificationSel is zero.

• Remove “in general” from normative text.

• Clarified that the use of BaseAsymAlgo in the NEGOTIATE_ALGORITHMS request is dependent on the capabilities

of the Responder.

• Removed directive to save the public key of the leaf certificate retrieved through the GET_CERTIFICATE request.

• Added trusted environment to glossary.

• Clarified how the value of MinDataTransferSize is calculated.

• Added LargeResponse error to description of chunking certificates.

• Clarified that if endpoint does not support chunking then it must set MaxSPDMmsgSize equal to

DataTransferSize .

• Clarified effects on out-of-order message on the transcript and other clarifications in General ordering rules.

• Clarified the definition of Session-Secret-Exchange and removed the duplicate definition of it.

• Replaced wording of “internal buffer” in GET_CERTIFICATE with DataTransferSize and “transmit buffer”.

• Specify the hashing algorithm for MeasurementSummaryHash in multiple tables.

• Added normative statement that VERSION entries should be unique.

• Clarified conditions for LargeResponse error.

• Clarified CERTIFICATE response when the Length field of GET_CERTIFICATE is zero.

• Clarified the assumption that version entries are not duplicated when calculating MinDataTransferSize .

• Introduced Context field in CHALLENGE and GET_MEASUREMENTS requests.

• Clarified restrictions on Bit 0 through 2 of the MutAuthRequested field of KEY_EXCHANGE_RSP .

• Separated nonce and non-repeating counter in PSK_EXCHANGE and PSK_EXCHANGE_RSP .

• Added definitions for sequentially decreasing, sequentially increasing, and monotonically increasing.

• Clarified updating keys in KEY_UPDATE .

• Added size of the transmit buffer as a condition for CHUNK_SEND .

• Clarified measurement support in the MeasurementHashAlgo field of the ALGORITHMS response.

• Clarified conditions under which CERT_CAP must be 0b .

• Allowed GET_DIGESTS and GET_CERTIFICATE in session.

Security Protocol and Data Model (SPDM) Specification DSP0274

258 Published Version 1.3.0

• Clarified that extended algorithms are external to this specification.

• Changed “should” to “shall” in the LargeMessageSize field of CHUNK_SEND .

• Clarified (A1, B4, C1) message flow is permitted.

• Required root certificate to always be included in SET_CERTIFICATE .

• Changed “cancel” to “invalidate state and data associated with” in GET_VERSION and VERSION response

messages.

• Removed non-normative text from the Length field of GET_CERTIFICATE .

• Changed link to VCA from acronym to definition in the “transcript computation rules for M1/M2” table.

• Clarified Session-Secrets-Exchange in Optimized encapsulated request flow

• Clarified the Request ID for the first message in an optimized encapsulated request flow.

• Clarified the presence of the SlotIDParam field in GET_MEASUREMENTS .

• Removed informative statement that chunks are equal in size.

• Clarified that SPDM messages sent outside of a session do not contribute to in-session transcripts.

• Fixed typo in table 88.

• Deprecated the CHAL_CAP capability of the Requester.

• Clarified value of HANDSHAKE_IN_THE_CLEAR_CAP when using Pre-Shared Keys.

• Removed “after Reset” from M1/M2 ordering.

• Clarify that Integers are unsigned.

• Clarified requirements for chunking the CERTIFICATE response.

• Clarified relevant capabilities in BaseAsymAlgo, BaseHashAlgo.

• Clarified that Export Master Secret does not get updated with KEY_UPDATE .

• Removed the “full” modifier in front of MeasurementRecord in the MEASUREMENTS response table.

• Fixed typos and removed redundant grammar in Table 50.

• Fixed OID value for id-DMTF-device-info to match earlier releases.

• Clarified definition of DecryptError.

• Clarified that endpoints must ensure proper ordering and existence of messages when calculating transcripts

hashes.

• Fixed typo in table 90.

• Move DMTFSpecMeasurementValueType[6:0] to its own table to improve readability.

• Changed instances of Concatenation() to the defined Concatenate() operator.

• Clarified slots 1-7 certificate provisioning.

• Removed normative text that prohibited reuse of session IDs.

• Clarified that non-encapsulated requests are prohibited during the session handshake phase.

• Removed potentially confusing statements on Slot provisioning for GET_CSR .

• Removed normative error statement from the BasicMutAuthReq field of CHALLENGE_AUTH .

• Clarified exclusion of signature in CHALLENGE_AUTH and usage of concatenation in Table 47

• Clarified that the Negotiated State Preservation Indicator applies to the cached Negotiated State.

• Clarified CSR signing.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 259

• Removed encapsulation requirements from MUT_AUTH_CAP definition.

• Removed deprecation status from ENCAP_CAP.

• Clarified that a provisioned public key can be used to generate the Transcript for KEY_EXCHANGE_RSP HMAC.

• Clarified use of DataTransferSize and MaxSPDMmsgSize in GET_CAPABILITIES request and CAPABILITIES

response messages.

• Fixed typo in table 52.

• Replaced links to ITU-T X.509 with RFC5280 and removed ITU-T X.509 from the Normative references section.

• Moved general text for transcript calculations from “Transcript and transcript hash calculation rules” to the “SPDM

messaging protocol” section.

• Clarified that KEY_EX_CAP only applies to Requester’s request message and Responder’s response message.

• Clarified that if either Requester or Responder do not support Heartbeat then the value of HeartbeatPeriod

would be 0 .

• Renamed “VendorLen” to “VendorIDLen”.

• Used different Salt_0 value for PSK session in key schedule.

• Corrected PK to PubKey in CHALLENGE_AUTH signature verification.

• Removed quotation mark of VCA in L1/L2 definition.

• Clarified which portions of a certificate chain in the Alias certificate model is immutable.

• Updated link and version to ISO/IEC Directives, Part 2.

• Fixed size of MeasurementSummaryHash field to include 0 as a possible size value when the field is absent.

• Renamed the HMAC-Hash to HKDF-Extract .

• Moved message and field notation to Notations.

• Clarified VCA for the case where capabilities and algorithms are provisioned alongside PSK.

• Clarified that ProvisionedSlotMask in the CHALLENGE_AUTH response is dependent on the negotiated

algorithms.

• Clarified runtime measurement change detection.

• Removed “between devices” in the introduction of SPDM.

• Used different Salt_0 value for PSK session in key schedule.

• Removed the restriction to set Length to be 0xFFFF in GET_CERTIFICATE if both endpoints support the large

SPDM message transfer mechanism.

• Clarified RequesterContext in PSK_EXCHANGE.

• The Responder now always returns error ResponseTooLarge and no longer silently discards the request that

caused this error.

• Clarified certificate chain validation in Figure 8.

• Clarified that a GET_VERSION request can also cancel a pending request at the responder in section about

Requirement for Requesters.

• Restructure the Identity provisioning clause. Split the existing content into multiple clauses to help organization

and incorporate the Generic certificate model. Make the use of Device Certificate and Alias Certificate consistent

rather than using the terms DeviceCert and AliasCert to refer to specific certificates.

• Add missing ffdhe3072 in DHE secret computation section.

Security Protocol and Data Model (SPDM) Specification DSP0274

260 Published Version 1.3.0

• Clarified that the Requester should not use PSK_EXCHANGE after receiving any Responder-signed response

messages.

• Clarified that SPDM certificates are still compliant to the requirements of RFC 5280.

• Clarified field requirements for SPDM certificates and clarified that RFC 5280 defines the certificate format.

• Clarify allowed session phases for GET_CSR, SET_CERTIFICATE, GET_DIGESTS, and GET_CERTIFICATE in Table 6 —

SPDM request and response messages validity.

• Clarified RESPOND_IF_READY request validity.

• New:

◦ Added Signature byte order and Octet string byte order clauses.

◦ Add the Manifest format for a measurement block to define a measurement manifest header format that

leverages the SVH format.

◦ Added SET_CERT_CAP , CSR_CAP and CERT_INSTALL_RESET_CAP capabilities bits.

◦ Add a section to discuss differences in cryptographic and non-cryptographic Timing parameters.

◦ Added option in SET_CERTIFICATE to delete existing certificate chain from slot.

◦ Add a SlotSizeRequested request attribute to the GET_CERTIFICATE request and CERTIFICATE response

messages.

◦ Added the IANA CBOR registry and VESA standards body to Registry or standards body ID.

◦ Added a tracking tag in GET_CSR request and CSR response messages for use after a reset.

◦ Added missing MaxSPDMmsgSize to GET_CAPABILITIES request and CAPABILITIES response messages.

◦ Add an Overwrite bit to the GET_CSR request.

◦ Added requirements on population of Slot 0 in Certificates and certificate chains.

◦ Added GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages.

◦ Added the InvalidPolicy error code.

◦ Added Supported algorithms block to Successful CAPABILITIES response message format.

◦ Added column to table 132 that specifies whether values are secret or not.

◦ Added new request GET_MEASUREMENT_EXTENSION_LOG and response MEASUREMENT_EXTENSION_LOG ,

measurement extension log formats, and examples.

◦ Added new “hash-extended” measurement type.

◦ Added Multiple asymmetric key support.

◦ Added Generic certificate model.

◦ Added Notification overview and Event Mechanism

◦ Added DMTF event types

◦ Added Custom environments clauses.

◦ Added NewMeasurementRequested in GET_MEASUREMENTS.

◦ Add missing ffdhe3072 in DHE secret computation section.

◦ Change FIPS PUB 186-4 reference to FIPS PUB 186-5.

◦ Defined the data models for the first four bytes of VendorDefinedReqPayload and

VendorDefinedRespPayload when standards body is DMTF.

◦ Added normative information in Table 13 — Flag fields definitions for the Requester and Table 14 — Flag

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 261

fields definitions for the Responder.

1176 23.5 Version 1.3.0 (Updated 2023-06-28)

• Fixed wrong RequestResponseCode field value in Table 113 — SUBSCRIBE_EVENT_TYPES request message

format, Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format, Table 116 — SEND_EVENT

request message format, and Table 118 — EVENT_ACK response message format.

Security Protocol and Data Model (SPDM) Specification DSP0274

262 Published Version 1.3.0

1177 24 Bibliography

1178 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

DSP0274 Security Protocol and Data Model (SPDM) Specification

Version 1.3.0 Published 263

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Advice
	2.2 Conventions
	2.2.1 Document conventions
	2.2.2 Reserved and unassigned values
	2.2.3 Byte ordering
	2.2.3.1 Hash byte order
	2.2.3.2 Encoded ASN.1 byte order
	2.2.3.3 Octet string byte order
	2.2.3.4 Signature byte order
	2.2.3.4.1 ECDSA signatures byte order
	2.2.3.4.2 SM2 signatures byte order

	2.2.4 SPDM data type conventions
	2.2.4.1 SPDM data types
	2.2.4.2 Integers

	2.2.5 Version encoding
	2.2.6 Notations
	2.2.7 Text or string encoding
	2.2.8 Deprecated material

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.1.1 Certificate models
	7.2.1.1.1 Device certificate model
	7.2.1.1.2 Alias certificate model
	7.2.1.1.3 Generic certificate model

	7.2.2 Raw public keys
	7.2.3 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	7.6 Multiple asymmetric key support
	7.7 Custom environments
	7.8 Notification overview
	8 SPDM messaging protocol
	8.1 SPDM connection model
	8.2 SPDM bits-to-bytes mapping
	8.3 Generic SPDM message format
	8.3.1 SPDM version

	8.4 SPDM request codes
	8.5 SPDM response codes
	8.6 SPDM request and response code issuance allowance
	8.7 Concurrent SPDM message processing
	8.8 Requirements for Requesters
	8.9 Requirements for Responders
	8.10 Transcript and transcript hash calculation rules
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing parameters
	9.3 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.1.1 Negotiated state preamble

	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.3.1 Supported algorithms block

	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.4.1 Connection behavior after VCA
	10.4.2 Multiple asymmetric key negotiation
	10.4.3 Multiple asymmetric key use for Responder authentication
	10.4.4 Multiple asymmetric key use for Requester authentication
	10.4.5 Multiple asymmetric key connection

	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.6.1 Certificates and certificate chains

	10.7 GET_DIGESTS request and DIGESTS response messages
	10.8 GET_CERTIFICATE request and CERTIFICATE response messages
	10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.8.2 SPDM certificate requirements and recommendations
	10.8.2.1 Extended Key Usage authentication OIDs
	10.8.2.2 SPDM Non-Critical Certificate Extension OID
	10.8.2.2.1 Hardware identity OID
	10.8.2.2.2 Mutable certificate OID

	10.9 CHALLENGE request and CHALLENGE_AUTH response messages
	10.9.1 CHALLENGE_AUTH signature generation
	10.9.2 CHALLENGE_AUTH signature verification
	10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.9.3 Basic mutual authentication
	10.9.3.1 Mutual authentication message transcript

	10.10 Firmware and other measurements
	10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.11.1 Measurement block
	10.11.1.1 DMTF specification for the Measurement field of a measurement block
	10.11.1.1.1 Measurement manifest
	10.11.1.1.2 Hash-extend measurements

	10.11.1.2 Device mode field of a measurement block
	10.11.1.3 Manifest format for a measurement block

	10.11.2 MEASUREMENTS signature generation
	10.11.3 MEASUREMENTS signature verification

	10.12 ERROR response message
	10.12.1 Standards body or vendor-defined header

	10.13 RESPOND_IF_READY request message format
	10.14 VENDOR_DEFINED_REQUEST request message
	10.15 VENDOR_DEFINED_RESPONSE response message
	10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications

	10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.16.1 Session-based mutual authentication
	10.16.1.1 Specify Requester certificate for session-based mutual authentication

	10.17 FINISH request and FINISH_RSP response messages
	10.17.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE

	10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.19 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.20 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.20.1 Heartbeat additional information

	10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.21.1 Session key update synchronization
	10.21.2 KEY_UPDATE transport allowances

	10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.22.1 Encapsulated request flow
	10.22.2 Optimized encapsulated request flow
	10.22.3 Triggering GET_ENCAPSULATED_REQUEST
	10.22.4 Additional constraints

	10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.23.1 Additional information
	10.23.2 Allowance for encapsulated requests
	10.23.3 Certain error handling in encapsulated flows
	10.23.3.1 Response not ready
	10.23.3.2 Timeouts

	10.24 END_SESSION request and END_SESSION_ACK response messages
	10.25 Certificate provisioning
	10.25.1 GET_CSR request and CSR response messages
	10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

	10.26 Large SPDM message transfer mechanism
	10.26.1 CHUNK_SEND request and CHUNK_SEND_ACK response message
	10.26.2 CHUNK_GET request and CHUNK_RESPONSE response message
	10.26.3 Additional chunk transfer requirements

	10.27 Key configuration
	10.27.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response
	10.27.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response
	10.27.3 Key pair ID modification error handling

	10.28 Event mechanism
	10.28.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES response message
	10.28.1.1 Event group format additional information

	10.28.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response message
	10.28.2.1 Additional subscription list information

	10.28.3 SEND_EVENT request and EVENT_ACK response message
	10.28.4 Event Instance ID

	10.29 GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages
	10.29.1 ENDPOINT_INFO signature generation
	10.29.2 ENDPOINT_INFO signature verification

	10.30 Measurement extension log mechanism
	10.30.1 GET_MEASUREMENT_EXTENSION_LOG request and MEASUREMENT_EXTENSION_LOG response messages
	10.30.2 DMTF Measurement Extension Log Format
	10.30.3 Example: Verifying Measurement Extension Log Against Hash-Extend Measurement

	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 DHE secret computation
	12.2 Transcript hash in key derivation
	12.3 TH1 definition
	12.4 TH2 definition
	12.5 Key schedule major secrets
	12.5.1 Request-direction handshake secret
	12.5.2 Response-direction handshake secret
	12.5.3 Requester-direction data secret
	12.5.4 Responder-direction data secret

	12.6 Encryption key and IV derivation
	12.7 finished_key derivation
	12.8 Deriving additional keys from the Export Master Secret
	12.9 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 General opaque data format
	15 Signature generation
	15.1 Signing algorithms in extensions
	15.2 RSA and ECDSA signing algorithms
	15.3 EdDSA signing algorithms
	15.3.1 Ed25519 sign
	15.3.2 Ed448 sign

	15.4 SM2 signing algorithm
	15.5 Signature algorithm references
	16 Signature verification
	16.1 Signature verification algorithms in extensions
	16.2 RSA and ECDSA signature verification algorithms
	16.3 EdDSA signature verification algorithms
	16.3.1 Ed25519 verify
	16.3.2 Ed448 verify

	16.4 SM2 signature verification algorithm
	17 General ordering rules
	18 DMTF event types
	18.1 Event type details
	18.1.1 Event Lost
	18.1.2 Measurement changed event
	18.1.3 Measurement pre-update event
	18.1.4 Certificate changed event

	19 ANNEX A (informative) TLS 1.3
	20 ANNEX B (informative) Device certificate example
	21 ANNEX C (informative) OID reference
	22 ANNEX D (informative) variable name reference
	23 ANNEX E (informative) change log
	23.1 Version 1.0.0 (2019-10-16)
	23.2 Version 1.1.0 (2020-07-15)
	23.3 Version 1.2.0 (2021-11-01)
	23.4 Version 1.3.0 (2023-04-05)
	23.5 Version 1.3.0 (Updated 2023-06-28)
	24 Bibliography

