2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI) | 978-1-6654-6605-9/22/$31.00 ©2022 IEEE | DOI: 10.1109/I1SVLSI54635.2022.00099

2022 IEEE Computer Society Annual Symposium on VLSI (ISVLSI)

Securing hard drives with the Security Protocol and
Data Model (SPDM)

Renan C. A. Alves, Bruno C. Albertini, and Marcos A. Simplicio Jr.
Dept. of Computer and Digital Systems Engineering
Universidade de Sao Paulo, Brazil
{renanalves, balbertini, msimplicio} @usp.br

Abstract—In modern computing systems, it is usually hard to
defend against attacks made against the low level communication
between hardware components. Inithistwork; weraddress this
issue by adapting a hard disk controller and a corresponding de-
vice driver to communicate securely using the recently proposed
SecurerProtocolvand"DatarModel " (SPDM). Essentially, SPDM
standardizes authentication of hardware components, besides
enabling the establishment of secure communication channels
among them. To assess the overhead introduced by SPDM in this
scenario, we tested our solution against an unmodified, unsecured
hardrdiskronranremulated environment: Our experiments show
that, while SPDM can make the task of copying a large up to
7x slower, the transference of small files is virtually unaffected.

Index Terms—hardware, security, SPDM

I. INTRODUCTION

Hardware level attacks are hard to detect, since they bypass
protective measures acting at operating system level (e.g., an-
tivirus software) and infrastructure level (e.g., firewalls). Such
attacks usually involve altering the firmware controlling the
hardware. For example, a USB flash drive can be programmed
to mimic a keyboard, and then input commands at will [1].
Also, hard drive firmware can be modified to leak arbitrary
data pieces even if partitions are encrypted [2].

The Secure protocol and Data Model (SPDM) addresses
hardware-level security in multiple manners. First, it enables
mutual authentication among components. Second, each end-
point may provide measurements that help verifying if the
device’s current state is as expected. Examples of measure-
ments include firmware, hardware configuration, and other
parameters. Finally, since its versionwim0, SPDM allows
components to establishment of session keys for encrypting
and authenticating exchanged application data [3].

Our goal in this article is to demonstrate a working proto-
type of an SDPM-enabled hard drive, evaluating its protected
communication with the operating system. Specifically, we
present our general design (Section II), implementation details
(Section III) and experimental data (Section IV). Closing
remarks are then presented in Sec. V.

II. PROJECT DESIGN

Securing the communication between the operating system
and a peripheral (e.g., a hard drive) essentially requires altering
the device’s firmware and writing a matching device driver.

During system boot process, the endpoints should run
the SDPM protocol to authenticate each other and establish

Guest kernel

Virtio disk
driver

Fig. 1. Secured communication between operating system and hard drive

symmetric keys that are used to secure application data. In our
scenario, application data is comprised of read/write requests
issued by the kernel and the corresponding responses from the
device.

Considering the goal of providing a proof-of-concept im-
plementation, we resorted to a virtualized environment, rather
thancraftingva customized "hardware? The main software
employed to build the desired environment is QEMU, an
open source emulator/virtualizer. WelraniQEMUrinvarstandard
Linux box as the host OS, while we ran a customized Linux
distribution (based on Buildroot) as the guest OS. Among the
hard drives QEMU can emulate, we chose the iEtiordisk
due to its widely available documentation and simplicity.

Figure 1 illustrates the system architecture, including the
secured communication between OS and virtual disk. Notice
that the goal is to secure in-transit data, which protects against
attacks at the communication bus but, by itself, does not store
encrypted data in the disk.

III. IMPLEMENTATIONS DETAILS

This section covers implementation details, including a brief
introduction to the Linux block I/O system, how SPDM was
thereby integrated, and specific implementation challenges.

A. Linux block I/0

Due to the layered nature of the Linux kernel, the task
of reading and writing from a disk is spread across the file
system, a general block layer, and the specific block device
driver. Put simply, file systems deal with where the data is
(e.g., whether it is cached, and how it is scattered through-
out the disk). The block layer is a bridge between the file
system and device driver, taking care of request queuing and
request scheduling. Finally, the block device driver executes
the requests that were organized by the block layer.

A request is represented by a complex data structure, whose
definition spans across over 100 lines of code. Nonetheless,
the main components used at the device driver layer are the

2159-3477/22/$31.00 ©2022 IEEE 446
DOI 10.1109/ISVLSI54635.2022.00099
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on January 16,2024 at 16:41:03 UTC from IEEE Xplore. Restrictions apply.

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

target disk sector, a pointer to the actual data, the data size,
and the request type.

B. SPDM integration

We use 1ibspdm open source library to implement SPDM
functionalities. The library’s build system had to be modified

to provide adequate binaries to be linked with the Linux kernel.

The device driver was modified to encrypt/decrypt the

lished with SPDM. First, a header had to be included to
indicateransSPDMuencryptednmessage. Additionally,

. The code is available at
https://github.com/rcaalves/spdm-hd-demo.

C. Corner cases

During the test phase, we noticed that some messages
encrypted by the device driver were failing to be decrypted
at the disk controller. At both endpoints,

. To address this issue,

>
w
o
=
o

5

>
w
[
o
w
=]
=3

s

requests. However if the next pending request is actually the

overflow. As a straightforward approach to address this issue,
we increased the capacity of the default data pool.

IV. EXPERIMENT RESULTS

The experiments presented in this section consist of feas

a partition on an SPDM-enabled virtio disk partition. As

447

time aftervclearingrthensystemucache, to achieve statistical

significance.

Figure 2 shows our experimental results. Thevimpactrof
SPDM security is negligible for small file sizes (up to 5k),
as sometimes we obtained smaller average copy times for the
secured system. This implies other overheads (e.g., physically
moving disk heads) are predominant in this setting.

Conversely, for medium-sized files the gap between the se-
cured an unsecured systems begins to be noticeable, although
not statistically evident. On average, copyingrfilessfromm00k
to 500k was 32% slower. The performance of the secured hard
disk degrades as file size increases, reaching up to 7 times
slowerntransferencenprocedure! It is also interesting to notice
that virtio to virtio transactions show the largest performance
drop, since the data has to be encrypted twice in that case:
from disk to OS, and then from OS to disk.

Z=Z2 [NO_SPDM] - from virtio

[| [SPDM] - from virtio

78 [NO_SPDM] - to virtio

| [SPDM] - to virtio

Z®Z [NO_SPDM] - virtio to virtio
| [SPDM] - virtio to virtio

1094

Time [us]

5k 10k 50k 100k 500k 1M
File size

5M 10M 50M 100M

Fig. 2. Time to copy files of varying sizes in different settings

V. FINAL REMARKS

Securing the communication between internal components
is a key mechanism to avoid attacks targeted at electronics
supply chains. In this paper, we showcase how the SPDM
standard can be used to secure the communication between
an operating system and a hard drive controller firmware.

For our setup, we modify a device driver and a virtual
hardware, integrating them with the 1ibspdm open source
library. Our experiments show that file copying performance
may drop up to 7 times on large files, although this overhead
remains negligible for small files.

Acknowledgment. The authors would like to thank Hewlett
Packard Enterprise for supporting this work.

REFERENCES

[1] B.-C. Choi, S.-H. Lee, J.-C. Na, and J.-H. Lee, “Secure firmware
validation and update for consumer devices in home networking,” IEEE
Transactions on Consumer Electronics, vol. 62, no. 1, pp. 3944, 2016.
J. Menn, “NSA Can Hide Spyware in Hard-Disk
Firmware,” https://www.vox.com/2015/2/17/11559082/
nsa-can-hide-spyware-in-hard-disk-firmware, accessed: 2021-12-16.
DMTF, “DSP0274: Security protocol and data model (SPDM) specifi-
cation, v.1.1.0,” Distributed Management Task Force, Tech. Rep., Jul
2020, www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.
1.0.pdf.

[2]

[3]

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on January 16,2024 at 16:41:03 UTC from IEEE Xplore. Restrictions apply.

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

