
SPDM v1.2

No significant security analysis of any kind

Securing communication over the wire Device attestation

SPDM shares many high-level requirements with
IETF’s TLS 1.3 and DTLS

Cipher suite and version negotiation

Unilateral and mutual authentication based on
certificates or preshared keys

Confidentiality based on key exchange

Key update

Complexity of its state machines exceeds even
those of TLS 1.3.

“The ability to attest various aspects of a device
(Responder) such as firmware integrity and

device identity”

2 goals

4 phases

Device Initialization phase VCA phase Options phase Session phase

3 sub-phases

Handshake Application data Key update

Derive the session key

Diffie-Hellman

Preshared symmetric keys

By default the key exchange provides unilateral
authentication of the Responder

To elevate the connection to mutual
authentication, the Responder needs to explicitly

request it

This initial setup should be performed in a
secure and trusted environment, e.g., at the

device manufacturer

Unique device identifier

SPDM protocol implementation

Information on supported protocol versions,
relevant capabilities, and cryptographic

algorithms

Initialization should at least include one of the
following

Preshared symmetric keys with another device
(possibly multiple)

Preshared public keys with another device

Public key pair, certificates over the public key,
and a root of trust to verify certificates

Need to be set up with predetermined
communication partners

No fixed upper limit of shared keys

Store up to 8 certificates in ASN.1 DER-encoded
X.509 v3 format

Certificate slot 0 should only be set or altered in
a secure and trusted environment

Vendors can define and implement their own
request and response

Parties exchange protocol versions

Requester decides on the version for this
protocol run, this should be the highest version

that is supported by both parties

After exchanging capabilities (which define the
supported operations of the SPDM specifications),

both parties store the common subset

Parties exchange the algorithms that they support

Standard does not prescribe a selection
mechanism

Parties maintain a transcript (concatenation of all
exchanged messages in a specific order) of their

conversation

Enables the parties to perform unilateral Responder
authentication and attest aspects of the Responder device 

Requester can skip directly to the session phase, by sending
a key exchange request after the VCA

Attestation mechanism boils down to a challenge-response
mechanism that is optionally authenticated (measurements)

Measurements can optionally be authenticated by using
digital signatures (if supported by the communicating

parties)

In the case of preshared symmetric keys, it is not possible to
request measurements explicitly at this point, but they can

be part of the PSK exchange later on

SPDM allows the Requester to obtain a public key and
certificate from their partner. He can then challenge the

Responders knowledge of the private key associated to the
certificate by requesting a signature of the communication

transcript and a random Requester chosen nonce

If the certificate was stored already in a previous session,
the Requester can instead request a digest of the

Responder’s certificate for comparison

The specification recommends to perform unilateral
Responder authentication using CHALLENGE at least once

before performing device attestation through
measurements

During this phase, they also authenticate each
other either by:

Using preshared public keys

Stored certificates, e.g. from a previous protocol
run

Explicitly requesting their partner’s certificates 

The requester generates the following items and
sends them with a key exchange request to the

Responder

An ephemeral public key pair

A session ID

A random nonce

Symmetrically, the Responder also generates its
own ephemeral key pair, session id, and random

nonce and sends them in the reply with:

A signature

A message authentication code (MAC) of the
transcript so far

Handshake serves to verify and prove knowledge
of the shared key, thus implicitly authenticating
themselves, and derive a unique session secret

The Requester shows its intent to start the key
exchange by sending the PSK_EXCHANGE

request with a 32-bit random nonce or counter 

If the parties have multiple preshared secrets,
the request includes the slot ID of the intended

key

Upon processing this message, the Responder
can decide to:

Contribute in the session key derivation with
their own nonce

Immediately derive the session key and enter the
data exchange phase

Authenticate the transcript of the protocol so far

All subsequent messages until the end of the
protocol need to be encrypted using the

handshake secret

The parties derive the session keys from the
transcript and the initial shared secret

When already in the application phase, the parties can update
their session secrets instead of starting a new handshake

2 ways

Sender updates their own key Update all the keys of the session

Key derivation function HKDF
msk(i+1) = HKDF(msk(i), ‘upd’, ’0')

New encryption key is derived
enckey = HMAC(msk(i+1), ’key’)

To verify the key update it encrypts a
request with the new key

Responder deletes the old keys and
encrypts the acknowledgment response

Major secrets of both parties will be updated

Responder needs to encrypt the verify
acknowledgement using their new encryption key

When the Responder wishes to update the secrets,
the same protocol flow will be followed

At this point in the protocol, the parties are no longer
restricted to their roles as Requester and Responder

Formal Analysis using Tamarin

Potential design pitfalls

Session ID size and optional responder nonce in
PSK mode

Device reset may lead to counter reuse

No restrictions on vendor-defined
request/response

Authentication of keys versus device
authentication

No default deny-all for remotely setting
certificates

Setting certificates

Limitations and Future Work

Analaysis of full SPDM composition

Missing Functionality

Cryptographic Primitives

Propagating improvements to the standard

Downgrade analysis Downgrade attacks
Force the honest participants to use

cryptography that modern attackers can break

Under some circumstances, the replay
protection in the protocol becomes entirely

dependent on the uniqueness of the session ID
The size of the ID share of each party is two bytes

For the PSK mode: if the responder provides no nonce during a PSK
mode session, the initial messages could be replayed in the future
by an attacker to a session that uses the same session ID to trigger

a session with the same session keys

Instead of random nonces, SPDM allows the use
of counters at certain phases of the protocol

It seems prudent to reduce the dependence on
counter uniqueness

If vendor-defined mechanisms can reuse long-
term or ephemeral secrets from the protocol,
they can break the security guarantees of the

core design

All authentication essentially authenticates keys,
not devices or their identifiers

The standard suggests to include OID identifiers in
certificates, which would effectively lift them into

transcripts, but only for the public key modes

Leave PSK mode unsolved, notably in the case
that PSKs are shared among more than two

devices

The standard includes a feature to remotely set
trusted certifications for parties

This feature has the potential to be misused and
violate all security goals

From the specification we do not find any
restriction on which Requester devices are

allowed to provision which certificates to which
Responder

It only states that it should be performed in a
secure environment

The standard currently does not seem to specify
whether a CSR (certificate signing request) is

needed to set a certificate

The specification recommends that a Requester
does not send a GET_MEASUREMENTS message

until it has received at least one successful
CHALLENGE_AUTH response message from the

Responder

As proofs about measurement integrity and its
authentication do not seem to depend on a

previous Responder authentication, there is no
need for this (according to the threat models

tested in the paper)

2 keys to derive

The finished-keys, used for authenticating the
transcript

The encryption/decryption keys, used to send
encrypted data during the application phase

Parties derive their own key to encrypt and their
partner’s key to decrypt the messages

Forward secrecy

Creates a chain of keys where the
attacker cannot compute previous

keys even if the future ones are
known, unless they reverse a one-

way function


