
Note-taking of Benchmarking the Security Protocol and Data Model
(SPDM) for component authen;ca;on, Renan C. A. Alves, Bruno C. Alber2ni,
Marcos A. Simplicio Jr

Introduc)on

• At every stage of the supply chain, there is a risk that malicious en77es may
inconspicuously tamper with or subs7tute components.

• The usual protec7on techniques that operate at the opera7ng system level (e.g.,
an7virus so>ware) or techniques that act at the infrastructure level (e.g., firewalls) are
oblivious to such threats.

• SPDM was recently proposed to address such low-level security challenges.
• Firmware measurements enable system components to be verified, ensuring they have

not been vic7m of tampering, while establishing sessions keys avoids passive
eavesdropping by malicious components aHemp7ng to steal data.

• Since SPDM is a rela7vely recent proposal, there is a lack of studies evalua7ng its
performance impact on real-world applica7ons.

• hHps://github.com/rcaalves/spdm-benchmark
• The goal of this paper is to assess the overhead introduced by each phase of the SPDM

message flow, in an emulated environment.

SPDM overhead assessment

• They used a Random Number Generator (RNG) device.
• Each of execu7on step was performed 100 7mes, aiming to obtain sta7s7cal

confidence.
• As expected, most of the overhead was due to messages related to the authen7ca7on

process.
• The GetCer&ficate procedure is expected to be slow since:

o it may require several messages to finish
o by the end of it, the retrieved cer7ficate must be verified for correctness, which

requires a few signature verifica7ons.
• KeyExchange, in turn, involves the genera7on of a symmetric key pair by means of a

Diffie-Hellman key exchange.
o The usage of Pre-Shared Keys (PSK) considerably reduces the burden of

establishing session keys.
• Retrieving measurements all at once is slightly faster than retrieving measurements

one by one.
• SPDM led to a 6.4-fold increase in terms of 7me.

o RNG was designed to be extremely fast, so even cryptographic opera7ons that
are quite lightweight in absolute numbers, like symmetric encryp7on, become
compara7vely expensive.

• The responder handles GetCer&ficate messages faster than KeyExchange. The reason
behind this behavior is that most of the cryptographic processing of GetCer&ficate
remains at the requester side.

o The largest overhead observed at the responder, however, was the 7me to load
cer7ficates from the disk.

https://github.com/rcaalves/spdm-benchmark

Hard drive use case
• The driver fills the role of the SPDM requester, while the hard drive takes the role of

SPDM responder.
• They used a few widely employed tools and benchmarking u7li7es to assess hard drive

performance: dd, hdparm, ioping, bonnie++, fio.
• dd: SPDM caused a ≈68% slowdown in wri7ng speed.
• hdparm: provides “an indica7on of how fast the drive can sustain sequen7al data reads

under Linux, without any filesystem overhead.”
o Without SPDM, average read speed observed was 3.9 GB/s.
o With SPDM, average read speed observed was 28 kB/s, which translates to a

99.3% speed degrada7on.
• ioping: confidence intervals were very large, making it hard to draw sta7s7cally

relevant conclusions.
• bonnie++: both reading and wri7ng speed drop to the same order of magnitude, since

the system boHleneck is the same in both tests: the processing cost of
encryp7ng/decryp7ng every transac7on.

• fio: performance degrada7on becomes less prominent when randomness is
introduced.

o BoHleneck shi>ing from the cryptographic opera7ons to the physical disk
opera7ons, (frequent seek opera7ons to address the random request
loca7ons).

