
Machine Learning-based Ransomware Detection
Using Low-level Memory Access Patterns
Obtained From Live-forensic Hypervisor

Manabu Hirano
Department of Information and Computer Engineering

National Institute of Technology, Toyota College
Toyota, Japan

hirano@toyota-ct.ac.jp

Ryotaro Kobayashi
Faculty of Informatics

Kogakuin University
Tokyo, Japan

ryo.kobayashi@cc.kogakuin.ac.jp

Another problem of the current cyber-defense landscape
is the evasion techniques of the conventional protection
mechanisms. Many vulnerabilities of the complex software
of modern OSs enable cyber-criminals to evade the detec-
tion mechanisms. Therefore, a more resilient multiple-layered
ransomware detection mechanism is needed to address the
advanced evasion techniques of the state-of-the-art malware.
Microsoft, for example, has introduced Virtualization Based
Security, or VBS, in the latest products beginning with
Windows 10 and Windows Server 2016 [3]. Microsoft’s
VBS uses the Windows hypervisor to create an additional
protection layer under the conventional OS-based protection
layer. Even when attackers gain access to the OS kernel,
the extra protection layer limits the possible exploits. The
Hypervisor-protected Code Integrity (HVCI) function of VBS,
for example, can check whether the attacker modified the OS
kernel and device driver code or not. Even if attackers evaded
the first protection layer of an operating system (e.g., anti-
virus, sandbox, and firewall), the following protection layer
of a hypervisor (e.g., Microsoft’s VBS, a hypervisor-based
monitoring system presented in this paper) can detect the
advanced cyber attacks.

A. Literature review

Shinagawa et al. released an open-source lightweight hyper-
visor named BitVisor that transparently enforces security func-
tions to a guest OS [4]. Although Microsoft’s VBS employs
a multiple guest OSs model and enforces security functions
from a privileged guest OS to a guest OS, BitVisor employs a
single guest OS model and enforces security functions directly
from the hypervisor to a guest OS. The single guest OS
model of BitVisor reduces the performance overhead of a
hypervisor-based security mechanism. In our previous work
[5], we presented a BitVisor-based live-forensic hypervisor
for collecting low-level storage access patterns. The low-level
storage access patterns, the behavioral features obtained from
the hypervisor, can be used to classify ransomware samples
from benign applications using conventional machine learning
models [6]. The low-level behavioral features of storage access

Abstract—Since modern anti-virus software mainly depends on 
a signature-based static analysis, they are not suitable for coping 
with the rapid increase in malware variants. Moreover, even 
worse, many vulnerabilities of operating systems enable attackers 
to evade such protection mechanisms. We, therefore, developed 
a thin and lightweight live-forensic hypervisor to create an 
additional protection layer under a conventional protection layer 
of operating systems with supporting ransomware detection using 
dynamic behavioral features. The developed live-forensic hyper-
visor collects low-level memory access patterns instead of high-
level information such as process IDs and API calls that modern 
Virtual Machine Introspection techniques have employed. We 
then created the low-level memory access patterns dataset of 
three ransomware samples, one wiper malware sample, and four 
benign applications. We confirmed that our best machine learning 
classifier using only low-level memory access patterns achieved 
an F1 score of 0.95 in detecting ransomware and wiper malware.

Index Terms—Virtualization, Virtual Machine Introspection, 
Memory forensics, Ransomware, Malware, Semantic gap

I. INTRODUCTION

Ransomware is a type of malware that encrypts or exfiltrates 
victims’ files to demand ransom. Many cyber-criminals cre-
ate new ransomware variants using Ransomware-as-a-Service 
(RaaS) and ransomware toolkit, and they can easily evade
protections of anti-virus software using the built-in obfusca-
tors and packers [1]. Although anti-virus software vendors
frequently update their signature database used to detect 
binary files of the variants, the signature-based static analysis
detection fundamentally cannot cope with a large number of 
the variants. Beaman et al. presented a literature review on
recent state-of-the-art ransomware prevention and detection
approaches [2]. They analyzed popular ransomware samples 
and developed their experimental ransomware, AESthetic,
that was able to evade detection against eight popular anti-
virus programs. Their experiment highlights that current anti-
virus software relies heavily on signature-based static analysis
detection. They claimed that vendors should invest more into
the approaches seen in recent literature, especially in dynamic
analysis using behavioral patterns of ransomware.

978-1-6654-9952-1/22/$31.00 ©2022 IEEE

323

2022 IEEE International Conference on Cyber Security and Resilience (CSR) Workshops
20

22
 IE

EE
 In

te
rn

at
io

na
l C

on
fe

re
nc

e 
on

 C
yb

er
 S

ec
ur

ity
 a

nd
 R

es
ili

en
ce

 (C
SR

) |
 9

78
-1

-6
65

4-
99

52
-1

/2
2/

$3
1.

00
 ©

20
22

 IE
EE

 | 
D

O
I: 

10
.1

10
9/

C
SR

54
59

9.
20

22
.9

85
03

40

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 

Léon GALL



patterns consist of variance of the accessed sector’s logical
block address, the entropy of written sectors, and throughput
on a serial ATA (Advanced Technology Attachment) storage
device (e.g., Solid State Drives, SSDs). The proposed sys-
tem achieved the average F1 score of 96.2% in detecting
ransomware and 94.1% in detecting ransomware variants.
Furthermore, we have released the open dataset of the low-
level ransomware storage access patterns for researchers who
are interested in constructing machine learning models for
ransomware detection [7]. In this paper, we added a novel
monitoring function of memory access patterns to the live-
forensic hypervisor presented in the previous papers [5]–[7].

Kumara and Jaidhar presented the Virtual Machine Intro-
spection (VMI) technique that gathers details about the run-
ning processes of malware by introspecting the semantic view
of a guest OS [8]. Cheng et al. presented a lightweight live
memory forensic framework based on hardware virtualization
[9]. They showed a forensic method to obtain accurate infor-
mation on malware processes using the information inside and
outside the operating system. They also presented a forensic
technique to monitor memory modifications by controlling
page-grained permissions using EPT violations. Many state-
of-the-art papers, including Sharmeen et al. [1] and Leon
et al. [10], have employed process-level dynamic features.
While these papers [1], [8]–[10] show a malware analysis
method using process-level information, this paper presented
a ransomware detection method using only low-level memory
access patterns without bridging semantic gap. Our approach
is also different from other hypervisors that mainly focus on
dumping memory contents [11], [12].

B. Contributions of this paper

This paper presents a novel machine learning-based ran-
somware detection method using low-level memory access
patterns. The contributions of this paper are as follows.

• We enhanced the functionality of the BitVisor, a thin
and lightweight hypervisor, by adding a function to
collect low-level memory access patterns with mitigating
advanced evasion techniques of malware that exploit OS
vulnerabilities.

• While many modern ransomware detection methods pre-
sented in literature use dynamic features obtained from
an operating system layer [2] (e.g., sequences of API
calls per process ID, file system operations), our system
uses only low-level memory access patterns of physical
address space obtained from a hypervisor layer. Many
researchers believe that Virtual Machine Introspection
(VMI), in general, needs to bridge the semantic gap
between OS and hypervisor [13]. For example, low-level
memory access patterns on RAM alone cannot determine
which process or who accessed the memory region. This
paper examines how we can use low-level memory access
patterns obtained from a hypervisor layer to discriminate
ransomware from benign applications without solving the
semantic gap problem.

II. LIVE-FORENSIC HYPERVISOR FOR COLLECTING
MEMORY ACCESS PATTERNS

We first define the memory access patterns and feature vec-
tors for creating machine learning models. Before describing
them, we need to understand how hypervisors see memory
address space of RAM. When virtual machines are executed
on a machine, the hypervisor needs to translate a guest OS’s
physical address to a host machine’s physical address. The
memory address translation thus needs to be performed twice,
once inside the guest OS from a guest virtual address to a
guest physical address, and once inside the hypervisor from
a guest physical address to a host physical address. Many
modern hypervisor programs employ Second Level Address
Translation (SLAT), a hardware-assisted address translation
technology for OS virtualization, such as Intel’s Extended Page
Table (EPT) [14] and AMD’s Rapid Virtualization Indexing
(RVI) to improve the performance of the latter translation.

Intel’s EPT works as follows: when a guest OS accesses a
memory page of 4KB or 2MB for the first time, a VM exit due
to an EPT violation (i.e., a hypervisor’s page fault) activates
a hypervisor. The hypervisor then creates a new EPT entry
to map the guest physical address to a host physical address,
followed by the guest OS’s address translation to map the
guest virtual address to the host physical address. Thus, an
EPT violation occurs when there is no EPT entry for a memory
page. Another reason for EPT violations is unauthorized access
to the pages. An EPT entry of each host physical address has
privilege bits of read, write, and instruction fetch (i.e., execute)
to prohibit access on the memory page. The privilege bits
protect a critical memory region (e.g., kernel code and drivers)
from attackers on a guest OS. When a guest OS accesses a
memory page that is not permitted in the page’s EPT entry,
a VM exit occurs due to an EPT violation; the hypervisor
then decides whether the guest OS should execute the memory
operations or not.

Fig. 1 shows the flow chart of the live-forensic hypervisor
that collects memory and storage access patterns. Although
many Virtual Machine Introspection (VMI) systems drop spe-
cific permission on the particular EPT entries to deliberately
cause EPT violations for intercepting memory accesses, the
hypervisor presented in this paper deletes all EPT entries
and executes a Translation Lookaside Buffer (TLB) shoot-
down every 30 s for intercepting memory accesses. TLB
shootdown is an operation that flushes a TLB, a cache of
address translation, on all CPU cores. The TLB shootdown on
BitVisor was implemented by Fukai et al. [15]; we used their
implementation as it is. The appropriate interval is discussed
in Section VI.

When an application or a kernel program on a guest OS
accesses the pages that are not both in TLBs and EPT entries,
a VM exit due to an EPT violation activates the hypervisor.
The hypervisor then reads Exit Qualification to obtain the
access type (i.e., read, write, or instruction fetch). It also
obtains the page type of the accessed page, including 4KB
page, 2MB page, and Memory Mapped Input and Output

324
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 



Start

No

Storage or 
memory access?

EPT violation?

Write access?

Copy sector data
from DMA memory region

Yes

Send LBA, size, 
(and sector data)

No

Yes Write access? Copy memory data
(4 KiB)

Yes

No

Send physical address, 
access type, page type, 

(and memory data)

Logical Block Address (LBA)
Direct Memory Access (DMA)

Extended Page Table (EPT)
Translation Lookaside Buffer (TLB)

30 s elapsed?
(Tflush = 30)

No

Yes Execute TLB shootdown 
and deletes all EPT entries

Neither

Memory

Storage

Fig. 1. Flow chart of the live-forensic hypervisor that collects memory and
storage access patterns.

(MMIO). MMIO is a method of performing input and output
between CPU and peripheral devices using memory address
space. When the access type is write, and the page type is not
MMIO, the developed hypervisor obtains the memory contents
at the physical address after executing five main loops of the
hypervisor to ensure that the memory contents are updated
from the original one. The obtained memory contents are
mainly used to calculate entropy in feature engineering. The
current implementation of the hypervisor collects only the first
4,096 bytes at the physical address even when a 2MB page was
accessed and skips a byte filled with zeros. Please note that
the design and implementation of the monitoring function of
storage access patterns, which are shown in the grey symbols,
were presented in the previous paper [6].

III. DESIGN AND IMPLEMENTATION

Fig. 2 shows the schematic diagram of the hypervisor that
collects memory and storage access patterns. Both the memory
and storage access pattern monitor were implemented with
BitVisor [4], a thin hypervisor for enforcing security func-
tions using a single guest OS model. The security functions
of BitVisor are transparently executed to a guest OS, and
hence any modification of guest OSs and applications are not
needed. Table I shows the specification of the test machine
that executes the developed hypervisor. While a guest OS
(i.e., Windows 10) uses a GbE card, the hypervisor uses a
10GbE card to transfer memory and storage access patterns
to another monitoring machine. The SSDs were formatted in
New Technology File System (NTFS) with GUID Partition
Tables (GPT).

The hypervisor is booted from a write-protected USB thumb
drive to prevent overwriting our trusted computing base, the
hypervisor program, from ransomware and wiper malware.
The guest OS is then booted from an SSD, a serial Advanced
Technology Attachment (ATA) device. The hypervisor moni-
tors memory access patterns using EPT violations as described
in Section II. Since BitVisor employs a single guest OS model,

TABLE I
SPECIFICATION OF THE TEST MACHINE THAT EXECUTES THE

LIVE-FORENSIC HYPERVISOR.

CPU Intel Cerelon G3920 (2.9 GHz)
RAM DDR4-2133 8 GiB
Motherboard ASRock H110M-HDV
Network Intel Pro1000 (GbE), Intel X550-T1 (10GbE)
SSD Crucial SSD 250GB (CT250MX500SSD1)

SSD Samsung SSD 250GB (MZ-7TD250)
OS Windows 10 Enterprise LTSC (10.0.17763.2183)
Hypervisor BitVisor downloaded on 24th Dec. 2021 (8c129a1)

the guest physical addresses and the host physical addresses
are identical except for the memory region that BitVisor
uses. The hypervisor also monitors storage access patterns by
intercepting the Direct Memory Access (DMA) protocol [6].
The memory and storage access patterns are sent to another
machine using User Datagram Protocol (UDP) packets on a
10-gigabit Ethernet connection with jumbo frames of 9,000
bytes. We can therefore collect access patterns even when a
ransomware or wiper malware sample encrypted or destroyed
data in serial ATA devices (e.g., SSD). BitVisor does not use
virtual disk files but uses a serial ATA device as it is. We
employ a drive duplicator to overwrite the entire contents of
a serial ATA device with the initial content before executing
a malware sample.

IV. FEATURE ENGINEERING

We collected memory access patterns consisting of the four
access types: read, write, execute, and read/write. The access
type is obtained from Exit Qualification of a VM exit due
to an EPT violation; when both read and write bits are 1,
we process the access type as read/write. The following five
feature vectors are calculated in each access type:

• Shannon entropy of a written page, H(t)
• The number of accessed 4KB pages, C4KB(t)
• The number of accessed 2MB pages, C2MB(t)
• The number of accessed MMIO pages, CMMIO(t)
• Variance of accessed physcal addresses, V (t)

where t is the time elapsed after executing a sample. A
Shannon entropy H(t) is calculated only when the access type
is write or read/write. We, therefore, create 18-dimensional
feature vectors (i.e., the five feature vectors for write and
read/write, and the four feature vectors for read and execute)
to make machine learning models.

Shannon entropy is a metric to measure uncertainty in
a series of bit patterns [16]. Ransomware encrypts many
files, and the encryption operations increase the entropy of
a specific memory region of RAM; hence, Shannon entropy
can be a good indicator of ransomware activities. H(addr) is
a Shannon entropy of a written memory page at a host physical
address addr, and it is calculated as follows:

H(addr) = −
n∑

i=1

p(xi) log2 p(xi) (1)

325
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 

Léon GALL

Léon GALL



326

Fig. 2. Schematic diagram of the live-forensic hypervisor for collecting memory and storage access patterns.

where p(xi) is a probability of a byte xi, which is an
ith byte beginning from a physical address addr, and n
is the byte size of the collected memory data. Since the
hypervisor cannot transfer all the contents of a 2MB page
with acceptable performance, we employed 4,096 for n in
creating the dataset. H(addr) produces a value between 0
and 8, where 8 represents a perfectly even distribution of byte
values, where 0 represents a sequence of the same byte values.
Before training machine learning models, the Shannon entropy
is normalized between 0 and 1. A Shannon entropy at t, H(t),
is calculated as follows:

H(t) =
1

N

N∑
i=1

Hi(addr) (2)

where Hi(addr) is a Shannon entropy of an ith written
page calculated in (1) and N is the number of write accesses
in Twindow.

Our feature extractor transforms a set of data points within
a time window Twindow into a single 18-dimensional vector.
Fig. 3 show how we calculate the 18-dimensional feature
vectors with a window size of Twindow. The feature vectors are
calculated by shifting a time window from left to right in time-
series memory access patterns. Td is the duration of memory
access patterns used for creating a machine learning model.
Our feature extractor shifts the time window of Twindow from
t = 0 until t reaches at (Td−Twindow). When we create feature
vectors with Td = 30 s and Twindow = 10 s, the total number of
the 18-dimensional feature vectors will be 20; the model can
detect ransomware in 30 s after execution of ransomware. Td

is, therefore, referred to as the detection time of ransomware
or duration of data points fed into a machine learning model.

C4KB(t), C2MB(t), and CMMIO(t) are the number of
accessed pages of 4KB, that of 2MB, and that of MMIO,
respectively. A variance of host physical address at t is
calculated as follows:

V (t) =
1

N − 1

N∑
i=1

(addri − addr)2 (3)

Fig. 3. Window-based feature calculation.

where addr is the mean of addri, addri is a physical
address of an ith access on RAM, N is the number of the
accesses in Twindow.

V. DATASET CREATION

We created a dataset of the eight classes consisting of four
malicious classes and four benign classes. Table II shows
the hash values of three ransomware samples and one wiper
malware sample used in creating the dataset. WannaCry,
Sodinokibi (REvil), and Darkside are ransomware samples;
CaddyWiper, on the other hand, is a wiper malware sample
that destroys data on a victim’s computer by wiping all files;
and it was discovered in Ukraine [17].

We created decoy files from the Govdocs1 dataset that are
available in the open repository [18]; the ransomware and
wiper malware samples encrypt and delete the decoy files.
The Govdocs1 dataset consists of files obtained from U.S.
government websites and includes PDF, JPEG, HTML, and
Microsoft Office files. We copied the 9,872 files in the first
ten directories of the Govdocs1 dataset to the Desktop of a
test machine in creating the dataset.

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 



TABLE II
RANSOMWARE AND WIPER MALWARE SAMPLES: SHA-256 HASH VALUES AND THE FIRST SUBMISSION DATES AT VIRUSTOTAL.

Name SHA-256 hash Date
WannaCry ed01ebfbc9eb5bbea545af4d01bf5f1071661840480439c6e5babe8e080e41aa 2017-05

Sodinokibi (REvil) 0fa207940ea53e2b54a2b769d8ab033a6b2c5e08c78bf4d7dade79849960b54d 2019-04
Darkside b6855793aebdd821a7f368585335cb132a043d30cb1f8dccceb5d2127ed4b9a4 2021-04

CaddyWiper a294620543334a721a2ae8eaaf9680a0786f4b9a216d75b55cfd28f39e9430ea 2022-03

The dataset includes the four benign classes: Idle, AE-
SCrypt, Zip, and Office suite with a web browser. To create
the Idle class dataset, we collected memory and storage access
patterns after booting Windows 10 but did not launch any
application program. AESCrypt is an open-source symmetric
encryption program that uses the Advanced Encryption Stan-
dard (AES) algorithm [19]. We collected memory and storage
access patterns when the AESCrypt program (version 3.10)
encrypts the 9,872 decoy files. We also collected memory and
storage access patterns when the Zip program compresses the
directory containing the 9,872 decoy files. The Zip program
is a standard compression program included in Windows 10.
The memory and storage access patterns of Microsoft Excel,
PowePoint, and Firefox were also collected. The version of
Excel and PowerPoint is 2019, and that of Firefox is 98.0.2.
We created a macro program of Excel that inputs values in
cells and creates a graph repeatedly. The slides in PowerPoint
are played automatically. Firefox web browser plays a movie
on YouTube. We executed the Excel, PowerPoint, and Firefox
programs simultaneously in creating the dataset.

Memory and storage access patterns of the above eight
classes are collected for 60 s immediately after executing each
sample. In every trial, we copied the original contents to the
SSD to recover the initial state before ransomware or wiper
malware samples destroyed data on the SSD. We collected
the access patterns of five trials for each class: the dataset
thus contains access patterns of 40 trials in total.

VI. INTERVAL FOR FLUSHING TLBS AND CLEARING EPT

Since the developed hypervisor collects memory access pat-
terns using EPT violations, we must determine the appropriate
time interval for flushing TLBs on all CPU cores (i.e., TLB
shootdown) and deleting all EPT entries. If the hypervisor
does not flush TLBs and delete EPT entries at a specific
interval, we cannot observe memory accesses except for the
first access on each page. Fig. 4 shows the cumulative number
of EPT violations immediately after a hypervisor flushed the
TLBs on all CPU cores and deleted all EPT entries. The
experiment was conducted using the hardware and software
shown in Table I. The frequent operations to flush TLBs and
to clear EPT entries, in general, cause significant performance
degradation of the guest OS. We confirmed that the hypervisor
could obtain a sufficient number of EPT violations to monitor
memory access patterns in the first 30 s from the experimental
result shown in Fig. 4. In this paper, we determined the time
interval of 30 s (i.e., Tflush = 30). We, however, need to search
for a more appropriate value of Tflush through experiments

0

200,000

400,000

600,000

800,000

1,000,000

1,200,000

1,400,000

1,600,000

0 10 20 30 40 50 60 70 80 90 100 110 120 130 140 150

Cu
m

ul
at

iv
e 

nu
m

be
r o

f E
PT

 v
io

la
tio

ns
Elapsed time [s]

Idle Zip
AESCrypt Excel, PowerPoint, and Firefox
WannaCry Darkside
Sodinokibi (REvil) CaddyWiper

Benign

Malicious

Fig. 4. Cumulative number of EPT violations.

that can achieve both minimizing performance degradation and
maximizing the number of observed access patterns.

VII. EXPERIMENTAL SETUP

The Random Forest model was trained using the
RandomForestClassifier class with the following pa-
rameters: the number of trees is 10, and the maximum depth of
the tree is 10. The Support Vector Machine (SVM) model was
trained using the OneVsRestClassifier class with the
radial basis function kernel. The k-Nearest Neighbors (kNN)
model was trained using the KNeighborsClassifier
class with the number of neighbors k = 5. Scikit-learn 0.23.2
was used in the experiments. We used 1,491 feature vectors
of memory and storage access patterns in the first 60 s
immediately after executing a sample (i.e., Td = 60 s) with
Twindow = 10 s.

To evaluate the effectiveness of the models, we used the
unweighted mean of F1 scores under 10-fold cross-validation.
F1 score is a harmonic mean of precision and recall. An
unweighted mean of F1 score is calculated as follows:

F1 =
1

N

N∑
i=1

(
2 · Precisioni ·Recalli

Precisioni +Recalli

)
(4)

where N is the number of classes. Precision and recall were
calculated as follows:

327
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 



Precisioni =
TPi

TPi + FPi
(5)

Recalli =
TPi

TPi + FNi
(6)

where TPi (True positive) is the number of correctly classi-
fied features belonging to an ith class. FPi (False positive) is
the number of incorrectly classified features belonging to an
ith class. FNi (False negative) is the number of incorrectly
classified features as not belonging to an ith class.

VIII. CLASSIFICATION PERFORMANCE ON MACHINE
LEARNING MODELS

Fig. 5 shows the F1 scores of the three machine learning
models: Random Forest, SVM, and kNN. The Random Forest
model was the best classifier both in 8 and 2 classes. The two-
class problem discriminates the four malicious classes (i.e.,
three ransomware samples and one wiper malware sample)
from the four benign samples. Although the F1 scores of
memory access patterns are lower than those of storage access
patterns, the total F1 scores that used both memory and storage
access patterns were improved in all the three models.

We also need to determine the proper time window size,
Twindow. Fig. 6 shows how F1 scores changed with Twindow

on the Random Forest model that was trained using memory
access patterns with Td = 60 s. The F1 scores saturated at
Twindow above 10; we, therefore, employed Twindow of 10 s
in training the machine learning models.

IX. PERFORMANCE BENCHMARKING

Fig. 7 shows the results of the PCMARK10 (version
2.1.2525) benchmark that is designed to test typical home
user workloads [20]. For example, the “Essentials” workload
includes application start-up and web browsing, the “Produc-
tivity” workload includes spreadsheet and writing, and the
“Digital content creation” workload includes rendering and
video editing. We first created the baseline of our performance
evaluation by measuring a score on the test machine shown
in Table I without a hypervisor. We then test the following
three systems: (1) the developed hypervisor; the monitoring
function is disabled, (2) the developed hypervisor; monitoring
function both for memory and storage is enabled, and (3)
Microsoft’s hypervisor that enabled Virtualization Based Secu-
rity (VBS) with Hypervisor-protected Code Integrity (HVCI)
and credential guard function. Both the developed hypervisor
and Microsoft’s hypervisor [3] are Type-1 (i.e., bare-metal)
hypervisors.

Both the developed hypervisor and Microsoft’s hypervisor
caused performance degradation of 18 % and 24 % in total
score, respectively. BitVisor, a lightweight and thin hypervisor
for research purposes that we employed in the development,
enforces security functions using a single guest OS model.
Microsoft’s hypervisor, on the other hand, enforces more
complex security functions using a multiple guest OSs model.
For example, when a guest OS on a Windows hypervisor loads

a kernel driver, the HVCI function of a privileged guest OS
is called to verify the code signature of the kernel driver. The
kernel driver is loaded on the guest OS only when verification
of the code signature is succeeded. Thus, Microsoft’s VBS
needs at least two guest OSs simultaneously to enforce secu-
rity functions. BitVisor, on the other hand, enforces security
functions directly from hypervisor software without using any
privileged guest OS. This single guest OS model of BitVisor
reduces the number of context switching between a guest OS
and the hypervisor software and contributes to performance
improvement.

X. VISUALIZATION OF FEATURE VECTORS

Fig. 8 shows feature vectors of ransomware and wiper
malware. The entropy of CaddyWiper was lower than those
of three ransomware samples because CaddyWiper overwrites
files with zeros while ransomware samples encrypt files [17].
However, both ransomware and wiper malware share common
behavioral patterns that heavily access many user files in a
short time. Fig. 9 shows feature vectors of benign application
samples. The entropy values of AESCrypt and Zip were higher
than those of Idle and Office; The compression algorithm of
the Zip program increases entropy because it converts redun-
dant bit patterns into less redundant ones. In the Idle class, we
observed some background activities of system programs such
as SearchIndexer.exe. Since the hypervisor flushes TLBs and
deletes all EPT entries every 30 s, we observed spikes around
30 s on the number of EPT violations of 4KB and 2MB.

XI. CONCLUSION

We enhanced the functionality of a thin and lightweight
hypervisor by adding a function to collect low-level memory
access patterns with mitigating advanced evasion techniques
of malware that exploit OS vulnerabilities. Furthermore, we
presented a design of novel feature vectors of memory access
patterns. Our best machine learning classifiers achieved F1

scores of 0.93 in classifying the eight classes and 0.95 in de-
tecting ransomware and wiper malware. Our empirical results
show that the developed hypervisor can detect ransomware
and wiper malware using only low-level memory access pat-
terns. The current dataset, however, does not include memory
access patterns on various conditions, such as the different
specifications of chipset, CPU, and RAM. We need to examine
the memory access patterns in more realistic situations, for
example, when multiple samples are executed simultaneously.

ACKNOWLEDGMENT

This work was supported by JSPS KAKENHI Grant Num-
ber JP20K11825. The authors gratefully acknowledge con-
structive comments by the anonymous reviewers. The au-
thors thank Takamichi Omori, Keisuke Makihara, and Hiroki
Mizuno for their support in developing the hypervisor-based
monitoring system. The authors gratefully thank the develop-
ers of BitVisor.

328
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 

Léon GALL

Léon GALL

Léon GALL



0.97 
0.93 

0.99 0.98 
0.95 

0.99 

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Storage Memory Storage and
memory

F1
 sc

or
e

Random Forest

8 classes 2 classes

0.89 

0.82 

0.96 
0.91 

0.88 

0.98 

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Storage Memory Storage and
memory

F1
 sc

or
e

Support Vector Machine

8 classes 2 classes

0.92 

0.85 

0.93 0.94 0.92 
0.96 

0.70
0.75
0.80
0.85
0.90
0.95
1.00

Storage Memory Storage and
memory

F1
 sc

or
e

k-Nearest Neighbors 

8 classes 2 classes

Fig. 5. F1 score of the three machine learning models (10-fold cross-validation).

0.60

0.65

0.70

0.75

0.80

0.85

0.90

0.95

1.00

1 3 5 7 9 11 13 15

F1
 sc

or
e

Twindow [s]

8 classes

2 classes

Fig. 6. Changes of F1 scores with Twindow (10-fold cross-validation).

100% 100% 100% 100%

90% 91%
84%

95%

82%
76% 78%

92%

76%
69% 70%

92%

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

Total Essentials Productivity Digital content
creation

No
rm

al
ize

d 
sc

or
e

Without hypervisor
Developed hypervisor (monitoring function is disabled)
Developed hypervisor (monitoring function is enabled)
Microsoft's hypervisor with VBS

Fig. 7. Results of PCMARK10 benchmark tests.

REFERENCES

[1] S. Sharmeen, Y. A. Ahmed, S. Huda, B. Ş. Koçer, and M. M. Hassan,
“Avoiding future digital extortion through robust protection against
ransomware threats using deep learning based adaptive approaches,”
IEEE Access, vol. 8, pp. 24 522–24 534, 2020.

[2] C. Beaman, A. Barkworth, T. D. Akande, S. Hakak, and M. K. Khan,
“Ransomware: Recent advances, analysis, challenges and future research
directions,” Computers & Security, vol. 111, p. 102490, 2021.

[3] A. Allievi, M. Russinovich, A. Ionescu, and D. Solomon, Windows
Internals, 7th Edition, Part 2. Microsoft Press, 2021.

[4] T. Shinagawa, H. Eiraku, K. Tanimoto, K. Omote, S. Hasegawa,
T. Horie, M. Hirano, K. Kourai, Y. Oyama, E. Kawai et al., “BitVisor: A

Thin Hypervisor for Enforcing I/O Device Security,” in Proceedings of
the 2009 ACM SIGPLAN/SIGOPS international conference on Virtual
execution environments (VEE 2009), 2009, pp. 121–130.

[5] M. Hirano, T. Tsuzuki, S. Ikeda, N. Taka, K. Fujiwara, and
R. Kobayashi, “WaybackVisor: Hypervisor-Based Scalable Live Foren-
sic Architecture for Timeline Analysis,” in Security, Privacy, and
Anonymity in Computation, Communication, and Storage (SpaCCS
2019), G. Wang, M. Atiquzzaman, Z. Yan, and K.-K. R. Choo, Eds.
Cham: Springer International Publishing, 2017, pp. 219–230.

[6] M. Hirano and R. Kobayashi, “Machine learning based ransomware
detection using storage access patterns obtained from live-forensic hy-
pervisor,” in 2019 Sixth International Conference on Internet of Things:
Systems, Management and Security (IOTSMS 2019), 2019, pp. 1–6.

[7] M. Hirano, R. Hodota, and R. Kobayashi, “Ransap: An open dataset
of ransomware storage access patterns for training machine learning
models,” Forensic Science International: Digital Investigation, vol. 40,
p. 301314, 2022.

[8] M. Ajay Kumara and C. Jaidhar, “Leveraging virtual machine introspec-
tion with memory forensics to detect and characterize unknown malware
using machine learning techniques at hypervisor,” Digital Investigation,
vol. 23, pp. 99–123, 2017.

[9] Y. Cheng, X. Fu, X. Du, B. Luo, and M. Guizani, “A lightweight live
memory forensic approach based on hardware virtualization,” Informa-
tion Sciences, vol. 379, pp. 23–41, 2017.

[10] R. S. Leon, M. Kiperberg, A. A. L. Zabag, and N. J. Zaidenberg,
“Hypervisor-assisted dynamic malware analysis,” Cybersecurity, vol. 4,
no. 1, pp. 1–14, 2021.

[11] M. Yu, Z. Qi, Q. Lin, X. Zhong, B. Li, and H. Guan, “Vis: Virtual-
ization enhanced live forensics acquisition for native system,” Digital
Investigation, vol. 9, no. 1, pp. 22–33, 2012.

[12] L. Martignoni, A. Fattori, R. Paleari, and L. Cavallaro, “Live and trust-
worthy forensic analysis of commodity production systems,” in Recent
Advances in Intrusion Detection, S. Jha, R. Sommer, and C. Kreibich,
Eds. Springer, 2010, pp. 297–316.

[13] A. More and S. Tapaswi, “Virtual machine introspection: towards
bridging the semantic gap,” Journal of Cloud Computing, vol. 3, no. 1,
pp. 1–14, 2014.

[14] Intel Corporation, “Intel® 64 and IA-32 architectures software devel-
oper’s manual,” Volume 3C: system programming guide, part 3, 2021.

[15] T. Fukai, T. Shinagawa, and K. Kato, “Live migration in bare-metal
clouds,” IEEE Transactions on Cloud Computing, vol. 9, no. 1, pp. 226–
239, 2021.

[16] C. E. Shannon, “A mathematical theory of communication,” The Bell
System Technical Journal, vol. 27, no. 3, pp. 379–423, July 1948.

[17] Cisco Talos, “Threat Advisory: CaddyWiper,”
https://blog.talosintelligence.com/2022/03/threat-advisory-
caddywiper.html, 2022, accessed 2 April 2022.

[18] S. L. Garfinkel, “GovDocs1 - Digital Corpora,”
https://digitalcorpora.org/corpora/files, accessed 16 April 2022.

[19] Packetizer, Inc., “AES Crypt - Advanced File Encryption,”
https://www.aescrypt.com, accessed 9 August 2021.

[20] UL Benchmarks, “PCMark 10,” https://benchmarks.ul.com/pcmark10,
2022, accessed 12 April 2022.

329
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 



0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (WannaCry)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (WannaCry)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (WannaCry)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (WannaCry)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (WannaCry)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (Sodinokibi)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (Sodinokibi)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (Sodinokibi)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (Sodinokibi)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (Sodinokibi)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (Darkside)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (Darkside)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (Darkside)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (Darkside)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (Darkside)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (CaddyWiper)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (CaddyWiper)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (CaddyWiper)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (CaddyWiper)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (CaddyWiper)

Write
Read
Exec
Read/Write

Fig. 8. Feature vectors of ransomware and wiper malware samples (Twindow = 1 s and Td = 60 s).

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (Idle)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (Idle)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (Idle)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (Idle)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (Idle)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (AESCrypt)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (AESCrypt)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (AESCrypt)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (AESCrypt)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (AESCrypt)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (Zip)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (Zip)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (Zip)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (Zip)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (Zip)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

En
tro

py
 [b

it]
 (w

rit
e 

on
ly

)

Entropy (Office)
Write
Read/Write

0 10 20 30 40 50 60
seconds

0

2

4

6

8

10

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 4KB page (Office)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of 2MB page (Office)
Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

100

101

102

103

104

Nu
m

be
r o

f E
PT

 v
io

la
tio

n

EPT violation of MMIO (Office)

Write
Read
Exec
Read/Write

0 10 20 30 40 50 60
seconds

105

108

1011

1014

1017

Va
ria

nc
e 

of
 a

dd
re

ss

Variance of address (Office)

Write
Read
Exec
Read/Write

Fig. 9. Feature vectors of benign application samples (Twindow = 1 s and Td = 60 s).

330
Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on March 22,2024 at 04:20:37 UTC from IEEE Xplore.  Restrictions apply. 


