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Abstract—The Secure Protocol and Data Model (SPDM) is a
protocol that can be used to authenticate a hardware identity
and to establish secure communication sessions between devices.
A number of recent research efforts has been investigating ways
of enabling post-quantum cryptography (PQC) in the current
SPDM version 1.2. However, measurements show that the current
PQC digital signature algorithms are a major performance
bottleneck, which may become an obstacle to the adoption of
quantum-secure SPDM versions. This paper describes a new way
to use PQC key establishment algorithms to perform identity
authentication. Our experimental results show it can achieve
much better performance, especially on the device side.

Index Terms—SPDM, post-quantum, key encapsulation
method, KEM, device authentication, device secure session.

I. INTRODUCTION

The Secure Protocol and Data Model (SPDM) 1.2 spec-
ification' defines a protocol that can be used for device
identity establishment, device authentication, measurement
collection and device secure session establishment. The SPDM
protocol is a standard for the device community and has
been adopted by multiple other standard groups, including
Peripheral Component Interconnect (PCI), Compute Express
Link (CXL), Mobile Industry Processor Interface (MIPI), and
Trusted Computing Group (TCG).

The current SPDM 1.2 specification uses traditional asym-
metric cryptographic algorithms, such as RSA, ECDSA, and
EdDSA for digital signatures, and ephemeral Diffie-Hellman
over finite fields (FFDHE) or elliptic curves (ECDHE) for
key establishment. A simple way to add PQC support for
SPDM is to use NIST defined PQC digital signature algorithms
to replace the traditional asymmetric algorithms, and use
NIST key establishment algorithms to replace the ephemeral
Diffie-Hellman. However, the PQ-SPDM prototype [1] that
implements NIST PQC algorithms shows that the signing with
PQC algorithms takes significantly longer than with classic
asymmetric algorithms.

A. Our Contributions

In this work we define a key encapsulation method (KEM)
based authentication mechanism for SPDM protocol (we call
it KEM-SPDM) in order to replace digital signatures in au-
thenticated secure session establishment in the current SDPM.

We redesigned SPDM messages to make use of KEM algo-
rithms and achieved the same goal without digital signatures.
We also prototyped the solution implementing the new method
and collected performance benchmarks.

Uhttps://www.dmtf.org/dsp/DSP0274

The paper is organized as follows. We start with a brief
recap of SPDM in Section II. Section III discusses the KEM-
SPDM Secure Session Establishment and Section IV provides
security analysis for the KEM-SPDM. Finally, we report the
results of our proof-of-concept implementation in Section V.
Security proofs are provided in the full version of the paper?.

B. Related Work

Authenticated key exchange is an important topic in system
security and has been studied for a long time. We notice that
KEM-based authentication [2] was adopted by several standard
proposals, such as PQ-Wireguard [3], KEMTLS [4]-[6], and
Post-Quantum Hybrid Public Key Encryption (PQ-HPKE) [7].
We compare KEM-SPDM with those in Section IV-C. Au-
thentication without digital signatures can be a solution to
latency issues. Such work motivates us to create KEM-SPDM.
Multi-Stage based proofs were introduced in the analysis of
the QUIC protocol [8]. It was also used to prove the security of
TLS1.3 [9] and KEMTLS [5], [6]. Our proof in the full version
largely adopts the multi-stage security model of KEMTLS,
with adjustments made to fit the KEM-SPDM scheme.

II. SPDM BACKGROUND
A. SPDM Device Identification

During the device manufacturing phase, each device is pro-
visioned with a device certificate chain. This certificate chain
can be treated as the device identity. The device certificate
chain includes all the certificates from a trusted root certificate
authority (CA) certificate to a device specific leaf certificate.
The device certificate contains the public key that corresponds
to the device’s private key. The root CA endorses the device’s
key pair through the certificate chain. At runtime, an SPDM
initiator (requester) may use a GET_CERTIFICATE message
to ask an SPDM device (responder) to return its certificate
chain as the identity. Vice versa, the SPDM responder may
use a GET_CERTIFICATE to get the certificate chain from
the SPDM initiator.

As an alternative to the certificate chain, the SPDM entity
may use a raw public key, as the identity information, to
establish trust without the certificate. For example, an SPDM
initiator can provision an SPDM responder’s raw public key
in a trusted environment during the manufacturing phase.

2For proofs submitted with the paper, see the Supplementary Materials in
this submission. Proofs will be also part of the full version of the paper we
plan to post on eprint.iacr.org if the paper gets accepted.
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B. SPDM Secure Session Establishment

The SPDM specification allows two devices to establish
an authenticated secure communication channel, similar to
the network Transport Layer Security (TLS) 1.3. An SPDM
requester and an SPDM responder may use an authenticated
key exchange protocol to derive a set of session keys.

According to the SPDM specification, the authenticated
secure session could be one-way authentication, where the
initiator authenticates the responder, or mutual authentication,
where both entities authenticate each other.

SPDM defines two ways to build an authenticated secure
session, based on either a pre-shared key (PSK) or an asym-
metric key exchange. Since the PSK based key exchange in-
volves only hash-based message authentication code (HMAC),
which is still secure against quantum adversaries, we focus
only on asymmetric key exchange in this paper.

The asymmetric key exchange in SPDM 1.2 uses either
the finite-field-based Diffie-Hellman ephemeral (FFDHE) key
exchange or the Elliptic Curve Diffie-Hellman Ephemeral
(ECDHE) key exchange.

III. KEM-SPDM SECURE SESSION ESTABLISHMENT

In KEM-SPDM we replace DHE with a key encapsulation
mechanism (KEM) based authenticated key exchange. Fig. 2
shows the high-level view of KEM-SPDM handshake message
flows with mutual authentication. The steps that are marked
with an asterisk are not required for one-way authentication.

There are three invocations of KEM algorithms in the flow:

e KEM,.: The ephemeral KEM that is used to ensure
forward secrecy. The ephemeral secret key (sk.) and
public key (pk.) pair are generated every session by the
initiator. Its Encap() function returns a secret (ss.) and
its corresponding cipher text (ct.).

e KEM,: The static KEM on the responder side authenti-
cates the responder. The secret key (sk,) and public key
(pk,) are generated once. It has the corresponding cipher
text (ct,) and shared secret (ss,.).

o KEM,;: The static KEM on the initiator side authen-
ticates the initiator. The initiator’s secret key (sk;) and
public key (pk;) are generated once for optional mutual
authentication case. It has the corresponding ciphertext
(ct;) and shared secret (ss;).

The KEM-related actions are highlighted in blue, secret
keys (ske, sk, sk;) are highlighted in red while public keys
(pke, pk,, pk;) and ciphertexts (ct., ct,, ct;) are highlighted
in violet.

In the description we omit some of the protocol-specific
fields (like opaque data or transcripts of commands like
GET_VERSION) that are not crucial to the security analysis
of the enhanced protocol.

A. Key Derivation

The SPDM key derivation relies on a standard HMAC-
based key derivation function (HKDF) to derive the set of
necessary symmetric keys out of established shared secrets.
HKDF consists of two functions: HKDF-Extract () that

shared secret
(55, ss.lss:)

handshake secrets
(efk, ehk;, ehk,)

application data secrets
(edk;, edk,, eemk)

Fig. 1. KEM-SPDM key derivation scheme. A new stage DeriveSs() is added
to the existing SPDM steps DeriveHs() and DeriveApp().

takes an optional random salt value and an Input Keying
Material (IKM) and outputs a Pseudo-Random Key (PRK) and
HKDF-Expand that uses the PRK and an optional context-
specific information (info), and outputs the final Output Key-
ing Material (OKM) as the derived key.

KEM-SPDM secure session establishment employs a couple
of key derivation steps using the above functions. Fig. 1 shows
the high-level flow for those derivation steps. DeriveHs and
DeriveApp already exist in SPDM specification and DeriveSs
is a new step introduced in this work.

o DeriveSs() generates ephemeral shared secret (ess) for
the session.

— input: KEM-generated shared secrets (ss;, S$S¢, $S;)
— output: ephemeral shared secret (ess)

o DeriveHs() generates handshake secrets.

— input: The ephemeral shared secret (ess).

— input: The transcript hash 1 (th1l) for handshake.
It is a digest of the negotiated protocol version,
capability and algorithm as the field vca, identities of
the responder and initiator as their public keys pk,.,
pk;, the KEY_EXCHANGE message, the KEY_EX—
CHANGE_RSP message without HMAC.

— output: The initiator-direction ephemeral handshake
key (ehk;) is to encrypt the handshake message from
the initiator.

— output: The responder-direction ephemeral hand-
shake key (ehk,) is to encrypt the handshake mes-
sage from the responder.

— output: The ephemeral finished key (efk) is used to
provide HMAC in handshake message for explicate
authentication.

— output: The salt (saltl) is used as input for De-
riveApp().

o DeriveApp() generates the application data secret keys.

— input: The salt (saltl).

— input: The transcript hash 2 (th2) for application
data. It is the concatenation of the negotiated pro-
tocol version, capability and algorithm as the field
vca, identities of the responder and initiator as their
public keys pk,., pk;, the KEY_EXCHANGE message,
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the KEY_EXCHANGER_RSP message, the plaintext
FINISH message and the plaintext FINISH_RSP
message.

— output: The initiator-direction ephemeral application
data key (edk;) is to encrypt the application data
from the initiator.

— output: The responder-direction ephemeral applica-
tion data key (edk,) is to encrypt the application
data from the responder.

— output: The ephemeral export master key (eemk) is
for application specific usage.

B. Message Flows

Figure 2 shows secure session establishment flows of SPDM
modified to use KEM-based authentication. Since SPDM relies
on both entities to get the identification information earlier,
(e.g. via SPDM GET_CERTIFICATE or public key provi-
sioning) the session establishment messages do not include
initial identity transmission. The identity information is only
included in the transcripts for identity binding.

The protocol steps are as follows.

1) First Message: The initiator uses K E M, algorithm to
generate an ephemeral key pair (sk. and pk.) and uses the
responder’s K M, algorithm to generate a secret (ss,-) and its
encapsulated ciphertext form (ct,.) using the responder’s public
key (pk,). Then it generates its part of session ID (reqid) and
a random number (rand;) that is used to prevent reply attacks.
The first message keyex; is the sequence of reqid, rand;, the
ephemeral public key (pk.), the initiator-specific opaque data,
and the encapsulation of the shared secret (ct,).

2) Second Message: After receiving keyexr; message, the
responder uses its private key (sk,) to decapsulate the ci-
phertext (ct,) and get the shared secret (ss,). It uses the
ephemeral public key (pk.) to generate an ephemeral shared
secret (ss.) and its encapsulation into a ciphertext (ct.).
If mutual authentication is required, it also uses initiator’s
K EM; algorithm to generate and encapsulate the third shared
secret (ss;) into ciphertext (ct;) using initiator’s public key
(pk;). At this point, the responder has all three shared secrets
and can feed them to DeriveSs to derive the final ephemeral
shared secret (ess).

The responder also generates a random value (rspid) that
is the second half of the 32-bit session ID (regid||rspid) and
another reply-protecting 256-bit random number (rand,.).

The first part of responder’s message keyexl, is formed as
the concatenation of rspid, rand, and ciphertexts ct., ct;.

To bind to the session data, the responder calculates the
transcript hash (thl). The thl and the ephemeral secret
(ess) are used as inputs to handshake key derivation process
DeriveHs that produces the handshake keys (efk, ehk;, ehk,,
and saltl).

The next step is to MAC the transcript with the ephemeral
finished key (efk) and generate the MAC (mac,). Now, the
second message keyex, sent back to the initiator is keyexl,
with appended authentication tag mac,.

3) Third Message: Once the initiator receives the keyex,
message, it decapsulates the ciphertext with its ephemeral

Responder

(ske, pke) +— KEM..Gen()
(ssr, cty) < KEM,.Encap(pk,)
reqid < {0,1}'%; rand; « {0, 1}2°¢
keyex; «— reqid||rand;||pke]||ct,

KEY_EXCHANGE: keyex;

ss < KEM,.Decap(sk,, ct,)
(sSe, cte) <— KEM..Encap(pke)

(ssi, cti) «— KEM;.Encap(pki)#* //mutual auth only
rspid < {0, 1}'%; rand, « {0,1}2°6
keyex1, < rspid||rand,||cte||ct;
thl <— Hash(vcal|pk.||pki||keyex;||keyex1,)
ess <— DeriveSs(ss,, ss, ss;)

(efk, ehki, ehk,, saltl) < DeriveHs(ess, th1)
mac, < HMAC.Mac(efk, thl)
keyex, «— keyexl,||mac,

KEY_EXCHANGE_RSP: keyex,

sse «— KEM..Decap(ske, cte)
ssi <— KEM;.Decap(ski, ct;)* //mutual auth only
thl < Hash(vca||pk:||pki||keyexi| | keyex1,)
ess < DeriveSs(ss;, sse, ssi)
(efk, ehkj, ehk,, salt1) < DeriveHs(ess, th1)
.... ACCEPT ehk; wo Stage 1 ...
.... ACCEPT ehk, stage 2 ...
HMAC.Verify (efk, th1, mac,)
finishl; <« finop;
mac; <— HMAC.Mac(efk, thl||finish1;)
finishp; < finish1;||mac;
finish; - AEAD.Enc(ehk;, finishp;)

FINISH: finish;

finishp; <~ AEAD.Dec(ehk;, finish;)
HMAC.Verify (efk, th1||finish1;, mac;)
finishp, < finop,
th2 <— Hash(vcal|pk, || pki||keyex;|| keyex; || finishp;||finishp, )
(emk, edki, edk,, eemk) <— DeriveApp(saltl, th2)
finish, <~ AEAD.Enc(ehk,, finishp,)

FINISH_RSP: finish,

finishp, <— AEAD.Dec(ehk,, finish,)
th2 < Hash(vcal|pk. || pki| | keyex;||keyex; || finishp;||finishp, )
(emk, edki, edk,, eemk) <— DeriveApp(saltl, th2)
.... ACCEPT edk; .....ccoeueuuuee stage 3 ...
.... ACCEPT edk .....cooueunee stage 4 ...

L £

Fig. 2. KEM-SPDM Secure Session Establishment Flow

private key (sk.) to get the ephemeral shared secret (ss.).
If mutual authentication is required, the initiator also decap-
sulates the ciphertext (ct;) with its long term private key
(sk;) and gets the third shared secret (ss;). Having all three
shared secrets, DeriveSs key derivation is used to derive the
shared secret (ess). The same SPDM handshake key derivation
(DeriveHs) scheme is used by the initiator that takes (ess)
and (thl) to derive the handshake keys (efk, ehk;, ehk,
and saltl). These keys should match the ones derived by the
responder. We call “stage 1 the point after ehk; is accepted
and “stage 2” the point after ehk, is accepted.

Then, the initiator follows the same process to compute
the MAC of the transcript and verifies the received MAC
(mac,) with the key efk. If the verification fails, the session
is terminated.
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At this point the initiator starts preparing the FINISH
message to complete the handshake: it starts with a fixed
opcode string (finop;), creates the transcript hash ¢th1l and
computes a MAC over a message which is the concatenation
of th1 and the initiator generated FINISH message (finishl;).
The initiator needs to MAC the transcript with the ephemeral
finished key (efk) and generate the MAC (mac;). The full
FINISH message (finishp;) is the concatenation of the
requester generated FINISH message (finishl;) and the
MAC (mac;). The final FINISH message (finish;) is the
AEAD of the full FINISH message (finishp;) with initiator-
direction handshake key (ehk;).

4) Fourth Message: FINISH_RSP (responder to initiator)

Once the responder receives FINISH message, it performs
AEAD decryption and verifies the AEAD MAC with the
ephemeral finished key (efk). If the MAC verification fails,
the responder terminates the session.

As the final step, the responder creates the FINISH_RSP
message (finishp,). With the transcript hash for the applica-
tion data keys (th2) and the salt (saltl), the responder uses
DeriveApp to derive the application data keys (edk;, edk,,
eemk). Then the responder sends the final FINISH_RSP
message (finish,), which is the AEAD of the responder gen-
erated FINISH_RSP message (finishp,) with the responder-
direction handshake key (ehk,.).

5) Initiator Finalization: After the initiator receives the
FINISH_RSP, it performs AEAD decryption and verifies the
AEAD MAC. If the AEAD MAC verification passes, then
the secure session is established between the initiator and the
responder. The initiator follows the same process to calculate
the transcript hash for the application data (th2) then uses
DeriveApp and saltl to derive the application data keys
(edk;, edk,, eemk). When edk; is accepted, the protocol
enters “stage 3”. When edk, is accepted, the protocol enters
“stage 4”.

IV. SECURITY ANALYSIS

In this section, we discuss the security of KEM-SPDM and
compare it with other similar solutions.

A. Security Properties

The KEM authentication SPDM can achieve the following
security properties:

1) Key Indistinguishably: The adversary should not be able
to distinguish a real session key from a random key. The goal
of the adversary is to use the Test() query to guess the hidden
random chosen bit. There is a restriction that the adversary
cannot perform Test() query on a revealed session.

A set of unique session keys are created for every SPDM
session. Revealing other sessions should not bring any advan-
tage to the adversary.

2) Forward Secrecy: Forward secrecy is a way to guarantee
the session data is still secure even if one of the session parties
is corrupted. The security of session data only relies on the
security of session keys. As long as the session key and session
key related information are erased, the session data is secure.

In stage 1, initiator-direction ephemeral handshake key
(ehk;) is derived. In stage 2, responder-direction ephemeral
handshake key (ehk,) is derived. Because the ephemeral
K FEM_. is involved in the key derivation, we achieved forward
secrecy in stage 1 and stage 2. However, because keys are not
confirmed yet, the explicit authentication is not achieved yet.

In stage 3 and stage 4, the forward secrecy is still main-
tained, because the salt (saltl) from stage 1 is input for the
key in stage 3 and stage 4. With MAC verification, the explicit
authentication is also achieved.

3) Authentication: The KEM authentication supports one-
way or mutual authentication. In one-way authentication cases,
the initiator needs to authenticate the responder. But the
responder does not know the identity of the initiator, which
might be an active attacker. In mutual authentication, both
entities need to authenticate each other.

The initiator authenticates the responder in below phases:

1) Implicit authentication: In first KEY_EXCHANGE mes-
sage, the initiator uses the responder’s public key to
perform KEM encapsulation. Only the private owner can
decapsulate and derive the ss,..

2) Key confirmation: In second KEY_EXCHANGE_RSP
message, the responder uses its own private key to per-
form KEM decapsulation, and derives the ss,.. This ss,
will be used to derive the finished key e f k, which will be
used to MAC the transcript for KEY_EXCHANGE_RSP.

3) Explicit authentication: After the initiator receives the
KEY_EXCHANGE_RSP, it verifies the MAC to ensure
that the responder does have the private key.

If mutual authentication is required, the responder authen-

ticates the initiator in a similar fashion.

In summary, Stage 1 and stage 2 provide forward secrecy
but no authentication. Stage 3 and stage 4 provide unilateral
authentication, and mutual authentication respectively.

The security of KEM-SPDM relies on the security of KEM,
HKDF and HMAC functions. Security proofs are provided in
the full version of the paper.

B. Other Security Properties

1) KEM Algorithm: KEM-SPDM protocol is designed to
resist active attacks. This is obtained through the choice of a
KEM algorithm that is secure against an active adversary. The
notion of indistinguishability of KEMs against an active and
adaptive attack (i.e. IND-CCA?2) was introduced and proven in
[10]. Later it was extended to CPA and CCA1 attacks by [11].
In our protocol, the ephemeral KEM used for key exchange
and the long term KEM used for authentication have a slightly
different strength against the active adversary.

For key exchange, the ephemeral KEM (K EM.) needs to
be IND-1CCA-secure in order to resist active attacks. Since an
active attacker has one chance to replace the ciphertext C'T, of
the responder (since C'I is unique per session), i E M, needs
only be secure against a single decapsulation query; hence the
IND-1CCA notion.

For entity authentication, the long term KEMs (K FEM;
and K EM,) need to be IND-CCA-secure in order to resist
active attacks. Specifically, if KEM; is IND-CCA-secure,

Authorized licensed use limited to: Université de Strasbourg SCD. Downloaded on January 31,2024 at 11:09:29 UTC from IEEE Xplore. Restrictions apply.

© 2023 IEEE. Personal use is permitted, but republication/redistribution requires IEEE permission. See https://www.ieee.org/publications/rights/index.html for more information.



This article has been accepted for publication in IEEE Design & Test. This is the author's version which has not been fully edited and
content may change prior to final publication. Citation information: DOI 10.1109/MDAT.2023.3292998

only the intended initiator should be able to decapsulate and
recover ss;. What follows is that all keys derived from ss; are
implicitly authentic. Likewise, if K EM,. is IND-CCA-secure,
only the intended responder should be able to decapsulate and
recover ss,. This implies that all keys derived from ss, are
implicitly authentic.

In conclusion, what matters for our protocol is the number
of decapsulation queries (one versus many or IND-1CCA
versus IND-CCA) not whether they’re adaptive or not (IND-
CCA1 versus IND-CCA?2). This security property is inherited
from the KEMTLS protocol [6].

2) Quantum Security: Although the idea of using KEM
for authentication is independent of PQC considerations, our
intention is to use the post-quantum KEM algorithms to resist
quantum adversaries. The KEM-based protocol using PQ-
resistant KEMs should be safe against both classical and
quantum computing adversaries.

3) Downgrade Protection: The SPDM initiator and re-
sponder need to negotiate the SPDM version, post-quantum
capabilities (such as traditional mode, PQC mode, or hybrid
mode), and post-quantum algorithms (such as Kyber-512 or
Kyber-1024) [1]. Those six messages (vca) are mandatory and
always included in the transcript to prevent downgrade attacks.

4) Replay Protection: The first message KEY_EXCHANGE
includes a random number from the initiator and the second
message KEY_EXCHANGE_RSP includes a random number
from the responder. Both messages are included in the tran-
script hash.

The adversary may replay the first message to the responder.
Then the responder may generate same ss. and same SS,.
Those keys are not replay protected. However, when the
responder derives the handshake keys, it will include the
transcript hash (th1), which includes a unique random number
on responder side. The result is that the handshake keys are
different and all remaining steps are replay-protected.

5) Anonymity: Anonymity is not a design goal for SPDM.
The public certificate of the initiator and responder may be
transported in plain text. However, if the public certificate or
public key is provisioned directly, anonymity can be poten-
tially achieved. KEM-SPDM inherits this property.

6) Deniability: Deniability is also not a design goal. Stan-
dard SPDM uses digital signatures which actually ensure the
opposite property of non-repudiation (c.f. [12]). KEM-SPDM
may potentially provide deniability since an ephemeral pub-
lic/private key pair is used to generate the shared symmetric
key and the authentication is based upon the symmetric key.

C. Comparison with other algorithms

1) Comparison with PQ-SPDM: PQ-SPDM [1] added sup-
port for quantum resistant algorithms to SPDM specification
(DSP0274). It replaced traditional digital signatures with PQC
or hybrid signature algorithms, and replaced traditional DHE
algorithm with PQC KEM algorithm or a hybrid algorithm.

KEM-SPDM does not use digital signatures at all, both key
establishment and authentication are based on KEMs only.

2) Comparison with PQ-KEM-TLS: KEM-TLS [6] or
KEM-TLS with pre-distributed key (PDK) [5] were the alter-
natives to the RFC 8446 TLS 1.3 handshake that uses KEM
instead of digital signature for authentication, which can be
used for performance improvement.

Feature-wise, KEM-TLS supports encrypted server certifi-
cate transport, while the KEM-SPDM only supports plain-text
responder certificate transport. KEM-TLS with PDK supports
server certificates only and it still requires client certificate
transport. KEM-SPDM supports certificate provisioning at
both endpoints.

The authors of KEM-TLS used multistage based analysis
and they defined 6 stages for KEM-TLS [6] and 5 stages
for KEM-TLS with PDK [5]. We defined 4 stages for KEM-
SPDM, because the early handshake secret for certificate
transfer is not required for SPDM protocol.

3) Comparison with PQ-WireGuard: PQ-WireGuard [3]
added post-quantum support for WireGuard protocol by re-
placing Diffie-Hellman with a KEM. Beyond that, PQ-
WireGuard added key confirmation for explicit authentication.

PQ-WireGuard require both entities to provision the long
term asymmetric key to each other. The plain text public
key is not transported, only encrypted and authenticated hash
of the public key. However, both the original SPDM and
KEM-SPDM do not have such a requirement. The long term
asymmetric key can be transported at runtime in SPDM or
KEM-SPDM. Since PQ-WireGuard required long term key
provisioning, that means mutual authentication is required.
SPDM or KEM-SPDM may support one way authentication,
which means the responder might not know the initiator’s
public key.

4) Comparison with PQ-HPKE: Post-Quantum Hybrid
Public Key Encryption (PQ-HPKE) [7] adds post-quantum
support for HPKE in RFC 9180.

PQ-HPKE only described the base mode in which only the
receiver is authenticated and the sender is not authenticated,
while KEM-SPDM supports mutual authentication mode. PQ-
HPKE only supports implicit authentication. KEM-SPDM uses
key confirmation for explicit authentication.

V. IMPLEMENTATION RESULTS

We have developed a prototype that implements the above
PQ-enabled SPDM variant using post-quantum algorithm li-
brary libogs® on top of an SPDM implementation*. The
implementation can run in both the Windows and Linux SPDM
emulators. It can run in a Field Programmable Gate Array
(FPGA) smart card and communicate with a host system on
Intel Core CPU. We collected data for the winning PQC algo-
rithms (Kyber as a KEM and Dilithium, Falcon, SPHINCS+
as digital signature primitives) described in the status report
of NIST PQC 3rd round finalists and compare them with
the RSA and ECC in traditional mode. The data has been
collected on Intel® Core™ i7-8665U CPU @ 1.90 GHz and
Arm® Cortex®-A53 64bit processor @ 190 MHz. We use the
default messages defined in SPDM DSP0274 and DSP0277

3https://github.com/open-quantum-safe/libogs
“https://github.com/jyao1/openspdm-pqc-kem
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specification, where the opaque payload data only contains the
20 bytes secured version information. We also tried to increase
the opaque payload data to the maximum 1024 bytes and get
consistent result, because the SPDM specification requires the
asymmetric operation (signing or verification) on the hash of
the message transcript.
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Fig. 3. SPDM Initiator performance comparison of unmodified SPDM using
ECDHE+ECDSA, PQ-SPDM using Kyber+Dilithium and KEM-SPDM using
Kyber for both key transport and authentication.

Usually, a device is an SPDM responder and a host operat-
ing system is an SPDM requester so responder performance is
the main concern. We collected data from SPDM requester and
responder separately in one-way authenticated secure session
establishment for both digital signature and KEM authentica-
tion. We only listed traditional mode and PQC mode, because
that helps us better understand the performance difference.
In traditional mode, we always use digital signature-based
authentication defined in SPDM specification. In PQC mode,
we use the signature-based authentication from [1] or KEM-
based authentication without signatures described in this paper.
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Fig. 4. SPDM Responder performance of SPDM using ECDHE+ECDSA,
PQ-SPDM using Kyber+Dilithium and KEM-SPDM using Kyber.

Fig. 3 and Fig. 4 show that the KEM-based authentication
(Kyber) is faster than the digital signature-based authentication
(Dilithium) in general. PQ-SPDM using Falcon signatures (not
shown in the figure) is sometimes slightly faster than Kyber
on the initiator but much worse on the responder. Our results
show also that SPHINCS+ takes significantly longer time so
we did not include it in the figures either.

VI. DISCUSSION AND FUTURE WORK

The KEM-based authentication mechanism is different from
digital signature, which is widely adopted in current public key
infrastructure (PKI), especially the device manufacturer. If the
device certificate is changed from a digital signature public
key to a KEM public key, the supply chain tool needs to be
changed accordingly. That will bring a big change to current
implementations.

Hybrid mode certificates are also a topic for further inves-
tigation. Combining one digital signature public key with one
KEM public key into one certificate and performing hybrid
authentication may not be adequate since the authentication
mechanism is different.

In many use cases, the digital signature is used to provide
the integrity of data, not only authentication. The PQC hash-
based signature (HBS) algorithm, such as NIST approved
Leighton-Micali hash-based signatures (LMS) or extended
Merkle signature scheme (XMSS), can be used to support the
integrity of static data, such as secure boot or image update
use case. However, it is hard to use HBS to support dynamic
data integrity, such as runtime measurement data collection
with nonce. As such, we have to use public key encryption or
data transfer inside the secure session.

Deniability of KEM-based authentication may be consid-
ered as a feature or a concern based on the use case of SPDM
protocol.

In this paper, we assume both entities already have the
peer’s public key before the secure session setup. It is always
true for the initiator’s side, because the initiator should use
GET_CERTIFICATE to get the responder’s certificate. But
the responder may defer the certificate retrieval after secure
session setup, if the initiator does not know that the mutual
authentication is required by the responder. This special case
needs further investigation.

VII. CONCLUSIONS

In this paper, we introduced a KEM-based authentication
mechanism for SPDM protocol (KEM-SPDM). It can elim-
inate the digital signature usage in SPDM device authenti-
cation and secure session establishment, to potentially im-
prove the performance of quantum-secure communication. We
performed security analysis of the protocol and implemented
a proof-of-concept of the solution that was used to collect
performance measurements on two platforms. The resulting
data show that SPDM based on NIST selected PQC KEM
algorithms achieve better performance than that based on PQC
digital signatures. It proves the feasibility and performance
benefit of using KEM-based authentication.
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