Document Identifier: DSP0274

Date: 2023-06-28

Version: 1.3.0

Security Protocol and Data Model (SPDM)
Specification

Supersedes: 1.2.1
Document Class: Normative
Document Status: Published

Document Language: en-US

10

11

12

Security Protocol and Data Model (SPDM) Specification DSP0274

Copyright Notice
Copyright © 2023 DMTF. All rights reserved.

DMTF is a not-for-profit association of industry members dedicated to promoting enterprise and systems
management and interoperability. Members and non-members may reproduce DMTF specifications and
documents, provided that correct attribution is given. As DMTF specifications may be revised from time to
time, the particular version and release date should always be noted.

Implementation of certain elements of this standard or proposed standard may be subject to third-party
patent rights, including provisional patent rights (herein “patent rights”). DMTF makes no representations
to users of the standard as to the existence of such rights, and is not responsible to recognize, disclose,
or identify any or all such third-party patent right owners or claimants, nor for any incomplete or inaccurate
identification or disclosure of such rights, owners, or claimants. DMTF shall have no liability to any party,
in any manner or circumstance, under any legal theory whatsoever, for failure to recognize, disclose, or
identify any such third-party patent rights, or for such party’s reliance on the standard or incorporation
thereof in its product, protocols, or testing procedures. DMTF shall have no liability to any party
implementing such standard, whether such implementation is foreseeable or not, nor to any patent owner
or claimant, and shall have no liability or responsibility for costs or losses incurred if a standard is
withdrawn or modified after publication, and shall be indemnified and held harmless by any party
implementing the standard from any and all claims of infringement by a patent owner for such
implementations.

For information about patents held by third parties which have notified DMTF that, in their opinion, such
patents may relate to or impact implementations of DMTF standards, visit https://www.dmtf.org/about/
policies/disclosures.

This document’s normative language is English. Translation into other languages is permitted.

2 Published Version 1.3.0

https://www.dmtf.org/about/policies/disclosures
https://www.dmtf.org/about/policies/disclosures

DSP0274 Security Protocol and Data Model (SPDM) Specification

CONTENTS
T ROrEWOId . .o oo 9
1.1 ACKNOWIEdgmeENtS 9
2 INtrodUCtioN.o 11
2. AdVICE . o 11
2.2 CONVENTIONSot 11
2.2.1 Document conNVentions 11
2.2.2 Reserved and unassigned values 11
2.2.3 Byte Orderingo 1"
2231 Hash byte order. 12
22.3.2Encoded ASN.1 byte order 12
2.2.3.3O0ctetstring byte order. 12
2.2.3.4 Signature byte order 12
2.2.3.4.1 ECDSA signatures byteorder. 13
2.2.3.4.2SM2signatures byte order 13
2.2.4 SPDM data type conventions e 13
2241 SPDM data typeso 13
2,24 2 INtEgerS . o ot 13
2.2.5Version enCoding oo i 14
2.2 6 NotatioNs 15
2.2.7 Textorstring encoding 16
2.2.8 Deprecated material e 16
B 0P . . ot 18
4 Normative referenCeso 19
5Terms and definitions 21
6 Symbols and abbreviated terms. 26
7 SPDM message eXChangesttt e 27
7.1 Security capability discovery and negotiation 27
7.2 Identity authentication 27
7.2.1 Identity provisSioning. 28
7.211 Certificate models 28
7.2.1.1.1 Device certificate model 29
7.2.1.1.2 Alias certificate model. 29
7.2.1.1.3 Generic certificate model 30
7.2.2 Raw public KeYS. 31
7.2.3 Runtime authentication e 31
7.3 Firmware and configuration measurement 31
7.4 SECUIE SESSIONS. . . v v ittt ittt et e e e e 32
7.5 Mutual authentication overview 32
7.6 Multiple asymmetric key support 32
7.7 CuStOM ENVIFONMENTS e 33
7.8 Notification Overview 33

Version 1.3.0 Published 3

Security Protocol and Data Model (SPDM) Specification DSP0274

8 SPDM messaging protOCOL. 34
8.1 SPDM connection model 36
8.2 SPDM bits-to-bytes mappingo 36
8.3 Generic SPDM message format 37

8.3.1 SPDM VEISIONo 38
8.4 SPDM request COOESttt 38
8.5 SPDM reSpONSE COUBS\ttt ettt it e e 41
8.6 SPDM request and response code issuance allowance 43
8.7 Concurrent SPDM mMesSage ProCeSSING v v v ittt e e e 45
8.8 Requirements for Requesters i 45
8.9 Requirements for Responders. e 46
8.10 Transcript and transcript hash calculationrules. 46

O TIMING reqUITEMENES e e 47
9.1 TIMINg MeasSUremMENtS e e 47
9.2 TimiNg parameters 47
9.3 Timing specification table. 48

10 SPDM MESSAGES . . o o o et ettt e e e 55
10.1 Capability discovery and negotiation 55

10.1.1 Negotiated state preamble 55
10.2 GET_VERSION request and VERSION responsemessages.o . 56
10.3 GET_CAPABILITIES request and CAPABILITIES response messages 59

10.3.1 Supported algorithms block 72
10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages. 72

10.4.1 Connection behavior after VCA 88

10.4.2 Multiple asymmetric key negotiation 88

10.4.3 Multiple asymmetric key use for Responder authentication 88

10.4.4 Multiple asymmetric key use for Requester authentication. 89

10.4.5 Multiple asymmetric key connection 89
10.5 Responder identity authentication 90
10.6 Requester identity authentication. 92

10.6.1 Certificates and certificate chains 92
10.7 GET_DIGESTS request and DIGESTS response messagescouuiiiinnn... 93
10.8 GET_CERTIFICATE request and CERTIFICATE response messages. 98

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE

MESSATES -« -« v v e e ettt e e e e e e e e e 101

10.8.2 SPDM certificate requirements and recommendations 101

10.8.2.1 Extended Key Usage authentication OIDs 104
10.8.2.2 SPDM Non-Critical Certificate Extension OID. 105
10.8.2.2.1 Hardware identity OID 105
10.8.2.2.2 Mutable certificate OID 106

10.9 CHALLENGE request and CHALLENGE_AUTH response messages 106
10.9.1 CHALLENGE_AUTH signature generation. 109
10.9.2 CHALLENGE_AUTH signature verification. 110

4 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.9.2.1 Request ordering and message transcript computation rules for M1 and M2. 111
10.9.3 Basic mutual authentication. 113
10.9.3.1 Mutual authentication message transcript. 114
10.10 Firmware and other measurements. 115
10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages. 116
10.11.1 Measurement bloCK 121
10.11.1.1 DMTF specification for the Measurement field of a measurement block. 122
10.11.1.1.1 Measurement manifest 122
10.11.1.1.2 Hash-extend measurements. i 122
10.11.1.2 Device mode field of a measurementblock. 125
10.11.1.3 Manifest format for a measurementblock. 126
10.11.2 MEASUREMENTS signature generation. i 127
10.11.3 MEASUREMENTS signature verification. 128
10.12 ERROR response MeSSaAQE. - . . -« vt vttt e et et e e 129
10.12.1 Standards body or vendor-defined header 136
10.13 RESPOND_IF_READY requestmessageformat 137
10.14 VENDOR_DEFINED REQUEST requestmessage 138
10.15 VENDOR_DEFINED_RESPONSE response MmesSageuuuuuenuennnnennnn.. 139
10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
SpPeCIfiCatioNS 140
10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages. 140
10.16.1 Session-based mutual authentication 148
10.16.1.1 Specify Requester certificate for session-based mutual authentication 149
10.17 FINISH request and FINISH_RSP response messages, 149
10.17.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE.............. 151
10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages. 154
10.19 PSK_FINISH request and PSK_FINISH_RSP responsemessages 161
10.20 HEARTBEAT request and HEARTBEAT_ACK response messages. 162
10.20.1 Heartbeat additional information 163
10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages 163
10.21.1 Session key update synchronization. 165
10.21.2 KEY_UPDATE transportallowances. 167
10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response
NS S A0S . .+« v v vt e e e e 170
10.22.1 Encapsulated request flow 170
10.22.2 Optimized encapsulated requestflow 170
10.22.3 Triggering GET_ENCAPSULATED REQUEST i 174
10.22.4 Additional constraints 175
10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK
FESPONSE MESSAGES . .« v v v vttt e et e e e e e e e e e 175
10.23.1 Additional information 177
10.23.2 Allowance for encapsulated requests 178
10.23.3 Certain error handling in encapsulated flows 178

Version 1.3.0 Published 5

Security Protocol and Data Model (SPDM) Specification DSP0274

10.23.3.1 Response notready 178
10.23.3.2 TIMEOULS oo e 179
10.24 END_SESSION request and END_SESSION_ACK response messages 179
10.25 Certificate provisioning. 181
10.25.1 GET_CSR request and CSR response messages 181
10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages. 184
10.26 Large SPDM message transfer mechanism 186
10.26.1 CHUNK_SEND request and CHUNK_SEND_ACK response message 186
10.26.2 CHUNK_GET request and CHUNK_RESPONSE response message 189
10.26.3 Additional chunk transferrequirements. 192
10.27 Key configuration 193
10.27.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response. 193
10.27.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response. 197
10.27.3 Key pair ID modification errorhandling 199
10.28 Event meChanisSm 200
10.28.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES
FESPONSE MESSATE - .« .« ot ettt e e e e e e e e e e et e e e e e 202
10.28.1.1 Event group format additional information 205
10.28.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response
MESSATE - -« - v v vt et e e e e e e e e 205
10.28.2.1 Additional subscription list information 207
10.28.3 SEND_EVENT request and EVENT_ACK responsemessage. 207
10.28.4 EventInstance ID 210
10.29 GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages. 210
10.29.1 ENDPOINT_INFO signature generation 214
10.29.2 ENDPOINT_INFO signature verification 214
10.30 Measurement extension log mechanism 215
10.30.1 GET_MEASUREMENT_EXTENSION_LOG request and
MEASUREMENT_EXTENSION_LOG response mesSages« oo oo e e enniieeeeee 216
10.30.2 DMTF Measurement Extension Log Format 218
10.30.3 Example: Verifying Measurement Extension Log Against Hash-Extend Measurement . 219
11 S S S ON .« o oo 222
11.1 Session handshake phase 222
11.2 Application phase. 223
11.3 Session termination phase. 223
11.4 Simultaneous active SESSIONS e 223
11.5 Records and session ID 224
12 Key schedule 225
12.1 DHE secret computation 227
12.2 Transcript hash in key derivation 227
12.3 THT definition. 228
124 TH2 definition. 228
12.5 Key schedule Mmajor SeCrets. 229

6 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

12.5.1 Request-direction handshake secret. 229
12.5.2 Response-direction handshake secret 229
12.5.3 Requester-direction data secret 229
12.5.4 Responder-direction datasecret 229

12.6 Encryption key and IV derivation e 230
12.7 finished_key derivation 230
12.8 Deriving additional keys from the Export Master Secret 231
12.9 Major secrets update 231

13 Application data 232
13. 1 Nonce derivation 232

14 General opaque data format 233
15 Signature generation 235
15.1 Signing algorithms in extensions 236
15.2 RSA and ECDSA signing algorithms 236
15.3 EADSA signing algorithms 237
15.3.1 Ed25510 SigN. . . .ot 237
15.3.2 Ed448 SigN. . . . oo 237

15.4 SM2 signing algorithm 237
15.5 Signature algorithm references 237

16 Signature verification 239
16.1 Signature verification algorithms in extensions 239
16.2 RSA and ECDSA signature verification algorithms 240
16.3 EdDSA signature verification algorithms 240
16.3.1 EA25510 Verify.o 240
16.3.2 Ed448 Verify.o 240

16.4 SM2 signature verification algorithm 241

17 General ordering rUleso 242
18 DMTF eVent types 243
18.1 Eventtype details. 243
18. 1.1 EVent LOSto 243
18.1.2 Measurement changed event 244

18.1.3 Measurement pre-update event 245

18.1.4 Certificate changed event 246

19 ANNEX A (informative) TLS 1.3, 248
20 ANNEX B (informative) Device certificate example 249
21 ANNEX C (informative) OID reference. e 251
22 ANNEX D (informative) variable name reference. 252
23 ANNEX E (informative) change 10g 254
23.1 Version 1.0.0 (2019-10-16) oottt e 254
23.2 Version 1.1.0 (2020-07-15)ottt 254
23.3 Version 1.2.0 (2021-11-01). . . oot 254
23.4 Version 1.3.0 (2023-04-05)ottt 257
23.5 Version 1.3.0 (Updated 2023-06-28)ottt 262

Version 1.3.0 Published 7

Security Protocol and Data Model (SPDM) Specification DSP0274

24 Bibliography 263

8 Published Version 1.3.0

14

15

16

17
18

19

20

21
22

DSP0274 Security Protocol and Data Model (SPDM) Specification

1 Foreword

The Security Protocols and Data Models (SPDM) Working Group of the DMTF prepared the Security Protocol and Data
Model (SPDM) Specification (DSP0274). DMTF is a not-for-profit association of industry members that promotes
enterprise and systems management and interoperability. For information about the DMTF, see DMTF.

This version supersedes version 1.2 and its errata versions. For a list of the changes, see ANNEX E (informative)
change log.

IMPORTANT NOTE

This specification document with a publication date of June 28, 2023 supersedes the document published on May 10,
2023. Both documents are DSP0274 version 1.3.0. The copy dated June 28, 2023 contains editorial fixes to the
RequestResponseCode field values in the following tables:

+ Table 113 — SUBSCRIBE_EVENT_TYPES request message format RequestResponseCode changed from OxEF to
OxFO .

» Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format RequestResponseCode changed from
OXx6F to 0x70 .

+ Table 116 — SEND_EVENT request message format RequestResponseCode changed from 0xFO to OxF1 .
+ Table 118 — EVENT_ACK response message format RequestResponseCode changed from 0x70 to 0x71.

These RequestResponseCode changes match the values enumerated in Table 4 — SPDM request codes and Table 5
— SPDM response codes in the document published on May 10, 2023.

1.1 Acknowledgments

The DMTF acknowledges the following individuals for their contributions to this document:
Contributors:

* Richelle Ahlvers — Broadcom Inc.

+ Jeff Andersen — Google

* Lee Ballard — Dell Technologies

+ Steven Bellock — NVIDIA Corporation
* Heng Cai — Alibaba Group

 Patrick Caporale — Lenovo

* Yu-Yuan Chen — Intel Corporation

* Andrew Draper — Intel Corporation

+ Nigel Edwards — Hewlett Packard Enterprise

Version 1.3.0 Published 9

https://www.dmtf.org/

Security Protocol and Data Model (SPDM) Specification

Daniil Egranov — Arm Limited

Philip Hawkes — Qualcomm Inc.

Brett Henning — Broadcom Inc.

Jeff Hilland — Hewlett Packard Enterprise

Yi Hou — Microchip

Guerney Hunt — IBM

Yuval Itkin — NVIDIA Corporation

Theo Koulouris — Hewlett Packard Enterprise
Raghupathy Krishnamurthy — NVIDIA Corporation
Benjamin Lei — Lenovo

Luis Luciani — Hewlett Packard Enterprise

Masoud Manoo — Lenovo

Donald Matthews — Advanced Micro Devices, Inc.
Mahesh Natu — Intel Corporation

Chandra Nelogal — Dell Technologies

Edward Newman — Hewlett Packard Enterprise
Alexander Novitskiy — Intel Corporation

Jim Panian — Qualcomm Inc.

Scott Phuong — Cisco Systems Inc., Axiado Corporation
Jeffrey Plank — Microchip

Viswanath Ponnuru — Dell Technologies

Lohith Rangappa — Marvell Technology, Inc.
Xiaoyu Ruan — Intel Corporation

Nitin Sarangdhar — Intel Corporation

Vidya Satyamsetti — Google

Hemal Shah — Broadcom Inc.

Yoni Shternhell — Western Digital Technologies, Inc.
Srikanth Varadarajan — Intel Corporation

Peng Xiao — Alibaba Group

Qing Yang — Alibaba Group

Jiewen Yao — Intel Corporation

DSP0274

10

Published

Version 1.3.0

23

24

25

26

27

28

29

30

31

32

33

34

DSP0274 Security Protocol and Data Model (SPDM) Specification

2 Introduction

The Security Protocol and Data Model (SPDM) Specification defines messages, data objects, and sequences for
performing message exchanges over a variety of transport and physical media. The description of message
exchanges includes authentication and provisioning of hardware identities, measurement for firmware identities,
session key exchange protocols to enable confidentiality with integrity-protected data communication, and other
related capabilities. The SPDM enables efficient access to low-level security capabilities and operations. Other
mechanisms, including non-DMTF-defined mechanisms, can use the SPDM.

2.1 Advice

The authors recommend readers visit tutorial and education materials under Security Protocols and Data Models and
Platform Management Communications Infrastructure (PMCI) on the DMTF website prior to or during the reading of
this specification to help understand this specification.

2.2 Conventions

The following conventions apply to all SPDM specifications.

2.2.1 Document conventions

* Document titles appear in italics.
+ The first occurrence of each important term appears in italics with a link to its definition.

+ ABNF rules appear in a monospaced font.

2.2.2 Reserved and unassigned values
Unless otherwise specified, any reserved, unspecified, or unassigned values in enumerations or other numeric ranges
are reserved for future definition by the DMTF.

Unless otherwise specified, field values marked as Reserved shall be written as zero (0), ignored when read, not
modified, and not interpreted as an error if not zero, and used in transcript hash calculations as is.

2.2.3 Byte ordering

Unless otherwise specified, for all SPDM specifications byte ordering of multi-byte numeric fields or multi-byte bit
fields is little endian (that is, the lowest byte offset holds the least significant byte, and higher offsets hold the more
significant bytes).

Version 1.3.0 Published 1

https://www.dmtf.org/standards/spdm
https://www.dmtf.org/standards/pmci

35

36

37

38

39

40

41

42

43

44

Security Protocol and Data Model (SPDM) Specification DSP0274

2.2.3.1 Hash byte order

For fields or values containing a digest or hash, SPDM preserves the byte order of the digest as the specification of a
given hash algorithm defines. SPDM views these digests, simply, as a string of octets where the first byte is the
leftmost byte of the digest, the second byte is the second leftmost byte, the third byte is the third leftmost byte, and
this pattern continues until the last byte of the digest. Thus, the byte order for SPDM digests or hashes is: the first
byte is placed at the lowest offset in the field or value, the second byte is placed at the second lowest offset, the third
byte is placed at the third lowest offset in the field or value and this pattern continues until the last byte.

For example, in FIPS 180-4, a SHA 256 hash is the concatenation of eight 32-bit words where each word is in big
endian order, but the order of words does not have any endianness associated with it. SPDM simply views this 256-bit
digest as a string of octets that is 32 bytes in size where the first byte is the value at Ho[31:24] of the final digest, the
second byte is the value at Ho[23:16], the third byte is the value at Ho[15:8], the fourth byte is the value at Ho[7:0], the
fifth bytes is the value at H1[31:24], and this pattern continues until the last byte, which is the value at H7[7:0], where
the FIPS 180-4 specification defines Ho, H1, and H7.

2.2.3.2 Encoded ASN.1 byte order

For fields or values containing DER, CER, or BER encoded data, SPDM preserves the byte order as described in X.690
specification. SPDM views a DER, CER, or BER encoded data as simply a string of octets where the first byte is the
leftmost byte of Figure 1 or Figure 2 in the X.690 specification, the second byte is the second leftmost byte, the third
byte is the third leftmost byte, and this pattern continues until the last byte. The first byte is also called either the
Identifier octet or the Leading identifier octet. The X.690 specification defines Figure 1, Figure 2, and identifier octets.
When populating a DER, CER, or BER encoded data in SPDM fields, the first byte is placed in the lowest address, the
second byte is placed in the second lowest offset, the third byte is placed in the third lowest offset in the field or
value and this pattern continues until the last byte.

2.2.3.3 Octet string byte order

A string of octets is conventionally written from left to right. Also by convention, byte zero of the octet string shall be
the leftmost byte of the octet, byte 1 of the octet string shall be the second leftmost byte of the octet, and this

pattern shall continue until the very last byte. When placing an octet string into an SPDM field, the ith byte of the
octet string shall be placed in the it offset of that field.

For example, if placing an octet stream consisting of “OxAA 0xCB 0x9F 0xD8” into DMTFSpecMeasurementValue field,
then offset O (the lowest offset) of DMTFSpecMeasurementValue will contain OxAA, offset 1 of

DMTFSpecMeasurementValue will contain OxCB, offset 2 of DMTFSpecMeasurementValue will contain Ox9F, and offset
3 of DMTFSpecMeasurementValue will contain OxDS8.

2.2.3.4 Signature byte order

For fields or values containing a signature, SPDM attempts to preserve the byte order of the signature as the
specification of a given signature algorithm defines. Most signature specifications define a string of octets as the

12 Published Version 1.3.0

45

46

47

48

49

50

51

52

53

54

DSP0274 Security Protocol and Data Model (SPDM) Specification

format of the signature, and others may explicitly state the endianness such as in the specification for Edwards-Curve
Digital Signature Algorithm. Unless otherwise specified, the byte order of a signature for a given signature algorithm
shall be octet string byte order.

2.2.3.4.1 ECDSA signatures byte order

FIPS PUB 186-5 defines r, s, and ECDSA signature to be (r, s) ,where r and s are justintegers. For ECDSA
signatures, excluding SM2, in SPDM, the signature shall be the concatenation of r and s . The size of r shall be
the size of the selected curve. Likewise, the size of s shall be the size of the selected curve. See BaseAsymAlgo in
NEGOTIATE ALGORITHMS for the size of r and s .The byte order for r and s shall be big-endian order. When
placing ECDSA signatures into an SPDM signature field, r shall come first, followed by s .

2.2.3.4.2 SM2 signatures byte order

GB/T 32918.2-2016 defines r and s and SM2 signaturesto be (r, s) ,where r and s are justintegers. The size
of r and s shall each be 32 bytes. To form an SM2 signature, r and s shall be converted to an octet stream
according to GB/T 32918.2-2016 and GB/T 32918.1-2016 with a target length of 32 bytes. Let the resulting octet
stringof r and s becalled SM2 R and SM2_ S respectively. The final SM2 signature shall be the concatenation of
SM2_R and SM2_S . When placing SM2 signatures into an SPDM signature field, the SM2 signature byte order shall
be octet string byte order.

2.2.4 SPDM data type conventions

2.2.4.1 SPDM data types

Table 1 — SPDM data types lists the abbreviations and descriptions for common data types that SPDM message
fields and data structure definitions use. These definitions follow DSP0240.

Table 1 — SPDM data types

Data type Interpretation

ver8 Eight-bit encoding of the SPDM version number. Version encoding defines the encoding of the version number.
bitfield8 Byte with 8-bit fields.

bitfield16 Two-byte word with 16-bit fields.

2.2.4.2 Integers

Unless noted otherwise, integers shall be unsigned.

Version 1.3.0 Published 13

55

56

57
58
59
60
61

62

63

64

Security Protocol and Data Model (SPDM) Specification DSP0274

2.2.5 Version encoding

The SPDMVersion field represents the version of the specification through a combination of Major and Minor nibbles,

encoded as follows:

Version Matches Incremented when

Major version field in the

Major SPDMVersion field in the SPDM Protocol modification breaks backward compatibility.

message header.

Minor version field in the

Minor SPDMVersion field in the SPDM Protocol modification maintains backward compatibility.

message header.

EXAMPLE:

Version 3.7 — 0x37

Version 1.0 — 0x10

Version 1.2 — 0x12

An endpoint that supports Version 1.2 can interoperate with an older endpoint that supports Version 1.0 or other
previous minor versions. Whether an endpoint supports inter-operation with previous minor versions of the SPDM

specification is an implementation-specific decision.

An endpoint that supports Version 1.2 only and an endpoint that supports Version 3.7 only are not interoperable and
shall not attempt to communicate beyond GET VERSION .

This specification considers two minor versions to be interoperable when it is possible for an implementation that is

conformant to a higher minor version number to also communicate with an implementation that is conformant to a

lower minor version number with minimal differences in operation. In such a case, the following rules apply:

Both endpoints shall use the same lower version number in the SPDMVersion field for all messages.
Functionality shall be limited to what the lower minor version of the SPDM specification defines.

Computations and other operations between different minor versions of the Secured Messages using SPDM
specification should remain the same, unless security issues of lower minor versions are fixed in higher minor
versions and the fixes require change in computations or other operations. These differences are dependent on
the value in the SPDMVersion field in the message.

In a newer minor version of the SPDM specification, a given message can be longer, bit fields and enumerations
can contain new values, and reserved fields can gain functionality. Existing numeric and bit fields retain their
existing definitions.

For details on the version agreement process, see GET_VERSION request and VERSION response messages. The

detailed version encoding that the VERSION response message returns contains an additional byte that indicates
specification bug fixes or development versions. See Table 9 — Successful VERSION response message format.

14

Published Version 1.3.0

DSP0274

65 2.2.6 Notations

66 SPDM specifications use the following notations:

Notation

Concatenate()

M:N

[4]

[M:N]

1b

0x12A

N+

{ Payload }

{ Payload }::[[Sx]

Security Protocol and Data Model (SPDM) Specification

Description

The concatenation function Concatenate(a, b, ..., z),
where the first entry occupies the least-significant bits and the
last entry occupies the most-significant bits.

In field descriptions, this notation typically represents a range
of byte offsets starting from byte M and continuing to and
including byte N (M = N).

The lowest offset is on the left. The highest offset is on the
right.

Square brackets around a number typically indicate a bit
offset.

Bit offsets are zero-based values. That is, the least significant
bit ([LSb]) offset = 0.

A range of bit offsets where M is greater than or equal to N.

The most significant bit is on the left, and the least significant
bit is on the right.

A lowercase b after a number consisting of @ sand 1s
indicates that the number is in binary format.

Hexadecimal, as indicated by the leading 0x .
Variable-length byte range that starts at byte offset N.

Used mostly in figures, this notation indicates that the payload
specified in the enclosing curly brackets is encrypted and/or
authenticated by the keys derived from one or more major
secrets. The specific secret used is described throughout this
specification. For example, { HEARTBEAT } shows that the
Heartbeat message is encrypted and/or authenticated by the
keys derived from one or more major secrets.

Used mostly in figures, this notation indicates that the payload
specified in the enclosing curly brackets is encrypted and/or
authenticated by the keys derived from major Secret X.

For example, { HEARTBEAT }::[[S2]] shows that the
Heartbeat message is encrypted and/or authenticated by the
keys derived from major secret S .

Version 1.3.0

15

67

68

69
70
71

72

73

74

75
76

Security Protocol and Data Model (SPDM) Specification DSP0274

Notation Description

Used to indicate a field in a message.
* ${message _name} isthe name of the request or response
message.

* ${field_name} isthe name of the field in the request or

[meseaEe_EmEs] § Siiiele] nEms) response message. An asterisk (*) instead of a field

name means all fields in that message except for any
conditional fields that are empty (as for example
KEY_ EXCHANGE . OpaqueData).

2.2.7 Text or string encoding

When a value is indicated as a text or string data type, the encoding for the text or string shall be an array of
contiguous bytes whose values are ordered. The first byte of the array resides at the lowest offset, and the last byte of
the array is at the highest offset. The order of characters in the array shall be such that the leftmost character of the
string is placed at the first byte in the array, the second leftmost character is placed in the second byte, and so forth
until the last character is placed in the last byte.

Each byte in the array shall be the numeric value that represents that character, as ASCII — ISO/IEC 646:1991 defines.
Table 2 — “spdm” encoding example shows an encoding example of the string “spdm”:

Table 2 — “spdm” encoding example

Offset Character Value
0 S 0x73
1 p 0x70
2 d 0x64
3 m 0x6D

2.2.8 Deprecated material

Deprecated material is not recommended for use in new development efforts. Existing and new implementations can
use this material, but they shall move to the favored approach as soon as possible. Implementations can implement
any deprecated elements as required by this document to achieve backward compatibility. Although implementations
can use deprecated elements, they are directed to use the favored elements instead.

The following typographical convention indicates deprecated material:

DEPRECATED

Deprecated material appears here.

16 Published Version 1.3.0

77

78

DSP0274 Security Protocol and Data Model (SPDM) Specification

DEPRECATED

In places where this typographical convention cannot be used (for example, in tables or figures), the “DEPRECATED”
label is used alone.

Version 1.3.0 Published 17

79

80

81

Security Protocol and Data Model (SPDM) Specification DSP0274

3 Scope

This specification describes how to use messages, data objects, and sequences to exchange messages between two
devices over a variety of transports and physical media. This specification contains the message exchanges, sequence
diagrams, message formats, and other relevant semantics for such message exchanges, including authentication of
hardware identities and firmware measurements.

Other specifications define the mapping of these messages to different transports and physical media. This
specification provides information to enable security policy enforcement but does not specify individual policy
decisions.

18 Published Version 1.3.0

82

83

DSP0274 Security Protocol and Data Model (SPDM) Specification

4 Normative references

The following documents are indispensable for the application of this specification. For dated or versioned references,
only the edition cited, including any corrigenda or DMTF update versions, applies. For references without date or
version, the latest published edition of the referenced document (including any corrigenda or DMTF update versions)
applies.

ISO/IEC Directives, Part 2, Principles and rules for the structure and drafting of ISO and IEC documents - 2021 (9th
edition)

DMTF DSP0004, Common Information Model (CIM) Metamodel, https://www.dmtf.org/sites/default/files/
standards/documents/DSP0004_3.0.1.pdf

DMTF DSP0223, Generic Operations, https://www.dmtf.org/sites/default/files/standards/documents/
DSP0223_1.0.1.pdf

DMTF DSP0236, MCTP Base Specification 1.3.0, https://dmtf.org/sites/default/files/standards/documents/
DSP0236_1.3.0.pdf

DMTF DSP0239, MCTP IDs and Codes 1.6.0, https://www.dmtf.org/sites/default/files/standards/documents/
DSP0239_1.6.0.pdf

DMTF DSP0240, Platform Level Data Model (PLDM) Base Specification, https://www.dmtf.org/sites/default/files/
standards/documents/DSP0240_1.0.0.pdf

DMTF DSP0275, Security Protocol and Data Model (SPDM) over MCTP Binding Specification, https://www.dmtf.org/
dsp/DSP0275

DMTF DSP1001, Management Profile Usage Guide, https://www.dmtf.org/sites/default/files/standards/
documents/DSP1001_1.2.0.pdf

IETF RFC 9147, The Datagram Transport Layer Security (DTLS) Protocol Version 1.3, April 2022
IETF RFC 2986, PKCS #10: Certification Request Syntax Specification, November 2000

IETF RFC 4716, The Secure Shell (SSH) Public Key File Format, November 2006

IETF RFC 5234, Augmented BNF for Syntax Specifications: ABNF, January 2008

IETF RFC 5280, Internet X.509 Public Key Infrastructure Certificate and Certificate Revocation List (CRL) Profile, May
2008

IETF RFC 7250, Using Raw Public Keys in Transport Layer Security (TLS) and Datagram Transport Layer Security
(DTLS), June 2014

IETF RFC 7919, Negotiated Finite Field Diffie-Hellman Ephemeral Parameters for Transport Layer Security (TLS),
August 2016

IETF RFC 8017, PKCS #1: RSA Cryptography Specifications Version 2.2, November, 2016

IETF RFC 8032, Edwards-Curve Digital Signature Algorithm (EdDSA), January 2017

IETF RFC 8446, The Transport Layer Security (TLS) Protocol Version 1.3, August 2018

USB Authentication Specification Rev 1.0 with ECN and Errata through January 7, 2019

TCG Algorithm Registry, Family “2.0”, Level 00 Revision 01.32, June 25, 2020

NIST Special Publication 800-38D, Recommendation for Block Cipher Modes of Operation: Galois/Counter Mode

Version 1.3.0 Published 19

https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.iso.org/sites/directives/current/part2/index.xhtml
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0004_3.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0223_1.0.1.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://dmtf.org/sites/default/files/standards/documents/DSP0236_1.3.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0239_1.6.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0240_1.0.0.pdf
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/dsp/DSP0275
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP1001_1.2.0.pdf
https://datatracker.ietf.org/doc/html/rfc9147
https://tools.ietf.org/html/rfc2986
https://tools.ietf.org/html/rfc4716
https://tools.ietf.org/html/rfc5234
https://tools.ietf.org/html/rfc5280
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7250
https://tools.ietf.org/html/rfc7919
https://tools.ietf.org/html/rfc8017
https://tools.ietf.org/html/rfc8032
https://tools.ietf.org/html/rfc8446
https://www.usb.org/document-library/usb-authentication-specification-rev-10-ecn-and-errata-through-january-7-2019
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf

Security Protocol and Data Model (SPDM) Specification DSP0274

(GCM) and GMAC, November 2007
IETF RFC 8439, ChaCha20 and Poly1305 for IETF Protocols, June 2018
IETF RFC 8998, ShangMi (SM) Cipher Suites for TLS 1.3, March 2021
GB/T 32918.1-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic
curves—Part 1: General, August 2016
GB/T 32918.2-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic
curves—Part 2: Digital signature algorithm, August 2016
GB/T 32918.3-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic
curves—Part 3: Key exchange protocol, August 2016
GB/T 32918.4-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic
curves—Part 4: Public key encryption algorithm, August 2016
GB/T 32918.5-2016, Information security technology—Public key cryptographic algorithm SM2 based on elliptic
curves—Part 5: Parameter definition, August 2016
GB/T 32905-2016, Information security technology—SM3 cryptographic hash algorithm, August 2016
GB/T 32907-2016, Information security technology—SM4 block cipher algorithm, August 2016
ASN.1 — ISO-822-1-4, DER — ISO-8825-1
o ITU-T X.680, X.681, X.682, X.683, X.690, 08/2015
ASCII — ISO/IEC 646:1991, 09/1991
ECDSA
o Section 6, The Elliptic Curve Digital Signature Algorithm (ECDSA) in FIPS PUB 186-5 Digital Signature
Standard (DSS)
o NIST SP 800-186 Recommendations for Discrete Logarithm-based Cryptography: Elliptic Curve Domain
Parameters
o IETF RFC 6979, Deterministic Usage of the Digital Signature Algorithm (DSA) and Elliptic Curve Digital
Signature Algorithm (ECDSA), August 2013
SHA2-256, SHA2-384, and SHA2-512
o FIPS PUB 180-4 Secure Hash Standard (SHS)
SHA3-256, SHA3-384, and SHA3-512
o FIPS PUB 202 SHA-3 Standard: Permutation-Based Hash and Extendable-Output Functions

20

Published Version 1.3.0

https://nvlpubs.nist.gov/nistpubs/Legacy/SP/nistspecialpublication800-38d.pdf
https://tools.ietf.org/html/rfc8439
https://tools.ietf.org/html/rfc8998
http://www.gmbz.org.cn/upload/2018-07-24/1532401673134070738.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673134070738.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673138056311.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673138056311.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673149005052.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673149005052.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673367034870.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401673367034870.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401863206085511.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401863206085511.pdf
http://www.gmbz.org.cn/upload/2018-07-24/1532401392982079739.pdf
http://www.gmbz.org.cn/upload/2018-04-04/1522788048733065051.pdf
https://www.itu.int/rec/T-REC-X.680-X.693-201508-S/en
https://www.iso.org/standard/4777.html
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.186-5.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://nvlpubs.nist.gov/nistpubs/SpecialPublications/NIST.SP.800-186.pdf
https://tools.ietf.org/html/rfc6979
https://tools.ietf.org/html/rfc6979
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.180-4.pdf
https://nvlpubs.nist.gov/nistpubs/FIPS/NIST.FIPS.202.pdf

84

85

86

87

88

89
90

DSP0274 Security Protocol and Data Model (SPDM) Specification

5 Terms and definitions

In this document, some terms have a specific meaning beyond the normal English meaning. This clause defines those
terms.

The terms “shall” (“required”), “shall not”, “should” (“recommended”), “should not” (“not recommended”), “may”, “need
not” (“not required”), “can” and “cannot” in this document are to be interpreted as described in ISO/IEC Directives, Part
2, Clause 7. The terms in parentheses are alternatives for the preceding term, for use in exceptional cases when the
preceding term cannot be used for linguistic reasons. Note that ISO/IEC Directives, Part 2, Clause 7 specifies
additional alternatives. Occurrences of such additional alternatives shall be interpreted in their normal English
meaning.

» o« » o«

The terms “clause”, “subclause”, “paragraph”, and “annex” in this document are to be interpreted as described in ISO/
IEC Directives, Part 2, Clause 6.

The terms “normative” and “informative” in this document are to be interpreted as described in ISO/IEC Directives,
Part 2, Clause 3. In this document, clauses, subclauses, and annexes labeled “(informative)” do not contain normative
content. Notes and examples are always informative elements.

The terms that DSP0004, DSP0223, DSP0236, DSP0239, DSP0275, and DSP1001 define also apply to this document.

This specification uses these terms:

Term Definition
alias certificate Certificate that is dynamically generated by the component or component firmware.

Data that is specific to the application and whose definition and format is outside the scope

of this specification. Application data usually exists at the application layer, which is, in

it ki general, the layer above SPDM and the transport layer. Examples of data that could be
application data include: messages carried as DMTF MCTP payloads; Internet traffic; PCle
transaction layer packets (TLPs); camera images and video (MIPI CSI-2 packets); video

display stream (MIPI DSI-2 packets); and touchscreen data (MIPI I3C Touch).

authentication initiator Endpoint that initiates the authentication process by challenging another endpoint.
authentication Process of determining whether an entity is who or what it claims to be.

byte Eight-bit quantity. Also known as an octet.

certificate authority (CA) Trusted entity that issues certificates.

Typically a series of two or more certificates. Each certificate is signed by the preceding
certificate in the chain.

certificate chain

tificat Digital form of identification that provides information about an entity and certifies
certificate
ownership of a particular asymmetric key-pair.

‘ Physical device, contained in a single package. A “component” may also refer to a functional
componen . . .
P block implemented in hardware, firmware, and/or software.

Version 1.3.0 Published 21

Security Protocol and Data Model (SPDM) Specification DSP0274

Term

device certificate

device

DMTF

encapsulated request

generic certificate

endpoint

event notifier

event recipient

intermediate certificate

invasive debug mode

large SPDM message

large SPDM request message

large SPDM response message

leaf certificate

measurement
message

message body

Definition

Certificate that contains information that identifies the component. Can be a leaf certificate
or an intermediate certificate.

Physical entity such as a network controller or a fan.

Formerly known as the Distributed Management Task Force, the DMTF creates open
manageability standards that span diverse emerging and traditional information technology
(IT) infrastructures, including cloud, virtualization, network, servers, and storage. Member
companies and alliance partners worldwide collaborate on standards to improve the
interoperable management of IT.

A request embedded into an ENCAPSULATED REQUEST or ENCAPSULATED RESPONSE_ACK
response message to allow the Responder to issue a request to a Requester. See
GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

A certificate, for use in certificate slots 1 or greater, that has minimal SPDM requirements to
allow for numerous use cases that the vendor, standards body, or user defines.

Logical entity that communicates with other endpoints over one or more transport
protocols.

An SPDM endpoint that is capable of sending asynchronous notifications using SPDM event
mechanisms. See Event mechanism.

An SPDM endpoint that is capable of receiving asynchronous notifications using SPDM event
mechanisms. See Event mechanism.

Certificate that is neither a root certificate nor a leaf certificate.

A device mode that enables debug access that might expose or allow modification of
firmware, hardware, or settings that can access (read or write) security keys, states, and
contexts of the device. A device should not be trusted when it is operating in this mode.

An SPDM message that is greater than the DataTransferSize of the receiving SPDM
endpoint or greater than the transmit buffer size of the sending SPDM endpoint.

A large SPDM message that is an SPDM request.
A large SPDM message that is an SPDM response.

Last certificate in a certificate chain. A leaf certificate is synonymous with an end entity
certificate as RFC 5280 describes.

Representation of hardware/firmware/software or configuration data on an endpoint.
See SPDM message.

Portion of an SPDM message that carries additional data.

22

Published Version 1.3.0

DSP0274

Term

message transcript

monotonically increasing

most significant byte (MSB)

Negotiated State

nibble

non-invasive debug mode

nonce

opaque data

payload

physical transport binding

Security Protocol and Data Model (SPDM) Specification

Definition

The concatenation of a sequence of messages in the order in which they are sent and
received by an endpoint. The final message included in the message transcript may be
truncated to allow inclusion of a signature in that message which is computed over the
message transcript. If an endpoint is communicating with multiple peer endpoints
concurrently, the message transcripts for the peers are accumulated separately and
independently.

This specification uses the term monotonically increasing to describe an integer field where
the value of each instance of the field in a series increases from a lower starting point to a
higher ending point without repeating values. For instance, a monotonically increasing field
may contain the values 1, 3, 4, 7, and 9.

Highest-order byte in a number consisting of multiple bytes.

Set of parameters that represents the state of the communication between a corresponding
pair of Requester and Responder at the successful completion of the
NEGOTIATE ALGORITHMS messages.

These parameters may include values provided in VERSION , CAPABILITIES, and
ALGORITHMS messages.

Additionally, they may include parameters associated with the transport layer.

They may include other values deemed necessary by the Requester or Responder to
continue or preserve communication with each other.

Computer term for a four-bit aggregation, or half of a byte.

A device mode that enables debug access that does not expose or allow modification of
security-critical firmware, hardware, or settings.

Number that is unpredictable to entities other than its generator. The probability of the same
number occurring more than once is negligible. A nonce may be generated by combining a
random number of at least 64 bits, optionally concatenated with a monotonically increasing
counter of size suitable for the application.

Opaque data fields transfer data that is outside the scope of this specification. The semantics
and usage of this data are implementation specific and are also outside the scope of this
specification.

Information-bearing fields of a message. These fields are separate from the transport fields
and elements, such as address fields, framing bits, and checksums, that transport the
message from one point to another.

Specifications that define how a base messaging protocol is implemented on a particular

physical transport type and medium, such as SMBus/I°C or PCI Express™ Vendor Defined
Messaging.

Version 1.3.0

Published 23

Security Protocol and Data Model (SPDM) Specification

Term

Platform Management Component
Intercommunication (PMCI)

record

Requester

Reset

Responder

root certificate

secure session

Security Protocols and Data Models (SPDM)
WG

sequentially decreasing

sequentially increasing

session keys

Session-Secrets-Exchange

Session-Secrets-Finish

SPDM message payload

DSP0274

Definition

Working group under the DMTF that defines standardized communication protocols, low-
level data models, and transport definitions that support communications with and between
management controllers and management devices that form a platform management
subsystem within a managed computer system.

A unit or chunk of data that is either encrypted and/or authenticated.

Original transmitter, or source, of an SPDM request message. It is also the ultimate receiver,
or destination, of an SPDM response message. A Requester is the sender of the
GET_VERSION request and remains the requester for the remainder of that connection.

This term is used to denote a Reset or restart of a device that runs the Requester or
Responder code, which typically leads to the loss of all volatile state on the device.

Ultimate receiver, or destination, of an SPDM request message. It is also the original
transmitter, or source of an SPDM response message.

First certificate in a certificate chain, which acts as the trust anchor and is typically self-
signed.

Provides either encryption or message authentication or both for communicating data over
a transport.

Working group under the DMTF that defines standards to enable security for platforms,
whether for the control plane, data plane, or other infrastructure.

This specification uses the term sequentially decreasing to describe an integer field where the
value of each instance of the field in a series decrements from a higher starting point to a
lower ending point without skipping or repeating values. For instance, a sequentially
decreasing field may contain the values 255, 254, 253, 252, and 251.

This specification uses the term sequentially increasing to describe an integer field where the
value of each instance of the field in a series increments from a lower starting point to a
higher ending point without skipping or repeating values. For instance, a sequentially
increasing field may contain the values 1, 2, 3, 4, and 5.

Any secrets, derived cryptographic keys, or any cryptographic information bound to a
session.

Any SPDM request and their corresponding response that initiates a session and provides
initial cryptographic exchange. Examples of such requests are KEY_EXCHANGE and
PSK_EXCHANGE .

This term denotes any SPDM request and its corresponding response that finalizes a session
setup and provides the final exchange of cryptographic or other information before
application data can be securely transmitted. Examples of such requests are FINISH and
PSK _FINISH .

Portion of the message body of an SPDM message. This portion of the message is separate
from those fields and elements that identify the SPDM version, the SPDM request and
response codes, and the two parameters.

24

Published Version 1.3.0

DSP0274

Term

SPDM message

SPDM request message

SPDM response message

trusted computing base (TCB)

trusted environment

Security Protocol and Data Model (SPDM) Specification

Definition
Unit of communication in SPDM communications. See Generic SPDM message format.

Message that is sent to an endpoint to request a specific SPDM operation. A corresponding
SPDM response message acknowledges receipt of an SPDM request message.

Message that is sent in response to a specific SPDM request message. This message includes
a Response Code field that indicates whether the request completed normally.

Set of all hardware, firmware, and/or software components that are critical to its security, in
the sense that bugs or vulnerabilities occurring inside the TCB might jeopardize the security
properties of the entire system. By contrast, parts of a computer system outside the TCB shall
not be able to misbehave in a way that would leak any more privileges than are granted to
them in accordance with the security policy.

Reference: https://en.wikipedia.org/wiki/Trusted_computing_base

An environment where the operator is assured of no unauthorized interference in
operations.

Version 1.3.0

Published 25

https://en.wikipedia.org/wiki/Trusted_computing_base

91

92
93

Security Protocol and Data Model (SPDM) Specification

DSP0274

6 Symbols and abbreviated terms

The abbreviations that DSP0004, DSP0223, and DSP1001 define apply to this document.

The following additional abbreviations are used in this document.

Abbreviation Definition
AEAD Authenticated Encryption with Associated Data
CA certificate authority
DMTF Formerly the Distributed Management Task Force
ECC Elliptic-curve cryptography
ECDSA Elliptic-curve Digital Signature Algorithm
KDF Key Derivation Function
MAC Message Authentication Code
MSB most significant byte
OID Object identifier
PMCI Platform Management Component Intercommunication
RMA Return Merchandise Authorization
RSA Rivest—-Shamir—Adleman
SPDM Security Protocol and Data Model
TCB trusted computing base
VCA Version-Capabilities-Algorithms
26 Published Version 1.3.0

94

95

96

97

98

99

100

101

102

DSP0274 Security Protocol and Data Model (SPDM) Specification

7 SPDM message exchanges

The message exchanges that this specification defines are between two endpoints and are performed and exchanged
through sending and receiving of SPDM messages that SPDM messages defines. The SPDM message exchanges are
defined in a generic fashion that allows the messages to be communicated across different physical mediums and
over different transport protocols.

The specification-defined message exchanges enable Requesters to:

+ Discover and negotiate the security capabilities of a Responder.
+ Authenticate or provision an identity of a Responder.
 Retrieve the measurements of a Responder.

+ Securely establish cryptographic session keys to construct a secure communication channel for the transmission
or reception of application data.

+ Receive notifications of selectable events when certain scenarios transpire.

These message exchange capabilities are built on top of well-known and established security practices across the
computing industry. The following clauses provide a brief overview of each message exchange capability. Some
message exchange capabilities are based on the security model that the USB Authentication Specification Rev 1.0 with
ECN and Errata through January 7, 2019 defines.

7.1 Security capability discovery and negotiation

This specification defines a mechanism for a Requester to discover the security capabilities of a Responder. For
example, an endpoint could support multiple cryptographic hash functions that this specification defines.
Furthermore, the specification defines a mechanism for a Requester and Responder to select a common set of
cryptographic algorithms to use for all subsequent message exchanges before another negotiation is initiated by the
Requester, if an overlapping set of cryptographic algorithms exists that both endpoints support.

7.2 Identity authentication

In this specification, the authenticity of a Responder is determined by digital signatures using well-established
techniques based on public key cryptography. A Responder proves its identity by generating digital signatures using
a private key, and the signatures can be cryptographically verified by the Requester using the public key associated
with that private key.

At a high level, the authentication of the identity of a Responder involves these processes:

+ Identity provisioning

* Runtime authentication

Version 1.3.0 Published 27

103

104

105

106

107

108

109

110
111

Security Protocol and Data Model (SPDM) Specification DSP0274

7.2.1.1 Certificate models

If trust in a device public key is established through a certificate, the certificate is typically part of a certificate chain.

The certificate chain has a root certificate (RootCert) as its root and a leaf certificate as the last certificate in it. The
RootCert is generated by a trusted root certificate authority (CA) and certifies the certificate containing the device
public key either directly or indirectly through a number of intermediate CAs. Authentication initiators use the
RootCert to verify the validity of device certificate chains.

the'hardware'identity. Though existing deployments might not include the Hardware identity OID in a certificate, it is

strongly recommended that new deployments include this information. The'public/private key pair associated with'a

SPDM defines multiple overarching formats for certificate chains, referred to as certificate chain models. While the
details of each certificate chain model vary, all of them follow the general format of connecting from a root certificate
(RootCert) to a ledf certificate, possibly through one or more intermediate certificates.

A Responder can use one or more of the certificate chain models. A Requester should be capable of performing
Runtime authentication on a certificate chain that conforms to any of the models.

Figure 1 — SPDM certificate chain models shows the SPDM certificate chain models:

Figure 1 — SPDM certificate chain models

N

8 Published Version 1.3.0

Léon GALL

Léon GALL

Léon GALL

112

113

114

115

116

DSP0274 Security Protocol and Data Model (SPDM) Specification
DeviceCert AliasCert GenericCert
Model Model Model
Root CA Root CA Root CA

'

'

'

Intermediate
CA

Intermediate
CA

Intermediate
CA

i

'

Device
Certificate

Device
Certificate
CA

Generic
Leaf Certificate

7.2.1.1.1 Device certificate model

'

Alias
Intermediate
CA

Alias
Certificate

When the device certificate (DeviceCert) model is in use, the leaf certificate is a Device Certificate, which contains
the public key that corresponds to the device private key. Through the certificate chain, the root CA indirectly
endorses the device public key in the Device Certificate. In this model, the Device Certificate should contain the
Hardware identity OID.

7.2.1.1.2 Alias certificate model

When the alias certificate (AliasCert) model is in use, the leaf certificate is an Alias Certificate, in which case there

Version 1.3.0 Published 29

117

118

119

120

121

122

123

124

125

Security Protocol and Data Model (SPDM) Specification DSP0274

may be one or more intermediate AliasCert certificates between the Device Certificate and the leaf Alias
Certificate. In the AliasCert model, the device private key signs the next level Alias Certificate, and then the private
key associated with the public key in each Alias Intermediate CA signs the Alias Certificate below it. When the
AliasCert model is in use, the Device Certificate is referred to as a Device Certificate CA, indicating that the
certificate both contains device hardware identity information and functions as a certificate authority to sign an
additional certificate. In this model, the Device Certificate CA should contain the Hardware identity OID.

A device that implements the AliasCert model might factor some mutable information, such as the measurement
of a firmware image, into the derivation of the public/private key pairs for the intermediate and leaf alias certificates.
Therefore, the asymmetric public/private key pairs for each Alias Certificate should be treated as mutable.

Through the certificate chain, the root CA indirectly endorses the device public key in the Device Certificate. When the
AliasCert model is in use, the Alias Certificates are endorsed by the device private key, meaning that the Alias
Certificates are also indirectly endorsed by the root CA.

When the AliasCert model is used, the device creates and endorses one or more certificates. The certificates from
the root certificate to the Device Certificate are considered immutable because the Responder cannot change them,
as they can only be changed through the SET CERTIFICATE command or an equivalent capability. The certificates
below the Device Certificate can be created on the device and are mutable certificates in that they can change when
the device state changes, such as a device reset. The Mutable certificate OID should be used to indicate mutable
certificates.

In addition, when the AliasCert model is used, one or more Alias Certificates can contain firmware identity
information. Other standards bodies might define the format of the firmware identity information. Such definitions
are outside the scope of this specification.

Note that a signature algorithm used with a mutable alias certificate can insert random data during signing, which
would cause the digest of the certificate chain to change each time it is regenerated. An implementer can use a
mechanism that is outside the scope of this specification to ensure that such a signature does not change between
instances of DIGESTS and CERTIFICATE responses.

7.2.1.1.3 Generic certificate model

With the support of multiple asymmetric keys, the need for another certificate model arises to accommodate varying
use cases that DeviceCert and AliasCert models cannot fulfill. Thus, the generic certificate model offers the
greatest flexibility to the device manufacturer, a manufacturer in the supply chain, and the users of the SPDM
endpoint.

As Figure 1 — SPDM certificate chain models illustrates, much like the other certificate models, the generic certificate
model, too, is composed of a chain of certificates starting with the root and ending with the leaf. The root CA, too,
either directly certifies the leaf certificate or indirectly certifies the leaf certificate (GenericCert) through one or
more intermediate certificate authorities. In other words, this model is the most flexible (or least restrictive) of the
certificate models in this specification. The main difference between this model and the other models is that SPDM
shall not impose any requirements on the contents of each certificate in the chain in a generic certificate model other
than the key pair and related information associated in the leaf certificate.

For example, in a device certificate model, the leaf certificate can contain elements that specifically identify the device

30 Published Version 1.3.0

126

127

128

129

130

131

132

133

134

135

DSP0274 Security Protocol and Data Model (SPDM) Specification

and device manufacturer, whereas the generic certificate model has no such requirement nor any concept of a device
certificate.

As such, the generic certificate model applies to certificates in slots greater than slot 0. A model in a certificate slot in
this specification is either a DeviceCert, AliasCert, or GenericCert model.

The contents and use cases for the certificates of a generic certificate model, other than the associated key pair and
related information in the leaf certificate, are outside the scope of this specification. Typically, the users of the SPDM
endpoint, the device manufacturer, or standards define the contents and use cases of a generic certificate model.

7.2.2 Raw public keys

7.2.3 Runtime authentication

Runtime authentication is the process by which an authentication initiator, or Requester, interacts with a Responder in
a running system. The authentication initiator can retrieve the certificate chains from the Responder and send a
unique challenge to the Responder. The Responder uses the private key associated with the leaf certificate to sign the
challenge. The authentication initiator verifies the signature by using the public key associated with the leaf certificate
of the Responder and any intermediate public keys within the certificate chain by using the root certificate as the
trusted anchor.

If the public key of the Responder was provisioned to the Requester in a trusted environment, the authentication
initiator sends a unique challenge to the Responder. The Responder signs the challenge with the private key. The
authentication initiator verifies the signature by using the public key of the Responder. Device identification can be
handled using the GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages or the transport layer
(which is outside the scope of this specification).

7.3 Firmware and configuration measurement

A measurement is a representation of firmware/software or configuration data on an endpoint. A measurement is
typically either a cryptographic hash value of the data or the raw data itself. The endpoint optionally binds a
measurement with the endpoint identity through the use of digital signatures. This binding enables an authentication
initiator to establish the identity and measurement of the firmware/software or configuration running on the
endpoint.

Version 1.3.0 Published 31

Léon GALL

136

137

138

139

140

141

142

143

144

145

146

147

Security Protocol and Data Model (SPDM) Specification DSP0274

7.4 Secure sessions

Many devices exchange data that might require protection with other devices. In this specification, this data that is
being exchanged is generically referred to as application data. The protocol of the application data usually exists at a
higher layer, and as such it is outside the scope of this specification. The protocol of the application data usually
allows for encrypted and/or authenticated data transfer.

This specification provides a method to perform a cryptographic key exchange such that the protocol of the
application data can use the exchanged keys to provide a secure channel of communication by using encryption and
message authentication. This cryptographic key exchange provides either Responder-only authentication or mutual
authentication, both of which can be considered equivalent to Runtime authentication. For more details, see the
Session clause.

Finally, many SPDM requests and their corresponding responses can also be afforded the same protection. For more
details, see Table 6 — SPDM request and response messages validity and the SPDM request and response code
issuance allowance clause.

Figure 2 — SPDM messaging protocol flow gives a very high-level view of when the secure session starts.

7.5 Mutual authentication overview

The ability of a Responder to verify the authenticity of the Requester is called mutual authentication. Several
mechanisms in this specification are detailed to provide mutual authentication capabilities. The cryptographic means
to verify the identity of the Requester is the same as verifying the identity of the Responder. The Identity provisioning
clause discusses identity in regards to the Responder but the details also apply to the Requester.

In general, when this specification states requirements or recommendations for Responders in the context of identity,
those same rules also apply to Requesters in the context of mutual authentication. The various clauses in this
specification provide more details.

7.6 Multiple asymmetric key support

An SPDM endpoint can use more than one asymmetric key pair for a negotiated asymmetric algorithm. This enables
cryptographic isolation between different use cases which potentially increases the security posture of the SPDM
endpoint and its corresponding SPDM connections. For example, an SPDM Responder can choose which key-pairs to
use in a CHALLENGE request and which key pairs to use in a GET_MEASUREMENTS request. The SPDM Responder
permits the CHALLENGE and GET_MEASUREMENTS requests to use the same key-pair for signing operations.

Additionally, a Responder can allow the Requester to select the use cases to associate with each asymmetric key pair.
The Responder can, also, allow the Requester to request the generation of a new key pair.

To facilitate the use of multiple asymmetric keys, the ability to uniquely identify each key pair is essential. To achieve
this, a unique key pair number, called KeyPairID , identifies each asymmetric key pair. Additionally, one or more leaf
certificates can bind to the same asymmetric key pair.

32 Published Version 1.3.0

Léon GALL

148

149

150

151

DSP0274 Security Protocol and Data Model (SPDM) Specification

7.7 Custom environments

A fixed or predetermined environment is an environment where certain characteristics of the environment are fixed or
known before the SPDM endpoints communicate with each other. In many cases, these characteristics are determined
even before the environment can operate such as during the design phase. An example of a such an environment is
when two specific endpoints can only communicate with each other. These environments may forfeit certain SPDM
features such as interoperability. However, the security posture and guarantees of these environments are outside the
scope of this specification.

7.8 Notification overview

To aid an SPDM endpoint in enforcing its security policy requirements in an efficient, reliable, and timely manner, the
SPDM event mechanism provides a method to asynchronously deliver a notification to or receive a notification from
the interested SPDM endpoint. This mechanism allows an interested SPDM endpoint to choose only the event types it
wants to receive. For more details, see Event mechanism.

Version 1.3.0 Published 33

152

153

154

155

Security Protocol and Data Model (SPDM) Specification DSP0274

8 SPDM messaging protocol

The SPDM messaging protocol defines a request-response messaging model between two endpoints to perform the
message exchanges outlined in SPDM message exchanges. Each SPDM request message shall be responded to with
an SPDM response message as this specification defines unless this specification states otherwise.

Figure 2 — SPDM messaging protocol flow depicts the high-level request-response flow diagram for SPDM. An
endpoint that acts as the Requester sends an SPDM request message to another endpoint that acts as the Responder,
and the Responder returns an SPDM response message to the Requester.

Figure 2 — SPDM messaging protocol flow

34 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

156
D |
—GET_VERSION—T]
|
] N’
<4——————VERSION -
, GET_CAPABILIle
CAPABILITIES |
|
| NEGOTIATE_ALGORITHMS
ALGORITHMS
|
N —_——_—————
If supported JT| GET_D|GESTS4T| 1
- ' DIGESTS | |
O N R
| Ui necessary | GET_CERTIFICATE |
—_—
| t CERTIFICATE N
e [
— [E—
FIfsupported T T "HALLENGEibl:| ‘
- e CHALLENGE_AUTH | |
e I
ity i Ml —————— i i
Esuﬂmﬂ 4 GET_MEASUREMENTS ! \
\ |
L ———wessuRENENTS]
lfeuooorted! || 0
If supported | | | | |
L KEY_EXCHANGE > |
|
| Il KEY_EXCHANGE_RSP : |
I I
| [[|
| e (v} |
| | |
| : FINISH—}] \
|
\ :d—FINISH_RSP | |
\ | | |
| e {Foptcaion beia | —————> [|
| |
| Secure Session | ‘
L777+777777 77777 T
157 All SPDM request-response messages share a common data format that consists of a four-byte message header and

zero or more bytes message payload that is message-dependent. The following clauses describe the common
message format and SPDM messages’ details for each of the request and response messages.

158 The Requester shall issue GET VERSION, GET CAPABILITIES, and NEGOTIATE ALGORITHMS request messages before
issuing any other request messages. The responses to GET_VERSION , GET_CAPABILITIES, and
NEGOTIATE ALGORITHMS can be saved by the Requester so that after Reset the Requester can skip these requests.

Version 1.3.0 Published 35

159

160

161

162

163

164

165

166
167

Security Protocol and Data Model (SPDM) Specification DSP0274

8.1 SPDM connection model

In SPDM, communication between a pair of SPDM endpoints starts when one endpoint sends a GET_VERSION
request to another SPDM endpoint. The SPDM endpoint that starts the communication is called the Requester. The
endpoint receiving the GET_VERSION and providing the VERSION response is called a Responder. The
communication between a pair of Requester and Responder is called a connection. One or more connections can
exist between a Requester and Responder. Different connections might exist over the same transport or over different
transports. When there are multiple connections over the same transport, the transport is responsible for providing
mechanisms for SPDM endpoints to distinguish between one or more connections. When the transport does not
provide such a mechanism, there shall be one connection between the Requester and Responder over that
connection.

SPDM endpoints can be both a Requester and Responder. As a Requester, an SPDM endpoint can communicate with
one or more Responders. Likewise, as a Responder, an SPDM endpoint can respond to multiple Requesters. The
SPDM connection model considers each of these communications to be a separate connection. For example, a pair of
SPDM endpoints can be both Requester and Responder to each other. Thus, the SPDM connection model considers
this to be two separate connections.

Within a connection, the Requester remains the Requester for the remainder of the connection. Likewise, the
Responder remains the Responder for the remainder of the connection. However, under certain scenarios allowed by
SPDM, a Responder can send a request to a Requester and, likewise, a Requester might provide a response to a
Responder. These cases are limited and this specification explicitly defines these cases. In such scenarios, when a
Requester provides a response, the Requester shall abide by all requirements in this specification as if they are a
Responder for that request. Similarly, when a Responder sends a request, the Responder shall abide by all
requirements in this specification as if they are a Requester for that request.

Within a connection, the Requester can establish one or more secure sessions. These secure sessions are considered
to be part of the same connection. Secure sessions can terminate and additional sessions can be established at any
time. A GET_VERSION can reset the connection and all context associated with that connection including, but not
limited to, information such as session keys and session IDs. However, this is not considered a termination of the
connection. A connection can terminate due to external events such as a device reset or an error-handling strategy
implemented on an SPDM endpoint, but such scenarios are outside the scope of this specification. Connections can
be terminated using mechanisms outside the scope of this specification.

8.2 SPDM bits-to-bytes mapping

All SPDM fields, regardless of size or endianness, map the highest numeric bits to the highest numerically assigned
byte in sequentially decreasing order down to and including the least numerically assigned byte of that field. The
following two figures illustrate this mapping.

Figure 3 — One-byte field bit map shows the one-byte field bit map:

Figure 3 — One-byte field bit map

36 Published Version 1.3.0

Léon GALL

168

169
170
171

172

173

174

DSP0274

Example: A One-Byte Field

Byte 1
Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit
71651432]1]0

Figure 4 — Two-byte field bit map shows the two-byte field bit map:

Figure 4 — Two-byte field bit map

Example: A Two-Byte Field

Security Protocol and Data Model (SPDM) Specification

Byte 3 Byte 2
Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit | Bit
15|14 713 (12|11 |10} 9 |8 | 7|6 |5 4|3 |2 |10

8.3 Generic SPDM message format

Table 3 — Generic SPDM message field definitions defines the fields that constitute a generic SPDM message,

including the message header and payload:

Table 3 — Generic SPDM message field definitions

Byte offset Bit offset Size (bits) Field
0 [7:4] 4 SPDM Major Version
0 [3:0] 4 SPDM Minor Version

Description

Shall be the major version of the
SPDM Specification. An endpoint
shall not communicate by using an
incompatible SPDM version value.
See Version encoding.

Shall be the minor version of the
SPDM Specification. A specification
with a given minor version extends a
specification with a lower minor
version as long as they share the
major version. See Version
encoding.

Version 1.3.0 Published

37

175

176

177

178
179
180

181

182

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Bit offset Size (bits) Field Description

Shall be the request message code
or response code, which Table 4 —
SPDM request codes and Table 5 —
SPDM response codes enumerate.
0x00 through 0x7F represent

1 [7:0] 8 Request Response Code response codes and 0x80 through
OxFF represent request codes. In
request messages, this field is
considered the request code. In
response messages, this field is
considered the response code.

Shall be the first one-byte
parameter. The contents of the

2 [7:0] 8 Param1 .
parameter are specific to the
Request Response Code .
Shall be the second one-byte
parameter. The contents of the
3 [7:0] 8 Param?2 o
parameter are specific to the
Request Response Code .
See th Shall be zero or more bytes that are
ee the
4 o Variable SPDM message payload specific to the Request Response
description.

Code .

8.3.1 SPDM version

The SPDMVersion field, present as the first field in all SPDM messages, indicates the version of the SPDM
specification that the format of an SPDM message adheres to. The format of this field shall be the same as byte 0 in
Table 3 — Generic SPDM message field definitions. The value of this field shall be the same value as the version of
this specification except for GET VERSION and VERSION messages.

For example, if the version of this specification is 1.2, the value of SPDMVersion is 0x12 , which also corresponds to
an SPDM Major Version of 1 andan SPDM Minor Version of 2. See Version encoding for more examples.

The version of this specification can be found on the title page and in the footer of the other pages in this document.
The SPDMVersion for the version of this specification shall be 0x13 .

The SPDMversionString shall be a string formed by concatenating the major version, a period (“.”), and the minor
version. For example, if the version of this specification is 1.2.3, then SPDMversionString is "1.2" .

8.4 SPDM request codes

Table 4 — SPDM request codes defines the SPDM request codes. The Implementation requirement column
indicates requirements on the Requester.

38 Published Version 1.3.0

183
184
185

DSP0274

Security Protocol and Data Model (SPDM) Specification

All SPDM-compatible implementations shall use SPDM request codes.

If an ERROR response is sent for unsupported request codes, the ErrorCode shall be UnsupportedRequest .

Table 4 — SPDM request codes

Request Code value Implementation requirement Message format
. Table 34 — GET_DIGESTS request
GET_DIGESTS 0x81 Optional
message format
Table 38 — GET_CERTIFICATE t
GET_CERTIFICATE 0x82 Optional e - reques
message format
. Table 44 — CHALLENGE request
CHALLENGE 0x83 Optional
message format
. Table 8 — GET_VERSION request
GET_VERSION 0x84 Required
message format
. Table 96 — CHUNK_SEND request
CHUNK_SEND 0x85 Optional
format
. Table 100 — CHUNK_GET request
CHUNK_GET 0x86 Optional
format
. Table 119 — GET_ENDPOQOINT_INFO
GET_ENDPOINT_INFO 0x87 Optional
request format
. Table 49 — GET_MEASUREMENTS
GET_MEASUREMENTS OxEOQ Optional
request message format
. Table 11 — GET_CAPABILITIES request
GET_CAPABILITIES OxE1 Required
message format
Table 109 —
GET_SUPPORTED_EVENT_TYPES OxE2 Optional GET_SUPPORTED_EVENT_TYPES
request message format
. Table 15 — NEGOTIATE_ALGORITHMS
NEGOTIATE_ALGORITHMS OxE3 Required
request message format
. Table 69 — KEY_EXCHANGE request
KEY_EXCHANGE OxE4 Optional
message format
Table 72 — FINISH t
FINISH OXES Optional e request message
format
. Table 74 — PSK_EXCHANGE request
PSK_EXCHANGE OxE6 Optional
message format
. Table 76 — PSK_FINISH request
PSK_FINISH OxE7 Optional
message format
Version 1.3.0 Published 39

Security Protocol and Data Model (SPDM) Specification

DSP0274

Request Code value Implementation requirement Message format
. Table 78 — HEARTBEAT request
HEARTBEAT OxE8 Optional
message format
. Table 80 — KEY_UPDATE request
KEY_UPDATE OxE9 Optional
message format
Table 83 —
GET_ENCAPSULATED_REQUEST OXEA Optional GET_ENCAPSULATED_REQUEST
request message format
Table 85 —
DELIVER_ENCAPSULATED_RESPONSE OxEB Optional DELIVER_ENCAPSULATED_RESPONSE
request message format
Table 87 — END_SESSION request
END_SESSION OXEC Optional - 9
message format
) Table 90 — GET_CSR request message
GET_CSR OXED Optional
format
. Table 93 — SET_CERTIFICATE request
SET_CERTIFICATE OxEE Optional
message format
Table 126 —
GET_MEASUREMENT_EXTENSION_LOG OxEF Optional GET_MEASUREMENT_EXTENSION_LOG
message format
. Table 113 — SUBSCRIBE_EVENT_TYPES
SUBSCRIBE_EVENT_TYPES 0xFO Optional
request message format
. Table 116 — SEND_EVENT request
SEND_EVENT OxF1 Optional
message format
Table 102 — GET_KEY_PAIR_INFO
GET_KEY_PAIR_INFO OXFC Optional avle TP
request message format
. Table 106 — SET_KEY_PAIR_INFO
SET_KEY_PAIR_INFO OxFD Optional
request message format
Table 57 —
VENDOR _DEFINED_REQUEST OxFE Optional VENDOR _DEFINED_REQUEST request
message format
. Table 56 — RESPOND_IF_READY
RESPOND_IF_READY OxFF Required
request message format
SPDM implementations compatible
Reserved All other values with this version shall not use the
reserved request codes.
40 Published Version 1.3.0

186

187

188

189

190

DSP0274

8.5 SPDM response codes

Security Protocol and Data Model (SPDM) Specification

The Request Response Code field in the SPDM response message shall specify the appropriate response code for a
request. All SPDM-compatible implementations shall use Table 5 — SPDM response codes.

On a successful completion of an SPDM operation, the specified response message shall be returned. Upon an

unsuccessful completion of an SPDM operation, the ERROR response message should be returned.

Table 5 — SPDM response codes defines the response codes for SPDM. The Implementation requirement column
indicates requirements on the Responder.

Table 5 — SPDM response codes

Response Value Implementation requirement Message format
) Table 35 — Successful DIGESTS
DIGESTS 0x01 Optional
response message format
Table 40 — Successful
CERTIFICATE 0x02 Optional CERTIFICATE response message
format
Table 45 — Successful
CHALLENGE_AUTH 0x03 Optional CHALLENGE_AUTH response
message format
Table 9 —S ful VERSION
VERSION 0x04 Required able 77 successi
response message format
) Table 98 — CHUNK_SEND_ACK
CHUNK_SEND_ACK 0x05 Optional
response message format
. Table 101 — CHUNK_RESPONSE
CHUNK_RESPONSE 0x06 Optional
response format
. Table 122 — ENDPOINT_INFO
ENDPOINT_INFO 0x07 Optional
response format
Table 52 — Successful
MEASUREMENTS 0x60 Optional MEASUREMENTS response
message format
Table 12 — Successful
CAPABILITIES 0x61 Required CAPABILITIES response message
format
Table 110 —
SUPPORTED_EVENT_TYPES 0x62 Optional SUPPORTED_EVENT_TYPES
response message format
Version 1.3.0 Published 41

Security Protocol and Data Model (SPDM) Specification

Response

ALGORITHMS

KEY_EXCHANGE_RSP

FINISH_RSP

PSK_EXCHANGE_RSP

PSK_FINISH_RSP

HEARTBEAT_ACK

KEY_UPDATE_ACK

ENCAPSULATED_REQUEST

ENCAPSULATED_RESPONSE_ACK

END_SESSION_ACK

CSR

SET_CERTIFICATE_RSP

MEASUREMENT_EXTENSION_LOG

SUBSCRIBE_EVENT_TYPES_ACK

Value

0x63

0x64

0x65

0x66

0x67

0x68

0x69

O0x6A

0x6B

0x6C

0x6D

Ox6E

Ox6F

0x70

Implementation requirement

Required

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

Optional

DSP0274

Message format

Table 21 — Successful
ALGORITHMS response message
format

Table 71 — Successful
KEY_EXCHANGE_RSP response
message format

Table 73 — Successful
FINISH_RSP response message
format

Table 75 — PSK_EXCHANGE_RSP
response message format

Table 77 — Successful
PSK_FINISH_RSP response
message format

Table 79 — HEARTBEAT_ACK
response message format

Table 81 — KEY_UPDATE_ACK
response message format

Table 84 —
ENCAPSULATED_REQUEST
response message format

Table 86 —
ENCAPSULATED_RESPONSE_ACK
response message format

Table 89 — END_SESSION_ACK
response message format

Table 92 — CSR response
message format

Table 95 — Successful
SET_CERTIFICATE_RSP response
message format

Table 127 — Successful
MEASUREMENT_EXTENSION_LOG
message format

Table 114 —
SUBSCRIBE_EVENT_TYPES_ACK
response message format

42

Published

Version 1.3.0

191

192

193

194

195

196

DSP0274 Security Protocol and Data Model (SPDM) Specification

Response Value Implementation requirement Message format

Table 118 — EVENT_ACK

EVENT_ACK 0x71 Optional
response message format
Table 103 — KEY_PAIR_INFO
KEY_PAIR_INFO 0x7C Optional - N
response message format
Table 108 —
SET_KEY_PAIR_INFO_ACK 0x7D Optional SET_KEY_PAIR_INFO_ACK
response message format
Table 67 —
VENDOR_DEFINED_RESPONSE Ox7E Optional VENDOR_DEFINED_RESPONSE
response message format
. Table 57 — ERROR response
ERROR Ox7F Required
message format
SPDM implementations
All other compatible with this version shall
Reserved
values not use the reserved response

codes.

8.6 SPDM request and response code issuance allowance

Table 6 — SPDM request and response messages validity describes the conditions under which a request and
response can be issued.

The Session column describes whether the respective request and response can be sent in a session. If the value is
“Allowed”, the issuer of the request and response shall be able to send it in a secure session, thereby affording them
the protection of a secure session. If the Session column value is “Prohibited”, the issuer shall be prohibited from
sending the respective request and response in a secure session.

The Outside of a session column indicates which requests and responses are allowed to be sent free and
independent of a session, thereby lacking the protection of a secure session. An “Allowed” in this column indicates
that the respective request and response shall be able to be sent outside the context of a secure session. Likewise, a
“Prohibited” in this column shall prohibit the issuer from sending the respective request or response outside the
context of a session.

A request and its corresponding response can have an “Allowed” value in both the Session and Outside of a session
columns, in which case they can be sent and received in both scenarios but might have additional restrictions. For
details, see the respective request and response clauses.

A request and its corresponding response that has an “Allowed” value in the Session and “Prohibited” in the Outside
of a session columns are commands used by the session. These commands only operate on the session that they
were sent under, which is outside the scope of this specification. The session ID is implicit from the session used to
transmit the commands.

Version 1.3.0 Published 43

197

198

199

200
201

Security Protocol and Data Model (SPDM) Specification

DSP0274

Finally, the Session phases column describes which phases of a session the respective request and response shall be

issued when they are allowed to be issued in a session.

If, during the session handshake phase, an unexpected request is received using a valid session ID, the Responder
shall either send an ERROR message in the session with ErrorCode=UnexpectedRequest or silently discard the

request.

Vendor-defined shall indicate whether a VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE is
“Allowed” or “Prohibited” for use in the Session, Outside of a session, and the applicable Session phases.

For details, see the Session clause.

Table 6 — SPDM request and response messages validity

Request

GET_MEASUREMENTS

FINISH

PSK_FINISH

HEARTBEAT

KEY_UPDATE

END_SESSION

Not Applicable
GET_ENCAPSULATED_REQUEST

DELIVER_ENCAPSULATED_RESPONSE

VENDOR _DEFINED_REQUEST

CHUNK_SEND
CHUNK_GET
GET_ENDPOINT_INFO
GET_CSR
SET_CERTIFICATE
GET_DIGESTS
GET_CERTIFICATE
GET_KEY_PAIR_INFO

SET_KEY_PAIR_INFO

Response
MEASUREMENTS
FINISH_RSP
PSK_FINISH_RSP
HEARTBEAT_ACK
KEY_UPDATE_ACK
END_SESSION_ACK
ERROR
ENCAPSULATED_REQUEST

ENCAPSULATED_RESPONSE_ACK

VENDOR_DEFINED_RESPONSE

CHUNK_SEND_ACK
CHUNK_RESPONSE
ENDPOINT_INFO

CSR
SET_CERTIFICATE_RSP
DIGESTS

CERTIFICATE
KEY_PAIR_INFO

SET_KEY_PAIR_INFO_ACK

Outside of a session

Allowed

Prohibited

Prohibited

Prohibited

Prohibited

Prohibited

Allowed

Allowed

Allowed

Vendor-defined

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Session

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Vendor-
defined

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Allowed

Session phases
Application Phase
Session Handshake
Session Handshake
Application Phase
Application Phase
Application Phase
All Phases

All Phases

All Phases

Vendor-defined

All Phases

All Phases

Application Phase
Application Phase
Application Phase
Application Phase
Application Phase
Application Phase

Application Phase

44

Published

Version 1.3.0

202

203

204

205

206

207

208

209

DSP0274 Security Protocol and Data Model (SPDM) Specification

Request Response Outside of a session Session Session phases
GET_MEASUREMENT_EXTENSION_LOG MEASUREMENT_EXTENSION_LOG Allowed Allowed Application Phase
GET_SUPPORTED_EVENT_TYPES SUPPORTED_EVENT_TYPES Prohibited Allowed Application Phase
SUBSCRIBE_EVENT_TYPES SUBSCRIBE_EVENT_TYPES_ACK Prohibited Allowed Application Phase
SEND_EVENT EVENT_ACK Prohibited Allowed Application Phase
RESPOND_IF_READY Response to Original Request (*) Allowed (*) Allowed (*) All Phases (*)

All others All others Allowed Prohibited ~ Not Applicable

(*) See RESPOND_IF_READY request description for details

8.7 Concurrent SPDM message processing

This clause describes the specifications and requirements for handling concurrent overlapping SPDM request

messages.

If an endpoint can act as both a Responder and Requester, it shall be able to send request messages and response
messages independently.

8.8 Requirements for Requesters

A Requester shall not have multiple outstanding requests to the same Responder within a connection, with the
following exceptions:

* As the GET_VERSION request and VERSION response messages clause describes, a Requester can issue a
GET_VERSION to a Responder to reset the connection at any time, even if the Requester has existing outstanding
requests to the same Responder.

+ In the large SPDM message transfer mechanism, a single large SPDM request message and a single CHUNK_ SEND
request can be outstanding at the same time.

An outstanding request is a request where the request message has begun transmission, the corresponding response
has not been fully received, and the request is not a retry as described in Timing Requirements.

If the Requester has sent a request to a Responder and wants to send a subsequent request to the same Responder,
then the Requester shall wait to send the subsequent request until after the Requester completes one of the following
actions:

+ Receives the response from the Responder for the outstanding request.

+ Times out waiting for a response.

» Receives an indication from the transport layer that transmission of the request message failed.
* The Requester encounters an internal error or Reset.

* The Requester sends a GET VERSION to reinitialize the session.

Version 1.3.0 Published 45

210

211

212

213

214

215

216

217

Security Protocol and Data Model (SPDM) Specification DSP0274

A Requester might send simultaneous request messages to different Responders.

8.9 Requirements for Responders

A Responder is not required to process more than one request message at a time, even across connections, with the
following exceptions:

* Asthe GET_VERSION request and VERSION response messages clause describes, a Requester can issue a
GET_VERSION to a Responder to reset a connection at any time, even if the Requester has existing outstanding
requests to the same Responder.

* In the large SPDM message transfer mechanism, a single large SPDM request message and a single CHUNK_SEND
request can be outstanding at the same time.

* Retries can be issued multiple times to the same Responder, as Timing requirements defines.

A Responder that is not ready to accept a new request message or process more than one outstanding request at a
time from the same Requester shall either respond with an ERROR message of ErrorCode=Busy or silently discard
the request message.

If a Responder is working on a request message from a Requester, the Responder can respond with an ERROR
message of ErrorCode=Busy .

If a Responder enables simultaneous communications with multiple Requesters, the Responder is expected to
distinguish the Requesters by using mechanisms that are outside the scope of this specification.

8.10 Transcript and transcript hash calculation rules

N

6 Published Version 1.3.0

Léon GALL

218

219
220

221

222

223

224

225

226

DSP0274 Security Protocol and Data Model (SPDM) Specification

9 Timing requirements

Table 7 — Timing specification for SPDM messages shows the timing specifications for Requesters and Responders.

If the Requester does not receive a response within T1 or T2 time accordingly, the Requester can retry a request
message. A retry of a request message shall be a complete retransmission of the original SPDM request message.
From the perspective of a Requester, a retry of a request message is the retransmission of the original SPDM request
one or more times in succession directly following the transmission of the original SPDM request. From the
perspective of a Responder, a retry of a request message is the reception of the same SPDM request one or more
times in succession, assuming that the transport receives messages in order. Successive SPDM requests are different if
the values of any bits differ between them, in which case the Responder will process them differently.

The Responder shall not retry SPDM response messages. It is understood that the transport protocol(s) can retry, but
this is outside the scope of this specification.

9.1 Timing measurements

Unless otherwise stated, a Requester shall measure timing parameters applicable to it from the end of a successful
transmission of an SPDM request to the beginning of the reception of the corresponding SPDM response. A
Responder shall measure timing parameters applicable to it from the end of the reception of the SPDM request to the
beginning of transmission of the response. The requirement assumes that the Responder has immediate access to the
transport.

9.2 Timing parameters

In Table 7 — Timing specification for SPDM messages, timing parameters are differentiated into two categories: the
timing parameters for non-cryptographic operations (T1) and the timing parameters for cryptographic operations
(T2). The timing parameters are differentiated in this manner to allow a Responder to request additional time for
cryptographic operations. The timing parameters apply to normal conditions, and some operations may take
additional time in some situations. For instance, a Responder may need additional time to process a non-
cryptographic operation because of another operation in progress or some other condition. In this case, the
Responder shall respond with an ERROR message of ErrorCode=ResponseNotReady to indicate that it needs more
time.

The Responder can request time beyond ST1 for any non-cryptographic operation other than GET VERSION . Since
GET_VERSION serves as a reset to the connection, a Requester might send GET_VERSION requests as quickly as
allowed by T1 until it receives a response. The Responder shall not respond to GET_VERSION with an ERROR
message of ErrorCode=ResponseNotReady .

Version 1.3.0 Published 47

227

228

229

Security Protocol and Data Model (SPDM) Specification

9.3 Timing specification table

DSP0274

The Ownership column of Table 7 — Timing specification for SPDM messages specifies whether the timing
parameter applies to the Responder or Requester. For encapsulated requests, the Requester shall comply with the
timing parameters where the Ownership indicates a Responder.

Table 7 — Timing specification for SPDM messages

Timing parameter

RTT

Ownership

Requester

Value

See the description.

Units

s

Description

This value shall be the worst-
case round-trip transport
timing.

The value shall be the worst-
case total time for the
complete transmission and
delivery of an SPDM message
round trip at the transport
layer(s). The actual value for
this parameter is transport- or
media-specific. Both the actual
value and how an endpoint
obtains this value are outside
the scope of this specification.
A Requester shall measure this
timing parameter from the end
of a successful transmission of
an SPDM request to the
beginning of the reception of
the corresponding SPDM
response less ST1 or (T,
depending on the Request.

48

Published

Version 1.3.0

DSP0274

Timing parameter

ST1

T1

Ownership

Responder

Requester

Security Protocol and Data Model (SPDM) Specification

Value

100,000

RTT + ST1

Units

s

s

Description

This value shall be the
maximum amount of time the
Responder has to provide a
response under normal
conditions to requests that do
not require cryptographic
processing, such as the

GET CAPABILITIES,
GET_VERSION , or
NEGOTIATE_ALGORITHMS
request messages.

See Table 11 —
GET_CAPABILITIES request
message format, Table 8 —
GET_VERSION request message
format, and Table 15 —
NEGOTIATE_ALGORITHMS
request message format.

This value shall be the
minimum amount of time the
Requester shall wait before
issuing a retry for requests that
do not require cryptographic
processing.

For details, see the ST1 timing
parameter.

Version 1.3.0

Published

49

Security Protocol and Data Model (SPDM) Specification DSP0274

Timing parameter Ownership Value Units Description

CTExponent is reported in the
GET_CAPABILITIES request
message and CAPABILITIES
response message.

This parameter is applicable to
both a Responder and
Requester as the Ownership
columns shows. Specifically for
a Requester, this field is
applicable when the Requester
provides a response that
requires cryptographic
processing such as in the
mutual authentication portion
of a KEY_EXCHANGE flow. When
the Requester provides a
response that requires
cryptographic processing, the
Requester shall measure timing
just as a Responder would.

This timing parameter shall be

cT Requester and Responder o \IEXEQICHE us the maxim'um amount Of_time
the endpoint has to provide
any response requiring
cryptographic processing
under normal conditions, such
as the GET MEASUREMENTS or
CHALLENGE request messages.
If the Responder cannot
respond within CT, the
Responder shall respond with
an ERROR message of
ErrorCode=ResponseNotReady
to indicate that it needs more
time.

See Table 11 —
GET_CAPABILITIES request
message format, Table 12 —
Successful CAPABILITIES
response message format,
Table 49 —
GET_MEASUREMENTS request
message format, and Table 44
— CHALLENGE request
message format.

50 Published Version 1.3.0

DSP0274

Timing parameter

T2

RDT

Ownership

Requester

Responder

Security Protocol and Data Model (SPDM) Specification

Value

RTT + CT

2 RDTExponent

Units

s

s

Description

This value shall be the
minimum amount of time the
Requester shall wait before
issuing a retry for requests that
require cryptographic
processing.

For details, see the CT timing
parameter.

This value shall be the
recommended delay in
microseconds that the
Responder needs to complete
the requested cryptographic
operation. When the
Responder cannot complete
cryptographic processing
response within the CT time, it
shall provide RDTExponent as
part of the ERROR response as
Table 57 — ERROR response
message format shows. For
details, see

ErrorCode=ResponseNotReady
in Table 59 —
ResponseNotReady extended
error data for the

RDTExponent value.

Version 1.3.0

Published

51

Security Protocol and Data Model (SPDM) Specification

Timing parameter

WT

Ownership

Requester

Value

RDT

Units

s

DSP0274

Description

This value shall be the amount
of time that the Requester
should wait before issuing the
RESPOND_IF_READY request
message as Table 65 —
RESPOND_IF_READY request
message format shows.

The Requester shall measure
this time parameter from the
reception of the ERROR
response to the transmission of
the RESPOND_IF READY
request. The Requester can
include the transmission time
of the ERROR from the
Responder to Requester as
time spent waiting for WT to
expire. For example, if a
Responder indicates WT is two
seconds and the ERROR
response takes one second to
transport to the Requester, the
Requester only needs to wait
an additional one second upon
reception of the ERROR
response.

For details, see the RDT timing
parameter.

52

Published

Version 1.3.0

DSP0274

Timing parameter

WTMax

Ownership

Requester

Security Protocol and Data Model (SPDM) Specification

Value

(RDT * RDTM)- RTT

Units

s

Description

This value shall be the
maximum wait time the
Requester has to issue the
RESPOND_IF_READY request
message, as Table 65 —
RESPOND_IF_READY request
message format shows, unless
the Requester issued a
successful RESPOND IF READY
request message, as Table 65
— RESPOND_IF_READY request
message format shows, earlier.
The Requester shall start
measuring time from the
reception of the first ERROR
message of

ErrorCode=ResponseNotReady
with the same Token until

WT max Ms elapses or the
corresponding Response is
successfully received.

After this time has passed, the
Responder is allowed to drop
the response. The Requester
shall take into account the
transmission time of the
ERROR response, as Table 57
— ERROR response message
format shows, from the
Responder to Requester when
calculating WT max .

The RDTM value appears in
Table 59 — ResponseNotReady
extended error data.

The Responder should ensure
that WT max does not result in
less than WT in determination
of RDTM .

See

ErrorCode=ResponseNotReady
in Table 59 —
ResponseNotReady extended
error data.

Version 1.3.0

Published

53

Security Protocol and Data Model (SPDM) Specification DSP0274

Timing parameter Ownership Value Units Description

See the HEARTBEAT request

HeartbeatPeriod Requester and Responder Variable s and HEARTBEAT_ACK response
clause.

54 Published Version 1.3.0

230

231

232

233
234

235
236

237

238

DSP0274 Security Protocol and Data Model (SPDM) Specification
10 SPDM messages
SPDM messages can be divided into the following categories that support different aspects of security exchanges
between a Requester and Responder:
» Capability discovery and negotiation
* Responder identity authentication
* Measurement
» Key agreement for secure-channel establishment
10.1 Capability discovery and negotiation
All Requesters and Responders shall support GET VERSION , GET_CAPABILITIES , and NEGOTIATE ALGORITHMS .
Figure 5 — Capability discovery and negotiation flow shows the high-level request-response flow and sequence for
the capability discovery and negotiation:
Figure 5 — Capability discovery and negotiation flow
I
1. The Requester sends a |
GET_VERSION request GET—VERS'ON:U 1. The Responder
message. VERSION | sends a VERSION
GET_CAPABILITIES response message.
2. The Requester sends a -
GET_CAPABILITIES request —CAPABILITIES [2. The Responder
message. |¥ | sends a
Measurermen I CAPABILITIES
3. Determine device capability support, | response message.
and feature support. authentication |
support, :
timeout, etc |
NEGOTIATE_ALGORITHMS)
4. The Requester sends a : L
NEGOTIATE_ALGORITHMS | Supported
request message tq advertise | cryptographic
the supported algorithms. | algorithm set 3. The Responder
| selects the algorithm
I t and send
5. The Requester uses the UiALGORlTHMS i?_éng:QMssa
selected cryptographic | response message.
algorithm set for all following | Selected I
exchanges, until the next ! cryptographic I
GET_VERSION or the next | algorithm set !
reset.
10.1.1 Negotiated state preamble
The VCA (Version-Capabilities-Algorithms) shall be the concatenation of messages GET_VERSION , VERSION,
Version 1.3.0 Published 55

239

240

241

242

243

244

245

246

247

248

Security Protocol and Data Model (SPDM) Specification DSP0274

GET_CAPABILITIES, CAPABILITIES, NEGOTIATE ALGORITHMS , and ALGORITHMS last exchanged between the
Requester and the Responder.

If the two endpoints do not support session key establishment with the PSK (Pre-Shared Key) option, or if the two
endpoints support PSK but the negotiated capabilities and algorithms are not provisioned to both endpoints
alongside the PSK, then the Requester shall issue GET_VERSION , GET CAPABILITIES, and NEGOTIATE ALGORITHMS
to construct VCA .

If the Responder supports caching the negotiated state (CACHE_CAP=1), the Requester might not issue
GET VERSION, GET CAPABILITIES, and NEGOTIATE ALGORITHMS .In this case, the Requester and the Responder
shall store the most recent VCA as part of the Negotiated State.

If the two endpoints support session key establishment with the PSK and if the negotiated capabilities and algorithms
(the € and A of VCA) are provisioned to both endpoints alongside the PSK, then the Requester shall not issue
GET_CAPABILITIES and NEGOTIATE ALGORITHMS .

10.2 GET_VERSION request and VERSION response messages

This request message shall retrieve the SPDM version of an endpoint. Table 8 — GET_VERSION request message
format shows the GET VERSION request message format and Table 9 — Successful VERSION response message
format shows the VERSION response message format.

In all future SPDM versions, the GET VERSION and VERSION response messages will be backward compatible with all
earlier versions.

The Requester shall begin the discovery process by sending a GET VERSION request message with the value of the
SPDMVersion field set to ©x10 . All Responders shall always support the GET_VERSION request message with major
version 0x1 and provide a VERSION response containing all supported versions, as Table 8 — GET_VERSION request

message format describes.

The Requester shall consult the VERSION response to select a common supported version, which should be the latest
supported common version. The Requester shall use the selected version in all future communication of other
requests. A Requester shall not issue other requests until it receives a successful VERSION response and identifies a
common version that both sides support. A Responder shall not respond to the GET VERSION request message with
an ERROR message of ErrorCode=ResponseNotReady . The selected version shall be the version in the SPDMVersion
field of the Request (other than GET VERSION) immediately following the GET VERSION request. If the Requester
uses a version other than the selected version in a Request, the Responder should either return an ERROR message of
ErrorCode=VersionMismatch or silently discard the Request.

A Requester can issue a GET_VERSION request message to a Responder at any time, which serves as an exception to
Requirements for Requesters to allow for scenarios where a Requester is required to restart the protocol due to an
internal error or Reset.

After receiving a valid GET_VERSION request, the Responder shall invalidate state and data associated with all
previous requests from the same Requester. All active sessions between the Requester and the Responder are
terminated, and information (such as session keys and session IDs) for those sessions should not be used anymore.
Additionally, this message shall clear the previously Negotiated State, if any, in both the Requester and its
corresponding Responder. An invalid GET_VERSION request that results in the Responder returning an error to the

56 Published Version 1.3.0

249

250
251
252

253
254

DSP0274 Security Protocol and Data Model (SPDM) Specification

Requester shall not affect the session state. The ERROR message resulting from an invalid GET_VERSION request shall
have the value of the SPDMVersion field setto 0x10 .

After sending the VERSION response fora GET VERSION request, if the Responder completes a runtime code or
configuration change for its hardware or firmware measurement and the change has taken effect, then the Responder
shall either silently discard any request received outside of a session or respond with an ERROR message of
ErrorCode=RequestResynch to any request received outside of a session, until a GET_VERSION request is received.
For requests received within a session, the Responder shall follow the selected session policy that the Requester
selects in Table 70 — Session policy at the time of session establishment.

Figure 6 — Discovering the common major version shows the process:

Figure 6 — Discovering the common major version

Supports versions 7.1, 7.0, 6.3, Supports versions 6.4,
6.2,6.1,6.0 6.3,6.2,6.1
Requester Responder

Request version always |
uses version = 1.0 GET_VERSION (version=1 .Oj Version information

! VERSION (6.4, 6.3, 6.2, 6.1) response

Settle on version 6.3

I
I
I GET_CAPABILITIES (version=6.3) l

CAPABILITIES I

T NEGOTIATE_ALGORITHMS (Version = 6.3)
I

|
[¢——————ALGORITHMS ()

Table 8 — GET_VERSION request message format shows the GET VERSION request message format:

Table 8 — GET_VERSION request message format

Byte offset Field Size (bytes) Description
0 SPDMVersion 1 Shall be 0x10 (V1.0).

Shall be 0x84 = GET VERSION . See Table 4 — SPDM
1 RequestResponseCode 1

request codes.

2 Param1 1 Reserved.

Version 1.3.0 Published 57

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description
3 Param2 1 Reserved.
255 Table 9 — Successful VERSION response message format shows the successful VERSION response message format:

256 Table 9 — Successful VERSION response message format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode

2 Param1l

3 Param2

4 Reserved

5 VersionNumberEntryCount
6 VersionNumberEntryl:n

Size (bytes) Description

1 Shall be 0x10 (V1.0).

1 Shall be 0x04 = VERSION . See Table 5 — SPDM
response codes.

1 Reserved.

1 Reserved.

1 Reserved.

1 Number of version entries present in this table (=n).
16-bit version entry. See Table 10 —

2*n VersionNumberEntry definition. Each entry should be

unique.

257 Table 10 — VersionNumberEntry definition shows the VersionNumberEntry definition:

258 Table 10 — VersionNumberEntry definition

Bit offset Field

[15:12] MajorVersion

[11:8] MinorVersion

[7:4] UpdateVersionNumber
[3:0] Alpha

Description

Shall be the version of the specification having changes that are
incompatible with one or more functions in earlier major versions of the
specification.

Shall be the version of the specification having changes that are
compatible with functions in earlier minor versions of this major version
specification.

Shall be the version of the specification with editorial updates but no
functionality additions or changes. Informational; possible errata fixes.
Ignore when checking versions for interoperability.

Shall be the pre-release work-in-progress version of the specification.
Because the Alpha value represents an in-development version of the
specification, versions that share the same major and minor version
numbers but have different Alpha versions might not be fully
interoperable. Released versions shall have an Alpha value of zero (0).

58

Published Version 1.3.0

259

260
261
262
263
264
265

266

267

268

269

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.3 GET_CAPABILITIES request and CAPABILITIES response messages

This request message shall retrieve the SPDM capabilities of an endpoint.

Table 11 — GET_CAPABILITIES request message format shows the GET CAPABILITIES request message format.
Table 12 — Successful CAPABILITIES response message format shows the CAPABILITIES response message format.
Table 13 — Flag fields definitions for the Requester shows the flag fields definitions for the Requester.

Likewise, Table 14 — Flag fields definitions for the Responder shows the flag fields definitions for the Responder.

A Responder shall not respond to GET CAPABILITIES request message with an ERROR message of
ErrorCode=ResponseNotReady .

To properly support transferring of SPDM messages, the Requester and Responder shall indicate two buffer sizes:

* One for receiving a single SPDM transfer called DataTransferSize
» One for indicating their maximum internal buffer size for processing a single assembled received SPDM message
called MaxSPDMmsgSize

Additionally, the Requester and Responder can have a transmit buffer. The transmit buffer size is not communicated
to the other SPDM endpoint, but it can be less than the DataTransferSize of the receiving SPDM endpoint.

Both the Requester and Responder shall support a minimum size for both the transmit and receive buffer to
successfully transfer SPDM messages. The minimum size is referred to as MinDataTransferSize. For this version of
the specification, the MinDataTransferSize shall be 42. This value is the size, in bytes, of the SPDM message with
the largest size from this list, assuming all fields are present:

* GET_VERSION

¢ VERSION assuming no versions returned contain Alpha versionsin VersionNumberEntry and version entries
are not duplicated.

* GET CAPABILITIES

* CAPABILITIES with Paraml inthe GET CAPABILITIES request setto 0.

* CHUNK_SEND using the size of the SPDM Header for the size of the SPDMchunk field.

¢ CHUNK_SEND ACK using the maximum size of ERROR message for the size of the ResponseTolLargeRequest
field.

+ CHUNK GET

* CHUNK_RESPONSE using the size of SPDM Header for the size of the SPDMchunk field.

¢ ERROR using the maximum size for the ExtendedErrorData

The GET CAPABILITIES request with Extended capabilities (Bit O of Paraml set to a value of 1) is only allowed if
both the Requester and Responder support the Large SPDM message transfer mechanism (CHUNK_CAP=1). If the
GET CAPABILITIES request sets Bit 0 of Paraml to a value of 1, then the Responder shall use the value for
DataTransferSize and MaxSPDMmsgSize from the request for the transmission of the CAPABILITIES response. A
Responder can report that it needs to transmit the response in smaller transfers by sending an ERROR message of
ErrorCode=LargeResponse . If the GET CAPABILITIES request sets Bit 0 of Paraml to a value of 1 and the

Version 1.3.0 Published 59

270

Security Protocol and Data Model (SPDM) Specification

DSP0274

Responder does not support the Large SPDM message transfer mechanism (CHUNK_CAP=0), the Responder shall

send an ERROR message of ErrorCode=InvalidRequest .

Table 11 — GET_CAPABILITIES request message format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Param1l

3 Param2

4 Reserved

5 CTExponent

6 Reserved

8 Flags

Size (bytes)

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0xE1 = GET CAPABILITIES . See Table 4 —
SPDM request codes.

Shall be the extended capabilities to include in the
response.
« Bit 0. If set in the requests, the Responder shall

include the Supported Algorithms Block in its
CAPABILITIES response if it supports this
extended capability. If the Requester does not
support the Large SPDM message transfer
mechanism (CHUNK_CAP=0), this bit shall be 0.

« All other values reserved.

Reserved.
Reserved.

Shall be exponent of base 2, which is used to
calculate CT.

See Table 7 — Timing specification for SPDM
messages.

The equation for CT shall be 2 CTExPonent

microseconds (us).

For example, if CTExponent is 10, CT is 210 = 1024
us.

Reserved.

See Table 13 — Flag fields definitions for the
Requester.

60

Published

Version 1.3.0

DSP0274

Byte offset Field
12 DataTransferSize
16 MaxSPDMmsgSize

271 Table 12 — Successful CAPABILITIES response message format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode

2 Param1

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

Size (bytes)

Description

This field shall indicate the maximum buffer size, in
bytes, of the Requester for receiving a single and
complete SPDM message whose message size is less
than or equal to the value in this field. The value of
this field shall be equal to or greater than
MinDataTransferSize . The DataTransferSize
shall exclude transport headers, encryption headers,
and MAC. This field helps the sender of the SPDM
message know whether or not it needs to utilize the
Large SPDM message transfer mechanism.

If the Requester supports the Large SPDM message
transfer mechanism, this field shall indicate the
maximum size, in bytes, of the internal buffer of a
Requester used to reassemble a single and complete
Large SPDM message. This field shall be greater than
or equal to DataTransferSize . This buffer size is
most helpful when transferring a Large SPDM
message in multiple chunks because it tells the
sender whether or not there is enough memory for
the fully reassembled SPDM message.

If the Requester does not support the Large SPDM
message transfer mechanism, this field shall be equal
to the DataTransferSize of the Requester.

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x61 = CAPABILITIES . See Table 5 —
SPDM response codes.

Shall be the extended capabilities included in the
response.

« Bit 0. If the request message sets the Supported
Algorithms extended capability bit and the
Responder supports this extended capability,
then the Responder shall set this bit in the
response and shall include the Supported
Algorithms Block in its CAPABILITIES response.
If the Responder does not support this extended
capability or does not support the Large SPDM
message transfer mechanism (CHUNK_CAP=0),
this bit shall be 0.

* All other values reserved.

Version 1.3.0

Published

61

Security Protocol and Data Model (SPDM) Specification

Byte offset

12

16

Field
Param?2

Reserved

CTExponent

Reserved

Flags

DataTransferSize

MaxSPDMmsgSize

Size (bytes)

DSP0274

Description
Reserved.
Reserved.

Shall be the exponent of base 2, which used to
calculate CT.

See Table 7 — Timing specification for SPDM
messages.

The equation for CT shall be 2 CTExponent

microseconds (us).

For example, if CTExponent is 10, CT is 210 =1024
us.

Reserved.

See Table 14 — Flag fields definitions for the
Responder.

This field shall indicate the maximum buffer size, in
bytes, of the Responder for receiving a single and
complete SPDM message whose message size is less
than or equal to the value in this field. The value of
this field shall be equal to or greater than
MinDataTransferSize . The DataTransferSize
shall exclude transport headers, encryption headers,
and MAC. This field helps the sender of the SPDM
message know whether or not it needs to utilize the
Large SPDM message transfer mechanism.

If the Responder supports the Large SPDM message
transfer mechanism, this field shall indicate the
maximum size, in bytes, of the internal buffer of a
Responder used to reassemble a single and complete
Large SPDM message. This field shall be greater than
or equal to DataTransferSize . This buffer size is
most helpful when transferring a Large SPDM
message in multiple chunks because it tells the
sender whether or not there is enough memory for
the fully reassembled SPDM message.

If the Responder does not support the Large SPDM
message transfer mechanism, this field shall be equal
to the DataTransferSize of the Responder.

62

Published

Version 1.3.0

272

273
274

275

276

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

If present, this field shall be AlgSize in size and the
format of the field shall be as described in Supported
algorithms block. If Bit 0 of Paraml does not

20 S tedAlgorith AlgSi 0
tpportedAlgorithms g-izeor indicate that the Supported Algorithm extended

capability is included in this response, then this field
shall be absent.

As described in other parts of this specification, a Requester or Responder can reverse roles or take on both roles for
certain SPDM messages and flows. Thus, an SPDM endpoint cannot send a Large SPDM message that exceeds the
MaxSPDMmsgSize of the receiving SPDM endpoint. Specifically, a requesting SPDM endpoint shall not send a request
that exceeds the size of MaxSPDMmsgSize of the responding SPDM endpoint. Likewise, a responding SPDM endpoint
shall not send a response that exceeds the size of MaxSPDMmsgSize of the requesting SPDM endpoint. If the size of a
response message exceeds the size of the MaxSPDMmsgSize of the requesting SPDM endpoint, the responding SPDM
endpoint shall respond with an ERROR message of ErrorCode=ResponseToolarge . If the size of a request message
exceeds the size of the MaxSPDMmsgSize of the responding SPDM endpoint, the responding SPDM endpoint shall
either respond with an ERROR message of ErrorCode=RequestToolLarge or silently discard the request. Additionally,
an SPDM endpoint should provide graceful error handling (for example, buffer overflow/underflow protection) in the
event that it receives an SPDM message that exceeds its MaxSPDMmsgSize .

Table 13 — Flag fields definitions for the Requester shows the flag fields definitions for the Requester.

Unless otherwise stated, if a Requester indicates support for a capability associated with an SPDM request or
response message, it means the Requester can receive the corresponding request and produce a successful response.
In other words, the Requester is acting as a Responder to that SPDM request associated with that capability. For
example, if a Requester sets the CERT CAP bitto 1, the Requester can receive a GET CERTIFICATE request and
send back a successful CERTIFICATE response message.

AlgSize is the size of the Supported algorithms block. If the Supported Algorithms Block is not included in the
response, then the SupportedAlgorithms field shall be absent.

Table 13 — Flag fields definitions for the Requester
Byte offset Bit offset Field Description
0 0 Reserved Reserved.

If set, Requester shall support DIGESTS and
0 1 CERT_CAP CERTIFICATE response messages. Shall be b if the
Requester does not support asymmetric algorithms.

DEPRECATED: If set, Requester shall support

0 2 CHAL_CAP
CHALLENGE_AUTH response message.

0 [5:3] Reserved Reserved.

Version 1.3.0 Published 63

Security Protocol and Data Model (SPDM) Specification

Byte offset Bit offset

1 [3:2]

Field

ENCRYPT_CAP

MAC_CAP

MUT_AUTH_CAP

KEY_EX_CAP

PSK_CAP

ENCAP_CAP

HBEAT_CAP

KEY_UPD_CAP

DSP0274

Description

If set, Requester shall support message encryption in a
secure session. If set, when the Requester chooses to
start a secure session, the Requester shall send one of
the Session-Secrets-Exchange request messages
supported by the Responder. This capability shall apply
to all phases of a secure session.

If set, Requester shall support message authentication
in a secure session. If set, when the Requester chooses
to start a secure session, the Requester shall send one
of the Session-Secrets-Exchange request messages
supported by the Responder. This capability shall apply
to all phases of a secure session. MAC_CAP is not the
same as the HMAC in the RequesterVerifyData or
ResponderVerifyData fields of Session-Secrets-
Exchange and Session-Secrets-Finish messages.

If set, Requester shall support mutual authentication.

If set, Requester shall support KEY_EXCHANGE request
message. If set, ENCRYPT _CAP or MAC_CAP shall be
set.

Pre-Shared Key capabilities of the Requester.
* 00b . Requester shall not support Pre-Shared Key
capabilities.
e 01b . Requester shall support Pre-Shared Key
* 10b and 11b . Reserved.

If supported, ENCRYPT CAP or MAC_CAP shall be set.

If set, Requester shall support
GET_ENCAPSULATED_REQUEST ,

ENCAPSULATED REQUEST ,

DELIVER ENCAPSULATED RESPONSE , and
ENCAPSULATED_RESPONSE_ACK messages. Additionally,
the transport may require the Requester to support
these messages.

ENCAP_CAP was previously deprecated because Basic
mutual authentication is deprecated. Deprecation is
removed since some messages, such as KEY_UPDATE ,
do not require mutual authentication but still require

ENCAP_CAP .

If set, Requester shall support HEARTBEAT messages.

If set, Requester shall support KEY_UPDATE messages.

64

Published

Version 1.3.0

DSP0274

Byte offset

Bit offset

[5:2]

[7:6]

Security Protocol and Data Model (SPDM) Specification

Field

HANDSHAKE_IN_THE_CLEAR_CAP

PUB_KEY_ID_CAP

CHUNK_CAP

Reserved

EP_INFO_CAP

Description

If set, the Requester can support a Responder that can
only send and receive all SPDM messages exchanged
during the Session Handshake Phase in the clear (such
as without encryption and message authentication).
Application data is encrypted and/or authenticated
using the negotiated cryptographic algorithms as
normal. Setting this bit leads to changes in the
contents of certain SPDM messages, as discussed in
other parts of this specification.

If this bit is cleared, the Requester signals that it
requires encryption and/or message authentication of
SPDM messages exchanged during the Session
Handshake Phase.

If the Requester supports Pre-Shared Keys (PSK_CAP

is 01b) and does not support asymmetric key
exchange (KEY_EX_CAP is @b), then this bit shall be
zero. If the Requester does not support encryption and
message authentication, then this bit shall be zero.

In other words, this bit indicates whether MAC CAP
and ENCRYPT CAP is involved accordingly in the
handshake phase of a secure session or both
encryption and message authentication capabilities
are disabled in the session handshake phase of a
secure session.

If set, the public key of the Requester was provisioned
to the Responder. The transport layer is responsible for
identifying the Responder. In this case, the CERT CAP
of the Requester shall be 0 .

If set, Requester shall support Large SPDM message
transfer mechanism messages.

Reserved.

The ENDPOINT INFO response capabilities of the
Requester.
* 00b . The Requester does not support
ENDPOINT_INFO response capabilities.
* 01b . The Requester supports the
ENDPOINT_INFO response but cannot perform
signature generation for this response.
* 10b . The Requester supports the
ENDPOINT_INFO response and can generate
signatures for this response.

* 11b . Reserved.

Version 1.3.0

Published

65

277
278

279

Security Protocol and Data Model (SPDM) Specification

Byte offset

3

Bit offset Field

0 Reserved

1 EVENT_CAP
[3:2] MULTI_KEY_CAP
[7:4] Reserved

DSP0274

Description
Reserved.

If set, the Requester is an Event Notifier. See Event
mechanism for details.

Shall be the Multiple Asymmetric Key capabilities of
the Requester.

* 00b . Requester shall not support Multiple
Asymmetric Key capabilities.

* 01b . Requester shall only support Multiple
Asymmetric Key capabilities.

* 10b . Requester shall support Multiple
Asymmetric Key capabilities, and Responder can
use RequesterMultiKeyConnSel as Multiple
Asymmetric Key Negotiation describes.

* 11b . Reserved.

If setto 01b or 10b, the Requester shall support
more than one key pair for at least one asymmetric
algorithm for use in Requester authentication such as
in mutual authentication. In the case of mutual
authentication, these are the key pairs belonging to
the Requester.

Reserved.

Table 14 — Flag fields definitions for the Responder shows the flag fields definitions for the Responder.

Unless otherwise stated, if a Responder indicates support for a capability associated with an SPDM request or
response message, it means the Responder can receive the corresponding request and produce a successful
response. For example, if a Responder sets the CERT CAP bitto 1,the Responder can receive a GET CERTIFICATE

request and send back a successful CERTIFICATE response message.

Table 14 — Flag fields definitions for the Responder

66

Published

Version 1.3.0

DSP0274
Byte offset Bit offset
0 0
0 1
0 2
0 [4:3]

Field

CACHE_CAP

CERT_CAP

CHAL_CAP

MEAS_CAP

Security Protocol and Data Model (SPDM) Specification

Description

If set, the Responder shall support the ability
to cache the Negotiated State across a Reset.
This allows the Requester to skip reissuing the
GET_VERSION, GET_CAPABILITIES, and
NEGOTIATE_ALGORITHMS requests after a
Reset. The Responder shall cache the selected
cryptographic algorithms as one of the
parameters of the Negotiated State. If the
Requester chooses to skip issuing these
requests after the Reset, the Requester shall
also cache the same selected cryptographic
algorithms.

If set, Responder shall support DIGESTS and
CERTIFICATE response messages. Shall be
0b if the Responder does not support
asymmetric algorithms.

If set, Responder shall support
CHALLENGE_AUTH response message.

MEASUREMENTS response capabilities of the
Responder.
* 00b . The Responder shall not support
MEASUREMENTS response capabilities.

¢ 01b . The Responder shall support
MEASUREMENTS response but cannot
perform signature generation for this
response.

e 10b . The Responder shall support
MEASUREMENTS response and can
generate signatures for this response.

e 11b . Reserved.

Note that, apart from affecting
MEASUREMENTS , this capability also affects
Param2 of CHALLENGE , Paraml of

KEY EXCHANGE , Paraml of PSK EXCHANGE ,
and the MeasurementSummaryHash field of
KEY EXCHANGE RSP, CHALLENGE AUTH, and
PSK_EXCHANGE_RSP . See the respective
request and response clauses for further
details.

Version 1.3.0

67

Security Protocol and Data Model (SPDM) Specification

Byte offset Bit offset Field

0 5 MEAS_FRESH_CAP
0 6 ENCRYPT_CAP

0 7 MAC_CAP

1 0 MUT_AUTH_CAP
1 1 KEY_EX_CAP

DSP0274

Description

e 0.As part of MEASUREMENTS response
message, the Responder may return
MEASUREMENTS that were computed
during the last Responder’s Reset.

* 1.The Responder shall support
recomputing all MEASUREMENTS without
requiring a Reset and shall always return
fresh MEASUREMENTS as part of

MEASUREMENTS response message.

If set, Responder shall support message
encryption in a secure session. If set,
PSK_CAP or KEY_EX_CAP shall be set
accordingly to indicate support. This
capability applies to all phases of a secure
session.

If set, Responder shall support message
authentication in a secure session. If set,
PSK_CAP or KEY_EX_CAP shall be set
accordingly to indicate support. This
capability applies to all phases of a secure
session. MAC CAP is not the same as the
HMAC in the RequesterVerifyData or
ResponderVerifyData fields of Session-
Secrets-Exchange and Session-Secrets-Finish
messages.

If set, Responder shall support mutual
authentication.

If set, Responder shall support
KEY_EXCHANGE_RSP response message. If set,
ENCRYPT_CAP or MAC_CAP shall be set.

68 Published

Version 1.3.0

DSP0274

Byte offset

Bit offset

[3:2]

Security Protocol and Data Model (SPDM) Specification

Field Description

Pre-Shared Key capabilities of the
Responder.
e 00b . Responder shall not support Pre-
Shared Key capabilities.

¢ 01b . Responder shall support Pre-
Shared Key but does not provide
ResponderContext for session key

PSK_CAP derivation.
e 10b . Responder shall support Pre-
Shared Key and provides
ResponderContext for session key
derivation.

¢ 11b . Reserved.

If supported, ENCRYPT CAP or MAC_CAP shall
be set.

If set, Responder shall support
GET ENCAPSULATED REQUEST ,
ENCAPSULATED REQUEST ,
DELIVER ENCAPSULATED RESPONSE , and
ENCAPSULATED_RESPONSE_ACK messages.
Additionally, the transport may require the
ENCAP_CAP Responder to support these messages.
ENCAP_CAP was previously deprecated
because Basic mutual authentication is
deprecated. Deprecation is removed since
some messages, such as KEY_UPDATE , do not
require mutual authentication but still require
ENCAP_CAP .

If set, Responder shall support HEARTBEAT
messages.

HBEAT_CAP

If set, Responder shall support KEY_UPDATE
messages.

KEY_UPD_CAP

Version 1.3.0

Published 69

Security Protocol and Data Model (SPDM) Specification

Byte offset Bit offset Field

1 7 HANDSHAKE_IN_THE_CLEAR_CAP
2 0 PUB_KEY_ID_CAP

2 1 CHUNK_CAP

2 2 ALIAS_CERT_CAP

2 3 SET_CERT_CAP

2 4 CSR_CAP

2 5 CERT_INSTALL_RESET_CAP

DSP0274

Description

If set, the Responder can only send and
receive messages without encryption and
message authentication during the Session
Handshake Phase. If set, KEY EX CAP shall
also be set. Setting this bit leads to changes in
the contents of certain SPDM messages, as
discussed in other parts of this specification.

If the Responder supports Pre-Shared Keys

(PSK_CAP is 01b) and does not support
asymmetric key exchange (KEY_EX_CAP is
0b), then this bit shall be zero. If the
Responder does not support encryption and
message authentication, then this bit shall be
zero.

In other words, this bit indicates whether
message authentication and/or encryption

(MAC_CAP and ENCRYPT CAP) are used in the
handshake phase of a secure session.

If set, the public key of the Responder was
provisioned to the Requester. The transport
layer is responsible for identifying the
Requester. In this case, CERT_CAP and

ALIAS CERT_CAP of the Responder shall both
be 0.

If set, Responder shall support Large SPDM
message transfer mechanism messages.

If set, the Responder shall use the AliasCert
model. See Identity provisioning for details.

If set, Responder shall support
SET_CERTIFICATE RSP response messages.

If set, Responder shall support CSR response
messages. If this bit is set, SET_CERT_CAP
shall be set.

If set, Responder may return an ERROR
message of ErrorCode=ResetRequired to
complete a certificate provisioning request. If
this bit is set, SET_CERT CAP shall be set and
CSR CAP can be set.

70 Published

Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Bit offset Field Description

The ENDPOINT INFO response capabilities of
the Responder.
¢ 00b . The Responder shall not support
ENDPOINT_INFO response capabilities.
¢ 01b . The Responder shall support the
ENDPOINT_INFO response but cannot
2 [7:6] EP_INFO_CAP perform signature generation for this
response.
* 10b . The Responder shall support the
ENDPOINT_INFO response and can
generate signatures for this response.

e 11b . Reserved.

If set, Responder shall support
3 0 MEL_CAP MEASUREMENT EXTENSION LOG response
message.

If set, the Responder is an Event Notifier. See

3 1 EVENT_CAP . .
Event mechanism for details.

Shall be the Multiple Asymmetric Key
capabilities of the Responder.
* 00b . Responder shall not support
Multiple Asymmetric Key capabilities.
¢ 01b . Responder shall only support
Multiple Asymmetric Key capabilities.
* 10b . Responder shall support Multiple
Asymmetric Key capabilities, and
3 [3:2] MULTI_KEY_CAP Requester can use
ResponderMultiKeyConn as Multiple
Asymmetric Key Negotiation describes.

¢ 11b . Reserved.

If setto 01b or 10b, the Responder shall
support more than one key pair for at least
one asymmetric algorithm for the SPDM
connection to use in Responder
authentication.

If set, Responder shall support
KEY _PAIR INFO response messages. If the

3 4 GET_KEY_PAIR_INFO_CAP L
Responder sets MULTI KEY CAP, this bit shall
also be set.
If set, Responder shall support

3 5 SET_KEY_PAIR_INFO_CAP
SET KEY_PAIR INFO ACK response message.

3 [7:6] Reserved Reserved.

280 In the case where an SPDM implementation incorrectly returns an illegal combination of capability flags as they are

Version 1.3.0 Published 71

281

282

283

284

285

286

Security Protocol and Data Model (SPDM) Specification DSP0274

defined by this specification (for example, ENCRYPT_CAP is set but both KEY EX CAP and PSK CAP are cleared), the
following guidance is provided: If a Responder detects an illegal capability flag combination reported by the
Requester, it shall issue an ERROR message of ErrorCode=InvalidRequest .

10.3.1 Supported algorithms block

The Supported Algorithms Block reports all options from the ALGORITHMS response that are supported by the
Responder. The Supported Algorithms Block shall conform to the Table 15 — NEGOTIATE_ALGORITHMS request
message format, including all fields from Paraml through the end of the message, inclusive. When constructing the
Supported Algorithms Block, the Responder shall follow all requirements for the Requester, and shall set all bits and
values that reflect algorithms that the Responder supports.

10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response
messages

This request message shall negotiate cryptographic algorithms. In SPDM, the Requester issues

NEGOTIATE ALGORITHMS to indicate which cryptographic algorithm(s) it supports for each type of cryptographic
operation, and the Responder selects one algorithm of each type using the ALGORITHMS response message. The
selected algorithms shall be used for all relevant cryptographic operations for the duration of the connection. The
criteria a Responder uses to determine which algorithm to select when more than one are supported by both
endpoints are outside the scope of this specification.

Figure 7 — Hashing algorithm selection: Example 1 illustrates how two endpoints negotiate a base hashing algorithm.
Endpoint A issues a NEGOTIATE_ALGORITHMS request message, and endpoint B returns a selected mutually supported
algorithm in the ALGORITHMS response.

Figure 7 — Hashing algorithm selection: Example 1

72 Published Version 1.3.0

287

288

289

290

291

292

DSP0274 Security Protocol and Data Model (SPDM) Specification

Requester Responder
|

|
|
S ts SHA-384 I_I GET_CAPABILITlEs—TL‘
iy - ‘l‘ CAPABILITIES I Supports SHA-256

and SHA3-384 | and SHA-384
T—NEGOTIATE_ALGORITHMS (SHA-384, SHA3-384) l
Agree on SHA-384 l¢————ALGORITHMS (SHA-384)J Select SHA-384
|
- 09t - = T — 1
ifsupported | GET_DIGESTS TL‘ |
| | DIGESTS | returrrs SHA-384 digest
[itnecessary || a0
= eoessay L GET_CERTIFICATE—TI |
% 1 CERTIFICATE : | |
ifsupported | L1 LAl ENGE (9RA it Nemeal =
|If supported ; CHALLENGE (256-bit Nonce)
| L CHALLENGE_AUTH (384-bit CertChainHash, |
L [Jand MeasurementSummaryHash, 256-bit Nonce) | |
Wfsupported | L l————GET_MEASUREMENTS———— |
- |
| I—MEASUREMENTS | |
s N

If the Requester and Responder support no common algorithms of a particular type, the Responder shall issue an
ALGORITHMS response message with all appropriate selection field values set to zero to indicate that no selection was
made. The Responder should respond to all subsequent requests by this Requester with an ERROR message of
ErrorCode=RequestResynch . The Responder may continue to operate with limited functionality for operations that
do not require negotiated cryptographic algorithms.

A Requester shall not issue a NEGOTIATE ALGORITHMS request message until it receives a successful CAPABILITIES
response message.

After a Requester issues a NEGOTIATE ALGORITHMS request, it shall not issue any other SPDM requests, with the
exception of GET_VERSION , until it receives a successful ALGORITHMS response message.

A Responder shall not respond to a NEGOTIATE ALGORITHMS request message with an ERROR message of
ErrorCode=ResponseNotReady .

For each algorithm type, a Responder shall not select both an SPDM-enumerated algorithm and an extended
algorithm.

Version 1.3.0 Published 73

293

294

295

Security Protocol and Data Model (SPDM) Specification DSP0274

The SPDM protocol accounts for the possibility that both endpoints issue NEGOTIATE ALGORITHMS request messages
independently of each other. In this case, the endpoint A Requester and endpoint B Responder communication pair
might select a different algorithm from the one selected by the endpoint B Requester and endpoint A Responder
communication pair.

Table 15 — NEGOTIATE_ALGORITHMS request message format shows the NEGOTIATE_ALGORITHMS request message
format.

Table 15 — NEGOTIATE_ALGORITHMS request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0xE3 = NEGOTIATE ALGORITHMS . See Table 4
1 RequestResponseCode 1
— SPDM request codes.
Shall be the number of algorithm structure tables in
2 Param1 1 . .
this request using RegAlgStruct .
3 Param2 1 Reserved.
Shall be the length of the entire request message, in
4 Length 2
bytes. Length shall be less than or equal to 128 bytes.
Bit mask. The Measurement specification field format
o table defines the format for this field. For each
6 MeasurementSpecification 1 . e
defined measurement specification a Requester
supports, the Requester can set the appropriate bits.
Shall be the selection bit mask.
Bit [3:0] - See Opaque Data Format Support and
Selection Table
7 OtherParamsSupport 1

Bit [4] - This field shall be the
ResponderMultiKeyConn field as Multiple
Asymmetric Key Negotiation describes.

Bit [7:5] - Reserved.

74 Published Version 1.3.0

DSP0274

Byte offset

Field

BaseAsymAlgo

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

Description

Shall be the bit mask listing Requester-supported

SPDM-enumerated asymmetric key signature

algorithms for the purpose of signature verification. If
the Requester does not support any request/
response pair that requires signature verification, this

value shall be set to zero. If the Requester will not

send any requests that require a signature, this value

should be set to zero. Let SiglLen be the size of the

signature in bytes.

Byte 0 Bit 0. TPM_ALG_RSASSA 2048 where
SigLen =256.

Byte 0 Bit 1. TPM_ALG_RSAPSS_2048 where
SigLen =256.

Byte 0 Bit 2. TPM_ALG_RSASSA 3072 where
SiglLen =384.

Byte 0 Bit 3. TPM_ALG_RSAPSS_3072 where
SigLen =384.

Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256
where SiglLen =64 (32-byte r followed by
32-byte s).

Byte 0 Bit 5. TPM_ALG_RSASSA_ 4096 where
SigLen =512.

Byte 0 Bit 6. TPM_ALG_RSAPSS_4096 where
SigLen =512.

Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384
where SigLen =96 (48-byte r followed by
48-byte s).

Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521
where SiglLen =132 (66-byte r followed by
66-byte s).

Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256
where SigLen =64 (32-byte SM2 R followed by
32-byte SM2_S).

Byte 1 Bit 2. EDDSA ed25519 where SiglLen =64
(32-byte R followed by 32-byte S).

Byte 1 Bit 3. EDDSA ed448 where SigLen =114
(57-byte R followed by 57-byte S).

All other values reserved.

Version 1.3.0

Published

75

Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes)
12 BaseHashAlgo 4

16 Reserved 12

28 ExtAsymCount 1

29 ExtHashCount 1

30 Reserved 1

31 MELspecification 1

32 ExtAsym 4* A

DSP0274

Description

Shall be the bit mask listing Requester-supported
SPDM-enumerated cryptographic hashing
algorithms. If the Requester does not support any
request/response pair that requires hashing
operations, this value shall be set to zero.

« Byte 0 Bit 0. TPM_ALG_SHA 256

+ Byte 0 Bit 1. TPM_ALG_SHA _384

« Byte 0 Bit 2. TPM_ALG_SHA_512

« Byte 0 Bit 3. TPM_ALG_SHA3_256

+ Byte 0 Bit 4. TPM_ALG_SHA3_384

e Byte 0 Bit 5. TPM_ALG_SHA3_512

+ Byte 0 Bit 6. TPM_ALG_SM3_256

» All other values reserved.

Reserved.

Shall be the number of Requester-supported
extended asymmetric key signature algorithms (=A)
for the purpose of signature verification. A + E +
ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4
+ ExtAlgCount5 shall be less than or equal to 20. If
the Requester does not support any request/
response pair that requires signature verification, this
value shall be set to zero.

Shall be the number of Requester-supported
extended hashing algorithms (=E). A + E +
ExtAlgCount2 + ExtAlgCount3 + ExtAlgCount4
+ ExtAlgCount5 shall be less than or equal to 20. If
the Requester does not support any request/
response pair that requires hashing operations, this
value shall be set to zero.

Reserved.

Shall be the bit mask. The Measurement Extension
Log specification field format table defines the
format for this field. The Requester shall set the
corresponding bit for each supported measurement
extension log (MEL) specification.

Shall be the list of Requester-supported extended
asymmetric key signature algorithms for the purpose
of signature verification. Table 27 — Extended
Algorithm field format describes the format of this
field.

76 Published

Version 1.3.0

296

297
298

299

300

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes)
32+4* A ExtHash 4* E
32+4* A +4* E ReqgAlgStruct AlgStructSize

Desc

Shall
supp!
Algo
field.

ription

be the list of the extended hashing algorithms
orted by Requester. Table 27 — Extended
rithm field format describes the format of this

See the AlgStructure request field.

AlgStructSize is the sum of the size of the following algorithm structure tables. The algorithm structure table shall
be present only if the Requester supports that AlgType . AlgType shall monotonically increase for subsequent

entries.

Table 16 — Algorithm request structure shows the Algorithm request structure:

Table 16 — Algorithm request structure

Byte offset Field Size (bytes)

0 AlgType 1

1 AlgCount 1

2 AlgSupported FixedAlgCount
2 + FixedAlgCount AlgExternal 4 * ExtAlgCount

Description

Shall be the type of algorithm.

Shal

0x00 and 0x01. Reserved.
0x02. DHE.

0x03. AEADCipherSuite .
0x04. RegBaseAsymAlg .
0x05. KeySchedule .

All other values reserved.

| be the Requester-supported fixed algorithms.
Bit [7:4]. Number of bytes required to describe
Requester-supported SPDM-enumerated fixed
algorithms (=FixedAlgCount). FixedAlgCount
2 shall be a multiple of 4.

Bit [3:0]. Number of Requester-supported
extended algorithms (= ExtAlgCount).

Shall be the bit mask listing Requester-supported

SPD

M-enumerated algorithms.

Shall be the list of Requester-supported extended
algorithms. Table 27 — Extended Algorithm field
format describes the format of this field.

The following tables describe the Algorithm request structures mapped to their respective types:

+ Table 17 — DHE structure

+ Table 18 — AEAD structure

+ Table 19 — ReqgBaseAsymAlg structure
+ Table 20 — KeySchedule structure

Table 17 — DHE structure

i

Version 1.3.0 Published

7

Security Protocol and Data Model (SPDM) Specification

Byte offset

0

Field Size (bytes)
AlgType 1

AlgCount 1

AlgSupported 2

AlgExternal 4 * ExtAlgCount2

301 Table 18 — AEAD structure

Byte offset

0

Field Size (bytes)

AlgType 1

AlgCount 1

AlgSupported 2

DSP0274

Description
Shall be 0x02 = DHE

« Bit [7:4]. Shall be a value of 2.

* Bit [3:0]. Number of Requester-supported
extended DHE groups (= ExtAlgCount2).

Shall be the bit mask listing Requester-supported
SPDM-enumerated Diffie-Hellman Ephemeral (DHE)
groups. Values in parentheses specify the size of the
corresponding public values associated with each

group.
+ Byte 0 Bit 0. ffdhe2048 (D = 256).

(

« Byte 0 Bit 1. ffdhe3072 (D = 384).

« Byte 0 Bit 2. ffdhe4096 (D = 512).

* Byte 0 Bit 3. secp256rl (D = 64, C = 32).

« Byte 0 Bit 4. secp384rl (D = 96, C = 48).

* Byte 0 Bit 5. secp521r1 (D = 132, C = 66).

« Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5 of GB/T
32918 specification) (D = 64, C = 32).

» All other values reserved.

Shall be the list of Requester-supported extended
DHE groups. Table 27 — Extended Algorithm field
format describes the format of this field.

Description
Shall be the 0x03 = AEAD

* Bit [7:4]. Shall be a value of 2.

+ Bit [3:0]. Number of Requester-supported
extended AEAD algorithms (= ExtAlgCount3).

Shall be the bit mask listing Requester-supported
SPDM-enumerated AEAD algorithms.

+ Byte 0 Bit 0. AES-128-GCM. 128-bit key; 96-bit IV
(initialization vector); tag size is specified by
transport layer.

* Byte 0 Bit 1. AES-256-GCM. 256-bit key; 96-bit
1V; tag size is specified by transport layer.

« Byte 0 Bit 2. CHACHA20_POLY1305. 256-bit key;
96-bit IV; 128-bit tag.

+ Byte 0 Bit 3. AEAD_SM4_GCM. 128-bit key; 96-bit
1V; tag size is specified by transport layer.

* All other values reserved.

78

Published

Version 1.3.0

302

303

DSP0274
Byte offset Field
4 AlgExternal

Table 19 — ReqBaseAsymAlg structure

Byte offset Field

0 AlgType

1 AlgCount

2 AlgSupported
4 AlgExternal

Table 20 — KeySchedule structure

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

4 * ExtAlgCount3

Size (bytes)

4 * ExtAlgCount4

Description

Shall be the list of Requester-supported extended
AEAD algorithms. Table 27 — Extended Algorithm
field format describes the format of this field.

Description
Shall be 0x04 = ReqBaseAsymAlg

* Bit [7:4]. Shall be a value of 2.

* Bit [3:0]. Number of Requester-supported
extended asymmetric key signature algorithms
for the purpose of signature generation
(= ExtAlgCount4).

Shall be the bit mask listing Requester-supported
SPDM-enumerated asymmetric key signature
algorithms for the purpose of signature generation. If
the Requester does not support any request/
response pair that requires signature generation, this
value shall be set to zero.

« Byte 0 Bit 0. TPM_ALG_RSASSA_2048.

+ Byte 0 Bit 1. TPM_ALG_RSAPSS_2048.

« Byte 0 Bit 2. TPM_ALG_RSASSA 3072.

* Byte 0 Bit 3. TPM_ALG_RSAPSS_3072.

* Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256.
« Byte 0 Bit 5. TPM_ALG_RSASSA_4096.

« Byte 0 Bit 6. TPM_ALG_RSAPSS_4096.

* Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384.
* Byte 1 Bit 0. TPM_ALG_ECDSA_ECC_NIST_P521.
« Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256.

+ Byte 1 Bit 2. EdDSA ed25519.

* Byte 1 Bit 3. EdDSA ed448.

« All other values reserved.

For details of SigLen for each algorithm, see Table
15 — NEGOTIATE_ALGORITHMS request message
format.

Shall be the list of Requester-supported extended
asymmetric key signature algorithms for the purpose
of signature generation. Table 27 — Extended
Algorithm field format describes the format of this
field.

Version 1.3.0

Published

79

304
305

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description
0 AlgType 1 Shall be 0x05 = KeySchedule

« Bit [7:4]. Shall be a value of 2.

* Bit [3:0]. Number of Requester-supported
extended key schedule algorithms
(= ExtAlgCount5).

1 AlgCount 1

Shall be the bit mask listing Requester-supported
SPDM-enumerated key schedule algorithms.
2 AlgSupported 2 - Byte 0 Bit 0. SPDM Key Schedule.

« All other values reserved.

Shall be the list of Requester-supported extended key
4 AlgExternal 4 * ExtAlgCount5 schedule algorithms. Table 27 — Extended Algorithm
field format describes the format of this field.

Table 21 — ALGORITHMS response message format shows the ALGORITHMS response message format.

Table 21 — Successful ALGORITHMS response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
Shall be 0x63 = ALGORITHMS . See Table 5 — SPDM
1 RequestResponseCode 1
response codes.
Shall be the number of algorithm structure tables in
2 Param1l 1 . .
this request using RespAlgStruct .
3 Param2 1 Reserved.
Shall be the length of the response message, in
4 Length 2
bytes.
Bit mask. The Responder shall select one of the
measurement specifications supported by the
6 MeasurementSpecificationSel 1 Requester and Responder. Thus, no more than one

bit shall be set. The Measurement specification field
format table defines the format for this field.

80 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

Shall be the selected Parameter Bit Mask. The
Responder shall select one of the opaque data
formats supported by the Requester. Thus, no more
than one bit shall be set for the opaque data format.
« Bit [3:0]. See Opaque Data Format Support and
7 OtherParamsSelection 1 Selection Table.
* Bit4 - This field shall be the
RequesterMultiKeyConnSel as Multiple
Asymmetric Key Negotiation describes.

« Bit [7:5]. Reserved.

Shall be the bit mask indicating the SPDM-
enumerated hashing algorithms used for
measurements.

« Byte 0 Bit 0. Raw Bit Stream Only.

« Byte 0 Bit 1. TPM_ALG_SHA_256.
« Byte 0 Bit 2. TPM_ALG_SHA_384.
« Byte 0 Bit 3. TPM_ALG_SHA_512.
* Byte 0 Bit 4. TPM_ALG_SHA3_256.
« Byte 0 Bit 5. TPM_ALG_SHA3_384.
* Byte 0 Bit 6. TPM_ALG_SHA3_512.

* Byte 0 Bit 7. TPM_ALG_SM3_256.

8 MeasurementHashAlgo 4 « If the Responder supports measurements

(MEAS CAP=01b or MEAS CAP=10b in its
CAPABILITIES response) and if
MeasurementSpecificationSel is non-zero,
then exactly one bit in this bit field shall be set.
Otherwise, the Responder shall set this field to
0.

« All other values reserved.

A Responder shall select bit 0 only if it supports raw
bit streams as the only form of measurement;
otherwise, the Responder shall select one of the
other bits.

Shall be the bit mask indicating the SPDM-
enumerated asymmetric key signature algorithm
selected for the purpose of signature generation. If

12 BaseAsymSel 4 the Responder does not support any request/
response pair that requires signature generation, this
value shall be set to zero. The Responder shall set no
more than one bit.

Version 1.3.0 Published 81

Security Protocol and Data Model (SPDM) Specification

Byte offset

16

20

31

32

33

34

36

36 +4* A

36+4* A

Field

BaseHashSel

Reserved

MELspecificationSel

ExtAsymSelCount

ExtHashSelCount

Reserved

ExtAsymSel

ExtHashSel

+4* E' RespAlgStruct

Size (bytes)

11

4% A"

4* E

AlgStructSize

DSP0274

Description

Shall be the bit mask indicating the SPDM-
enumerated hashing algorithm selected. If the
Responder does not support any request/response
pair that requires hashing operations, this value shall
be set to zero. The Responder shall set no more than
one bit.

Reserved.

Shall be the bit mask indicating MEL. The Responder
shall select one of the MEL specifications supported
by the Requester and Responder. No more than one
bit shall be set. The Measurement Extension Log
specification field format table defines the format for
this field.

Shall be the number of extended asymmetric key
signature algorithms selected for the purpose of
signature generation. Shall be either 0 or 1 (=A’).
If the Responder does not support any request/
response pair that requires signature generation, this
value shall be set to zero.

Shall be the number of extended hashing algorithms
selected. Shall be either @ or 1 (=FE).If the
Responder does not support any request/response
pair that requires hashing operations, this value shall
be set to zero.

Reserved.

Shall be the extended asymmetric key signature
algorithm selected for the purpose of signature
generation. The Responder shall use this asymmetric
signature algorithm for all subsequent applicable
response messages to the Requester. The extended
algorithm field format table describes the format of
this field.

Shall be the extended hashing algorithm selected.
The Responder shall use this hashing algorithm
during all subsequent response messages to the
Requester. The Requester shall use this hashing
algorithm during all subsequent applicable request
messages to the Responder. The extended algorithm
field format table describes the format of this field.

See Table 22 — Response AlgStructure field format.

306 AlgStructSize is the sum of the sizes of all the algorithm structure tables, as the following tables show. An

82

Published

Version 1.3.0

DSP0274

Security Protocol and Data Model (SPDM) Specification

algorithm structure table needs to be present only if the Responder supports that AlgType . AlgType shall

monotonically increase for subsequent entries.

307 Table 22 — Response AlgStructure field format

Byte offset Field Size (bytes)

0 AlgType 1

1 AlgCount 1

2 AlgSupported FixedAlgCount
2 + FixedAlgCount AlgExternal 4 * ExtAlgCount'

Description

Shall be the type of algorithm.
+ 0x00 and 0x01. Reserved.

* 0x02. DHE.

« 0x03. AEADCipherSuite .
* 0x04. RegBaseAsymAlg .
* O0x05. KeySchedule .

» All other values reserved.

Shall be the bit mask listing Responder-supported
fixed algorithm requested by the Requester.

Bit [7:4]. Number of bytes required to describe
Requester-supported SPDM-enumerated fixed
algorithms (=FixedAlgCount). FixedAlgCount +
2 shall be a multiple of 4.

* Bit [3:0]. Number of Requester-supported,
Responder-selected, extended algorithms
(= ExtAlgCount'). This value shall be either 0 or
1.

Shall be the bit mask for indicating a Requester-
supported, Responder-selected, SPDM-enumerated
algorithm. Responder shall set at most one bit to 1.

If present: shall be a Requester-supported,
Responder-selected, extended algorithm. Responder
shall select at most one extended algorithm. Table 27
— Extended Algorithm field format describes the
format of this field.

308 The following tables describe the algorithm types and their associated fixed fields:

Table 23 — DHE structure

Table 24 — AEAD structure

Table 25 — ReqBaseAsymAlg structure
Table 26 — KeySchedule structure

Table 27 — Extended Algorithm field format

309 Table 23 — DHE structure

Byte offset Field Size (bytes)

0

AlgType 1

Description

Shall be 0x02 = DHE

Version 1.3.0 Published

83

Security Protocol and Data Model (SPDM) Specification

Byte offset

Field Size (bytes)
AlgCount 1

AlgSupported 2

AlgExternal 4 * ExtAlgCount2'

310 Table 24 — AEAD structure

DSP0274

Description

« Bit [7:4]. Shall be a value of 2.

« Bit [3:0]. Shall be the number of Requester-
supported, Responder-selected, extended DHE
groups (= ExtAlgCount2'). This value shall be
either 0 or 1.

Shall be the bit mask for indicating a Requester-
supported, Responder-selected, SPDM-enumerated
DHE group. Values in parentheses specify the size of
the corresponding public values associated with each

group.
+ Byte 0 Bit 0. ffdhe2048 (D = 256).

(

« Byte 0 Bit 1. ffdhe3072 (D = 384).

+ Byte 0 Bit 2. ffdhe4096 (D = 512).

* Byte 0 Bit 3. secp256rl (D = 64, C = 32)

+ Byte 0 Bit 4. secp384rl (D = 96, C = 48).

* Byte 0 Bit 5. secp521r1 (D = 132, C = 66).

« Byte 0 Bit 6. SM2_P256 (Part 3 and Part 5 of GB/T
32918) (D = 64, C = 32).

» All other values reserved.

If present: shall be a Requester-supported,
Responder-selected, extended DHE algorithm. Table
27 — Extended Algorithm field format describes the
format of this field.

Byte offset Field Size (bytes) Description
0 AlgType 1 Shall be 0x03 = AEAD
* Bit [7:4]. Shall be a value of 2.
* Bit [3:0]. Shall be the number of Requester-
1 AlgCount 1 supported, Responder-selected, extended AEAD
algorithms (= ExtAlgCount3"'). This value shall
be either 0 or 1.
Shall be the bit mask for indicating a Requester-
supported, Responder-selected, SPDM-enumerated
AEAD algorithm.
+ Byte 0 Bit 0. AES-128-GCM.
2 AlgSupported 2 « Byte 0 Bit 1. AES-256-GCM.
* Byte 0 Bit 2. CHACHA20_POLY1305.
+ Byte 0 Bit 3. AEAD_SM4_GCM.
« All other values reserved.
84 Published Version 1.3.0

DSP0274
Byte offset Field
4 AlgExternal

31 Table 25 — ReqBaseAsymAlg structure

Byte offset Field

0 AlgType

1 AlgCount

2 AlgSupported

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

4 * ExtAlgCount3'

Size (bytes)

Description

If present: shall be a Requester-supported,
Responder-selected, extended AEAD algorithm. Table
27 — Extended Algorithm field format describes the
format of this field.

Description
Shall be 0x04 = ReqBaseAsymAlg

« Bit [7:4]. Shall be a value of 2.

* Bit [3:0]. Number of Requester-supported,
Responder-selected, extended asymmetric key
signature algorithms (= ExtAlgCount4') for the
purpose of signature verification. This value shall
be either 0 or 1.

Shall be the bit mask for indicating a Requester-
supported, Responder-selected, SPDM-enumerated
asymmetric key signature algorithm for the purpose
of signature verification. If the Responder does not
support any request/response pair that requires
signature verification, this value shall be set to zero. If
the Responder will not send any messages that
require a signature, this value should be set to zero.

* Byte 0 Bit 0. TPM_ALG_RSASSA_2048.

« Byte 0 Bit 1. TPM_ALG_RSAPSS_2048.

* Byte 0 Bit 2. TPM_ALG_RSASSA_3072.

« Byte 0 Bit 3. TPM_ALG_RSAPSS_3072.

« Byte 0 Bit 4. TPM_ALG_ECDSA_ECC_NIST_P256.
* Byte 0 Bit 5. TPM_ALG_RSASSA_4096.

« Byte 0 Bit 6. TPM_ALG_RSAPSS_4096.

« Byte 0 Bit 7. TPM_ALG_ECDSA_ECC_NIST_P384.
* Byte 1 Bit 0. TPM_ALG_ECDSA _ECC_NIST_P521.
* Byte 1 Bit 1. TPM_ALG_SM2_ECC_SM2_P256.

« Byte 1 Bit 2. EHDSA ed25519.

* Byte 1 Bit 3. EdDSA ed448.

« All other values reserved.

For details of SigLen for each algorithm, see Table
15 — NEGOTIATE_ALGORITHMS request message
format.

Version 1.3.0

Published

85

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

If present: shall be a Requester-supported,
Responder-selected extended asymmetric key

4 AlgExternal 4 * ExtAlgCount4' signature algorithm for the purpose of signature
verification. Table 27 — Extended Algorithm field
format describes the format of this field.

312 Table 26 — KeySchedule structure

Byte offset Field Size (bytes) Description
0 AlgType 1 Shall be 0x05 = KeySchedule

+ Bit [7:4]. Shall be a value of 2.
¢ Bit [3:0]. Shall be the number of Requester-
1 AlgCount 1 supported, Responder-selected, extended key
schedule algorithms (= ExtAlgCount5"'). This
value shall be either 0 or 1.

Shall be the bit mask for indicating a Requester-
supported, Responder-selected, SPDM-enumerated
key schedule algorithm.

2 AlgSupported 2
+ Byte 0 Bit 0. SPDM key schedule.
« All other values reserved.
If present: shall be a Requester-supported,
Responder-selected, extended key schedule
4 AlgExternal 4 * ExtAlgCount5'

algorithm. Table 27 — Extended Algorithm field
format describes the format of this field.

313 Table 27 — Extended Algorithm field format

Byte offset Field Size (bytes) Description

Shall represent the registry or standards body. The ID
0 Registry ID 1 column of Table 60 — Registry or standards body ID
describes the value of this field.

1 Reserved 1 Reserved.

Shall indicate the desired algorithm. The registry or
2 Algorithm ID 2 standards body owns the value of this field. See Table
60 — Registry or standards body ID.

314 Table 28 — Opaque Data Format Support and Selection

86 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Bit offset Field Description

If set, this bit shall indicate that the format

0 OpagqueDataEmto for all OpaqueData fields in this
u
paq specification is defined by the device

vendor or other standards body.

If set, this bit shall indicate that the format

for all OpaqueData fields in this
1 OpaqueDataFmtl o .
specification is defined by the General

opaque data format.

[3:2] Reserved Reserved.

315 The Opaque Data Format Selection Table shows the bit definition for the format of the Opaque data fields. A
Requester may set more than one bit in the table to indicate each supported format. A Responder shall select no
more than one of the bits supported by the Requester in this table. If the Requester or the Responder does not set a
bit, then all OpaqueData fields in this specification shall be absent by setting the respective OpaqueDatalLength field
to a value of zero.

316 Table 29 — Measurement Specification Field Format
Bit offset Field Description

This bit shall indicate a DMTF-defined measurement
specification. Table 54 — DMTF measurement

0 DMTF S
measspec specification format defines the format for this
measurement specification.
[1:7] Reserved Reserved
317 The Measurement Specification Field Format Table describes the field format for Measurement specification related

fields. The selected measurement specification (MeasurementSpecificationSel)is used in the MEASUREMENTS
response. See Measurement block and GET_MEASUREMENTS for details.

318 Table 30 — Measurement Extension Log Specification Field Format

Bit offset Field Description

This bit indicates a DMTF-defined measurement
extension log specification. Refer to the DMTF
Measurement Extension Log Format clause for details.
If the Responder supports the DMTF-defined

0 DMTFmelSpec measurement extension log specification, it shall set
this bit to 1in MELspecification .If the Responder
selects the DMTF-defined measurement extension log
specification for constructing the MEL, it shall set this
bit to 1 in MELspecificationSel .

[1:7] Reserved Reserved

Version 1.3.0 Published 87

319

320

321

322

323

324

325

326
327

328

329

Security Protocol and Data Model (SPDM) Specification DSP0274

The Measurement Extension Log Specification Field Format Table describes the field format for MEL specification
related fields. The selected MEL specification (MELspecificationSel) is used in construction of the MEL.

10.4.1 Connection behavior after VCA

With the successful completion of the ALGORITHMS message, all the parameters of the SPDM connection have been
determined. Thus, all SPDM message exchanges after the VCA messages shall comply with the selected parameters in
the ALGORITHMS message, with the exception of GET VERSION and VERSION messages, or unless otherwise stated
in this specification. To explain this behavior, suppose a Responder supports both RSA and ECDSA asymmetric
algorithms. For an SPDM connection, the Responder selects the TPM_ALG_RSASSA 2048 asymmetric algorithm in
BaseAsymSel and the TPM ALG SHA 256 hash algorithm in BaseHashSel . If the Requester on that same connection
issues GET DIGESTS , the Responder returns TPM_ALG_SHA 256 digests only for those populated slots that can
provide a TPM_ALG RSASSA 2048 signature fora CHALLENGE AUTH response. The Responder would violate this
requirement if it returns one or more digests of populated slots that perform ECDSA signatures or if it uses a different
hash algorithm to create the digests.

Unless otherwise stated in this specification, and with the exception of GET _VERSION , if a Requester issues a request
that violates one or more of the negotiated or selected parameters of a given connection, the Responder shall either
silently discard the request or return an ERROR message with an appropriate error code.

10.4.2 Multiple asymmetric key negotiation

The Requester and Responder can negotiate the parameters of multiple asymmetric key support for the SPDM
connection. As with other parameters in this request and response, the Responder makes the selection and the
Requester indicates its support. There are two sets of multiple asymmetric key use parameters to negotiate: one for
Responder authentication and one for Requester authentication.

10.4.3 Multiple asymmetric key use for Responder authentication

The Responder shall report the multiple asymmetric keys capability in the MULTI_KEY CAP field of CAPABILITIES .

If MULTI_KEY CAP is 10b,the ResponderMultiKeyConn field in NEGOTIATE ALGORITHMS determines whether or not
the SPDM connection uses multiple asymmetric keys for Responder authentication. The Requester makes the decision
for the SPDM connection in the ResponderMultiKeyConn field. If the Requester sets the ResponderMultiKeyConn
field, the Responder shall support multiple asymmetric keys in the SPDM connection for Responder authentication. If
ResponderMultiKeyConn is not set, the Responder shall support only one key pair per supported asymmetric
algorithm for this SPDM connection.

If MULTI KEY CAP is 0lb, the Responder determines that the SPDM connection uses multiple asymmetric keys. The
ResponderMultiKeyConn field in NEGOTIATE ALGORITHMS shall be set to acknowledge the Responder capability.

If MULTI_KEY CAP is 00b , the Responder determines that the SPDM connection does not use multiple asymmetric
keys. The ResponderMultiKeyConn field in NEGOTIATE ALGORITHMS shall be cleared.

88 Published Version 1.3.0

330

331

332

333

334

335

336

337

338

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.4.4 Multiple asymmetric key use for Requester authentication

The Requester shall report the multiple asymmetric keys capability for Requester authentication in the
MULTI KEY CAP field of GET CAPABILITIES .

If MULTI_KEY CAP is 10b,the RequesterMultiKeyConnSel field in the ALGORITHMS message determines whether
or not the SPDM connection uses multiple asymmetric keys for Requester authentication, such as in mutual
authentication. The Responder makes the decision for the SPDM connection in RequesterMultiKeyConnSel . If the
Responder sets the RequesterMultiKeyConnSel field, the Requester shall support multiple asymmetric keys in this
SPDM connection for Requester authentication. If RequesterMultiKeyConnSel is not set, the Requester shall
support only one key pair per supported asymmetric algorithm for this SPDM connection.

If MULTI_KEY CAP is 01b, the Requester determines that the SPDM connection uses multiple asymmetric keys. The
RequesterMultiKeyConnSel field in the ALGORITHMS message shall be set to acknowledge the Requester capability.

If MULTI_KEY CAP is 00b , the Requester determines that the SPDM connection does not use multiple asymmetric
keys. The RequesterMultiKeyConnSel field in the ALGORITHMS message shall be cleared.

10.4.5 Multiple asymmetric key connection

For the remainder of this specification, the boolean variables MULTI KEY CONN REQ and MULTI KEY CONN RSP
indicate whether or not the responding SPDM endpoint supports more than one key pair for one or more asymmetric
algorithms for key pairs belonging to it in this SPDM connection. If the responding endpoint is the Requester, then
MULTI KEY CONN REQ is used. See Table 31 — MULTI_KEY_CONN_REQ value calculation. If the responding endpoint
is the Responder, then MULTI KEY CONN RSP is used. See Table 32 — MULTI_KEY_CONN_RSP value calculation.

Table 31 — MULTI_KEY_CONN_REQ value calculation

MULTI_KEY_CAP in GET_CAPABILITIES RequesterMultiKeyConnSel in ALGORITHMS MULTI_KEY_CONN_REQ
00b 0 false

00b 1 invalid

0lb 0 invalid

01b 1 true

16b 0 false

16b 1 true

Table 32 — MULTI_KEY CONN_RSP value calculation

MULTI_KEY_CAP in CAPABILITIES ResponderMultikeyConn in NEGOTIATE_ALGORITHMS MULTI_KEY_CONN_RSP
00b 0 false
00b 1 invalid

Version 1.3.0 Published 89

Security Protocol and Data Model (SPDM) Specification DSP0274

MULTI_KEY_CAP in CAPABILITIES ResponderMultiKeyConn in NEGOTIATE_ALGORITHMS MULTI_KEY_CONN_RSP
01b 0 invalid

01b 1 true

10b 0 false

10b 1 true

339 If the responding SPDM endpoint has MULTI KEY CAP setto 00b , then the corresponding MULTI KEY CONN REQ or
MULTI_KEY CONN RSP shall be false.

340 If the responding SPDM endpoint has MULTI KEY CAP setto 01b, then the corresponding MULTI KEY CONN REQ or
MULTI_KEY CONN RSP shall be true.

341 If the responding SPDM endpoint has MULTI KEY CAP setto 16b, then the value of the corresponding
MULTI_KEY CONN_REQ or MULTI KEY CONN RSP depends on the peer endpoint. If the responding SPDM endpoint is
the Requester and if RequesterMultiKeyConnSel is set by the Responder, then the value of MULTI_KEY CONN_REQ
shall be true. If the responding SPDM endpoint is the Responder and if ResponderMultiKeyConn is set by the
Requester, then the value of MULTI_KEY_CONN_RSP shall be true. In all other cases, the value of the corresponding
MULTI_KEY CONN_REQ or MULTI KEY CONN RSP shall be false.

342 10.5 Responder identity authentication

343 This clause describes request messages and response messages associated with the identity of the Responder’s
authentication operations. The GET _DIGESTS and GET CERTIFICATE messages shall be supported by a Responder
that returns CERT_CAP=1 inits CAPABILITIES response message. The CHALLENGE message that this clause defines
shall be supported by a Responder that returns CHAL_CAP=1 inits CAPABILITIES response message. The
GET_DIGESTS and GET_CERTIFICATE messages are not applicable if the public key of the Responder was
provisioned to the Requester in a trusted environment.

344 Figure 8 — Responder authentication: Example certificate retrieval flow shows the high-level request-response
message flow and sequence for certificate retrieval.

345 Figure 8 — Responder authentication: Example certificate retrieval flow

90 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

346 i e
! RootCert !
LT
|
|
v
Requester Responder
‘ i
1. The requester sends a GET_DIGESTS m—GET,DIGESTS !
request message. I 1. The responder sends a DIGESTS
! DIGESTS— message.

2. Compare digests in DIGESTS response
message to cached digests. Continue if
no match is found.

SHA384¢,0

T

|

|

: 1

i
B |

|
i
1

If necessary | i
|

|

~. ‘

3. The requester sends a GET_CERTIFICATE

2.For each received
GET_CERTIFICATE request

|

1 Offset (0) GET_CERTIFICATE request, the

| Length (0x2000) responder verifies that Offset is

| within the certificate chain and then
! sends the CERTIFICATE response
message based on the requested
Length. If the actual CERTIFICATE
chain length is less than or equal to
the requested Length (e.g. 1076
bytes), the Responder returns entire
certificate and a RemainderLength 0.

4. Verify validity of certificate chain against [«——TCERTIFICATE (1076, 0)
the root certificate, then proceed to the | RootCert
challenge-response. ! :

|

|

i

VendorCert

ModelCert

DeviceCert

347 The GET DIGESTS request message and DIGESTS response message can optimize the amount of data required to
be transferred from the Responder to the Requester, due to the potentially large size of a certificate chain. The
cryptographic hash values of every certificate chain stored on an endpoint are returned with the DIGESTS response
message, enabling the Requester to compare these values to previously retrieved and cached certificate chain hash
values and detect any changes to the certificate chains stored on the device before issuing a GET_CERTIFICATE
request message.

348 For the runtime challenge-response flow, the signature field in the CHALLENGE AUTH response message payload shall
be signed by using the private key associated with the leaf certificate over the hash of the message transcript. See
Table 47 — Request ordering and message transcript computation rules for M1/M2.

349 This ensures cryptographic binding between a specific request message from a specific Requester and a specific
response message from a specific Responder, which enables the Requester to detect the presence of an active
adversary attempting to downgrade cryptographic algorithms or SPDM versions.

350 Furthermore, a Requester-generated nonce protects the challenge-response from replay attacks, whereas a
Responder-generated nonce prevents the Responder from signing over arbitrary data that the Requester dictates. The

Version 1.3.0 Published 91

351

352

353

354

355

356

357

358

359
360

361

Security Protocol and Data Model (SPDM) Specification DSP0274

message transcript generation for the signature computation is restarted as of the most recent GET_VERSION request
received.

10.6 Requester identity authentication

If a Requester supports mutual authentication, it shall comply with all requirements placed on a Responder as
specified in Responder identity authentication.

If a Responder supports mutual authentication, it shall comply with all requirements placed on a Requester as
specified in Responder identity authentication. The preceding two statements essentially describe a role reversal.

10.6.1 Certificates and certificate chains

Each SPDM endpoint that supports identity authentication using certificates shall carry at least one complete
certificate chain. A certificate chain contains an ordered list of certificates, presented as the binary (byte)
concatenation of the fields that Table 33 — Certificate chain format shows. In the context of this specification, a
complete certificate chain is one where: (i) the first certificate either is signed by a Root Certificate (a certificate that
specifies a trust anchor) or is a Root Certificate itself, (i) each subsequent certificate is signed by the preceding
certificate, and (iii) the final certificate contains the public key used to authenticate the SPDM endpoint. The final
certificate is called the leaf certificate.

If an SPDM endpoint does not support multiple asymmetric keys (MULTI_KEY CAP=0), the SPDM endpoint shall
contain a single public-private key pair per supported algorithm for its leaf certificates, regardless of how many
certificate chains are stored on the device. The Responder selects a single asymmetric key signature algorithm per
Requester regardless of the value of MULTI_KEY CAP field.

Certificate chains are stored in logical locations called slots. Each supported slot shall either be empty or contain one
complete certificate chain. A device shall not contain more than eight slots. Slots are numbered 0 through 7 inclusive.
Slot 0 is populated by default. If a device uses the DeviceCert model (ALIAS CERT CAP=0b inits CAPABILITIES
response) and if MULTI_KEY_CAP is not set, then the certificate chain in every populated slot shall use the
DeviceCert model. If a device uses the AliasCert model (ALIAS CERT CAP=1b inits CAPABILITIES response)
and if MULTI_KEY CAP is not set, then the certificate chain in every populated slot shall use the AliasCert model.

If the MULTI KEY CAP is set, the certificate model for each populated certificate slot can be different. Multiple
asymmetric key support allows the use of the generic certificate model. The use of the GenericCert model shall be
prohibited when MULTI KEY CAP is not set.

In all cases, the certificate model for slot 0 shall be either the device certificate model or the alias certificate model.

Additional slots may be populated through the supply chain such as by a platform integrator or by an end user such
as an IT administrator. A slot mask identifies the certificate chains in the eight slots. Similarly, if the Requester
supports mutual authentication and if MULTI KEY CONN REQ is not set, a Requester device shall use either the
DeviceCert model or the AliasCert model and the certificate chain in every populated slot shall use the same
model. Note that the Requester does not have capability flags to indicate the certificate model.

If an endpoint supports certificates, then Slot 0 is the default certificate chain slot. Slot 0 shall contain a valid
certificate chain unless the device has not yet had a certificate chain provisioned and is in a trusted environment.

92 Published Version 1.3.0

362

363

364

365
366

367

368
369
370

371

DSP0274 Security Protocol and Data Model (SPDM) Specification

Each certificate in a chain shall be in ASN.1 DER-encoded X.509 v3 format as RFC 5280 defines. The ASN.1 DER
encoding of each individual certificate can be analyzed to determine its length.

To allow for flexibility in supporting multiple certificate models, the minimum number of certificates within a
certificate chain shall be one and a chain shall contain a leaf certificate.

The leaf certificate in the device certificate model shall be the DeviceCert leaf certificate. The leaf certificate in an
alias certificate model shall be the AliasCert leaf certificate. In a generic certificate model, the leaf certificate shall
be the GenericCert leaf certificate. When MULTI_KEY CAP is not set and a certificate chain consists of a single
certificate, that certificate can only be a DeviceCert leaf certificate. When MULTI KEY CAP is set and a certificate
chain consists of a single certificate, that certificate is either a DeviceCert ora GenericCert leaf certificate.

Table 33 — Certificate chain format describes the certificate chain format:
Table 33 — Certificate chain format
Byte offset Field Size (bytes) Description

Shall be the total length of the certificate chain, in

0 Length 2 bytes, including all fields in this table. This field is
little endian.
2 Reserved 2 Reserved.

Shall be the digest of the Root Certificate. Note that
the Root Certificate is ASN.1 DER-encoded for this

4 RootHash H digest. This field shall be in hash byte order. H is the
output size, in bytes, of the hash algorithm selected
by the most recent ALGORITHMS response.

Shall be a complete certificate chain consisting of
one or more ASN.1 DER-encoded X.509 v3
certificates. This field shall be in Encoded ASN.1 byte
order.

4+ H Certificates Length - (4 + H)

10.7 GET_DIGESTS request and DIGESTS response messages

This request message shall retrieve the certificate chain digests.
Table 34 — GET_DIGESTS request message format shows the GET DIGESTS request message format.

The digests in Table 35 — Successful DIGESTS response message format shall be computed over the certificate chain
as Table 33 — Certificate chain format shows.

When the corresponding MULTI KEY CONN REQ or MULTI KEY CONN RSP is true, certificate slots have four states
that can be reported by the endpoint. The sub-bullet of each state describes how the state is represented in the
DIGESTS response.

1. Does not exist
o The corresponding bit in SupportedSlotMask is not set.

2. Exists and empty

Version 1.3.0 Published 93

Security Protocol and Data Model (SPDM) Specification DSP0274

o The corresponding bit in SupportedSlotMask is set and the corresponding bit in
ProvisionedSlotMask is not set.

3. Exists with key
o The corresponding bits in SupportedSlotMask and ProvisionedSlotMask are set, but the value
of the corresponding CertModel field is zero.

4. Exists with key and cert
o The corresponding bits in SupportedSlotMask and ProvisionedSlotMask are set, and the value
of the corresponding CertModel field is non-zero.

372 When a certificate slot does not exist, it shall remain in this state for the remainder of the SPDM connection. The
“exists and empty” state indicates the presence of a certificate slot where neither a key nor a certificate has been
provisioned yet. The “exists with key” state indicates the certificate slot has only an asymmetric key associated with it
but no certificate chain. The “exists with key and cert” state indicates the certificate has both an asymmetric key
assigned to it and a certificate chain. The “exists with key and cert” state is a fully provisioned state. When a certificate
slot exists, the typical progression of states starts at “exists and empty”, followed by “exists with key”, and ends with
“exists with key and cert”.

373 Table 34 — GET_DIGESTS request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0x81 = GET DIGESTS . See Table 4 — SPDM
1 RequestResponseCode 1 -
request codes.
2 Param1 1 Reserved.
3 Param2 1 Reserved.

374 Table 35 — Successful DIGESTS response message format

Byte offset Field Size (bytes) Description

Shall be the SPDMvVersion as described in SPDM

0 SPDMVersion 1 .
version.

0x01 = DIGESTS . See Table 5 — SPDM response

1 RequestResponseCode 1
codes.

SupportedSlotMask. This field indicates which slots
the responding SPDM endpoint supports. If
certificate slot X exists in the responding SPDM
endpoint, the bit in position X of this byte shall be
set. (Bit 0 is the least significant bit of the byte.)
Likewise, if certificate slot X does not exist in the
responding SPDM endpoint, bit X of this byte shall
not be set and certificate slot X shall be an invalid

2 Paraml 1

value in various slot ID fields (SlotID) across all
SPDM request messages that contain this field.

94 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

ProvisionedSlotMask. If slot K contains a certificate
chain that supports the currently negotiated
algorithms for the connection, bit K of this byte shall
be set. (Bit 0 is the least significant bit of the byte.)
Additionally, if the corresponding
MULTI _KEY CONN REQ or MULTI KEY CONN RSP is
true and if slot K contains an associated key pair, bit
K of this byte shall be set. For all fields from Digest

3 Param2 1 to KeyUsageMask inclusive, the number of fields
returned (denoted by n) shall be equal to the
number of bits set in this byte.

These fields shall be returned in order of increasing
slot number.

If a bit is set in this field, the corresponding bit in
SupportedSlotMask shall also be set.

Digest of the certificate chain in CertSlot[0] . This

4 Digest[0 H
'gest(0] field shall be in hash byte order.

Digest of the certificate chain in CertSlot[n-1] .
. This field shall be in hash byte order. If a certificate
4+ H *(n-1) Digest[n-1] H . S e
chain is not present in this slot, the value of this field

shall be all zeros.

Shall be the KeyPairID of the key pair associated
with CertSlot[0] .
4+ (H *n KeyPairID[0 1
() o (0] This field shall be present if the corresponding
MULTI_KEY CONN REQ or MULTI KEY CONN RSP is
true. Otherwise, it shall be absent.

Shall be the KeyPairID of the key pair associated
with CertSlot[n-1] .

34(H +1)*n KeyPairID[n-1 1
() 4 [n-1] This field shall be present if the corresponding
MULTI KEY CONN REQ or MULTI KEY CONN RSP is

true. Otherwise, it shall be absent.

Shall be the certificate information for CertSlot[0] .
The format of this field shall be the format that the
certificate info table defines.

44 (H +1)*n Certificatelnfo[0] 1
This field shall be present if the corresponding
MULTI_KEY CONN REQ or MULTI KEY CONN RSP is
true. Otherwise, it shall be absent.

Version 1.3.0 Published 95

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

Shall be the certificate information for
CertSlot[n-1] . The format of this field shall be the
format that the certificate info table defines.

3+(H +2)*n CertificateInfo[n-1] 1
This field shall be present if the corresponding
MULTI KEY CONN REQ or MULTI KEY CONN RSP is
true. Otherwise, it shall be absent.

Shall be the key usage bit mask for CertSlot[0] .
The format of this field shall be the format that the
key usage bit mask table defines.

4+ (H +2)*n KeyUsageMask[0] 2
This field shall be present if the corresponding
MULTI _KEY CONN REQ or MULTI KEY CONN RSP is
true. Otherwise, it shall be absent.

Shall be the key usage bit mask for CertSlot[n-1] .
The format of this field shall be the format that the
key usage bit mask table defines.

2+(H +4)*n KeyUsageMask[n-1] 2
This field shall be present if the corresponding
MULTI KEY CONN REQ or MULTI KEY CONN RSP is
true. Otherwise, it shall be absent.

375 Table 36 — Certificate info shows the format for the CertificateInfo fields.

376 Table 36 — Certificate info

Bit offset Field Description

The value of this field shall indicate the certificate
model that the certificate slot uses.

* Value of 0 indicates either that the certificate
slot does not contain any certificates or that
the corresponding MULTI_KEY CONN_REQ or

MULTI_KEY CONN_RSP is false.

12:0] CertModel * Value of 1 indicates that the certificate slot
uses the DeviceCert model.

» Value of 2 indicates that the certificate slot
uses the AliasCert model.

* Value of 3 indicates that the certificate slot
uses the GenericCert model.

» All other values reserved.

[7:3] Reserved Reserved

96 Published Version 1.3.0

377
378

379

DSP0274 Security Protocol and Data Model (SPDM) Specification

Table 37 — Key usage bit mask shows the format for the KeyUsageMask fields.

Table 37 — Key usage bit mask

Bit offset Field Description

If set, the SlotID fieldsin

KEY EXCHANGE and

KEY EXCHANGE RSP canspecﬁy
this certificate slot. If not set,
the SlotID fieldsin

KEY EXCHANGE and

KEY EXCHANGE RSP shall not
specify this certificate slot.

0 KeyExUse

If set, the SlotID fieldsin
CHALLENGE and

CHALLENGE AUTH canspecﬁy
this certificate slot. If not set,
the SlotID fieldsin
CHALLENGE and

CHALLENGE AUTH shall not
specify this certificate slot.

1 ChallengeUse

If set, the SlotID fieldsin

GET MEASUREMENTS and
MEASUREMENTS can specify this
certificate slot. If not set, the
SlotID fieldsin

GET MEASUREMENTS and
MEASUREMENTS shall not
specify this certificate slot.

2 MeasurementUse

If set, the SlotID fieldsin
GET _ENDPOINT INFO and
ENDPOINT INFO can specify
this certificate slot. If not set,
the SlotID fields in

GET _ENDPOINT INFO and
ENDPOINT INFO shall not
specify this certificate slot.

3 EndpointinfoUse

[13:4] Reserved Reserved

If set, this field shall indicate

defined by standard
14 StandardsKeyUse R -y.s a.n ares
other than specifications

defined by DMTF.

If set, this field shall indicate

15 VendorKeyUse
Y usage defined by a vendor.

For slot O, at least one of KeyExUse , ChallengeUse, MeasurementUse , and EndpointInfoUse shall be set. The
corresponding capability bits shall be set appropriately.

Version 1.3.0 Published 97

Security Protocol and Data Model (SPDM) Specification DSP0274

380 10.8 GET_CERTIFICATE request and CERTIFICATE response messages

381 This request message shall retrieve the certificate chain from the specified slot number.

382 Table 38 — GET_CERTIFICATE request message format shows the GET CERTIFICATE request message format.
383 GET_CERTIFICATE request attributes shows the GET_CERTIFICATE request attributes.

384 Table 40 — Successful CERTIFICATE response message format shows the CERTIFICATE response message format.
385 Table 141 — CERTIFICATE response attributes shows the CERTIFICATE response attributes.

386 The Requester sends one or more GET CERTIFICATE requests to retrieve the certificate chain of the Responder.

387 Table 38 — GET_CERTIFICATE request message format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM
version.

0 SPDMVersion 1

Shall be 0x82 = GET_CERTIFICATE . See Table 4 —

1 RequestResponseCode 1
SPDM request codes.

Bit [7:4]. Reserved.
2 Param1 1 Bit [3:0]. Shall be the SlotID . Slot number of the
Responder certificate chain to read. The value in

this field shall be between 0 and 7 inclusive.

Request attributes.
See GET_CERTIFICATE request attributes.

3 Param?2 1

Shall be the offset in bytes from the start of the
certificate chain to where the read request
message begins. The Responder shall send its
certificate chain starting from this offset. For the
first GET_CERTIFICATE request for a given slot,
the Requester shall set this field to 0. For

4 Offset 2

subsequent requests, 0ffset is set to the next
portion of the certificate in that slot.

Shall be the length of certificate chain data, in

6 Length 2 bytes, to be returned in the corresponding
response. This field is an unsigned 16-bit integer.

388 Table 39 — GET_CERTIFICATE request attributes

98 Published Version 1.3.0

DSP0274

Bit offset

[7:1]

Field

SlotSizeRequested

Reserved

Security Protocol and Data Model (SPDM) Specification

Description

When SlotSizeRequested=1b inthe GET CERTIFICATE request, the Responder shall
return the number of bytes available for certificate chain storage in the

RemainderLength field of the response. When SlotSizeRequested=1b , the Offset
and Length fields in the GET_CERTIFICATE request shall be ignored by the Responder.

Reserved.

389 Table 40 — Successful CERTIFICATE response message format

Byte offset

Field

SPDMVersion

RequestResponseCode

Param1

Param?2

PortionLength

RemainderLength

CertChain

Size (bytes)

PortionLength or 0O

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x02 = CERTIFICATE . See Table 5— SPDM
response codes.

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID . Slot number of the
certificate chain returned.

The format of this field shall be the format that Table
141 — CERTIFICATE response attributes defines.

Shall be the number of bytes of this portion of the
certificate chain. This should be less than or equal to
Length received as part of the request. For example,
the Responder might set this field to a value less than
Length received as part of the request due to
limitations on the transmit buffer of the Responder. If
the requested Length fieldis @ then this field shall
be set to 0. If SlotSizeRequested=1b in the request,
this field shall be set to zero.

Shall be the number of bytes of the certificate chain
that have not been sent yet, after the current
response. For the last response, this field shall be 0 as
an indication to the Requester that the entire
certificate chain has been sent. If the requested
Length fieldis 6 and SlotSizeRequested=0b in
the request, then this field shall return the actual size
of the certificate chain in the slot. See Table 39 —
GET_CERTIFICATE request attributes for more detail.

Shall be the requested contents of the target
certificate chain, as described in Certificates and
certificate chains. If SlotSizeRequested=1b in the
request, this field shall be absent. If the requested
Length fieldis 0, then this field shall be absent.

Version 1.3.0

Published

99

Security Protocol and Data Model (SPDM) Specification DSP0274

390 Table 41 — CERTIFICATE response attributes

Bit offset Field Description

The value of this field shall be
the certificate model of the slot.
The format of this field shall be

2: ifi Inf
(201 Certificatelnfo the format of the CertModel
field that the certificate info
table defines.
All other bits Reserved Reserved.
391 Figure 9 — Responder cannot return full length data flow shows the high-level request-response message flow when

the Responder cannot return the entire data requested by the Requester in the first response.

392 Figure 9 — Responder cannot return full length data flow
393
Requester Responder
T T
. | .
Requester Buffer Size GET CERTIFICATE(0, 0x1000) Responder Buffer Size
= 0x1000 | =0x800
: CertificateLength = OxA0O
CERTIFICATE (0x800, 0x200) T PortionLength = 0x800
| RemainderLength = 0x200
T GET_CERTIFICATE (0x800, 0x200) ! Requests remaining portion,
| Offset 0x800, Length 0x0200
|
| PortionLength = 0x200
:<—CER-HF|CATE (0x200, 0) | RemainderLength =0
| |
| I
394 Endpoints that support the large SPDM message transfer mechanism message set shall use the large SPDM message

transfer mechanism messages to manage the transfer of the requested certificate chain when the CERTIFICATE
response is larger than either the DataTransferSize of the Requester or the transmit buffer of the Responder.

Specifically:

+ If the size of the CERTIFICATE response is greater than DataTransferSize and less than or equal to the
MaxSPDMmsgSize of the Requester or if the response is greater than the transmit buffer of the Responder, then
the Responder shall reply with an ERROR message of ErrorCode=LargeResponse .

+ If the Requester sets 0ffset to @ and Length to OxFFFF inthe GET CERTIFICATE request, the Responder
shall set PortionLength equal to the size of the complete certificate chain stored in the requested slot, shall set
RemainderLength to 0, and shall store the contents of the complete certificate chain in CertChain in the
CERTIFICATE response. Then the Responder shall fragment and return this response message in chunks, as per
the clauses presented in CHUNK_GET request and CHUNK_RESPONSE response message.

395 By setting SlotSizeRequested=1b in the request attributes, the Requester can query the size of the Responder’s

100 Published Version 1.3.0

396

397

398

399

400

401

402

DSP0274 Security Protocol and Data Model (SPDM) Specification

certificate slot. The Requester should query the slot size before any action that uses slot storage, because the
Responder might change the value of the slot size based on other actions.

10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE
messages

If the Requester supports mutual authentication, the requirements placed on the Responder in GET_CERTIFICATE
request and CERTIFICATE response messages clause shall also apply to the Requester. If the Responder supports
mutual authentication, the requirements placed on the Requester in the GET_CERTIFICATE request and CERTIFICATE
response messages clauses shall also apply to the Responder. The preceding two sentences essentially describe a role
reversal.

10.8.2 SPDM certificate requirements and recommendations

This specification defines a number of X.509 v3 required and optional fields for compliant SPDM certificates. SPDM
certificates also adhere to the requirements as RFC 5280 defines. Unless stated otherwise, the following clauses apply
to those certificates in the chain that are specific to a device instance, that is, the leaf certificate in the DeviceCert
model or the DeviceCert, all intermediate AliasCert s, and the leaf certificate in the AliasCert model. See
identity provisioning.

In addition, the Subject Alternative Name certificate extension otherName field is recommended for providing
device information. See the Definition of otherName using the DMTF OID.

In Table 42 — Field requirements, the requirements columns define the requirement for the corresponding certificate
models. In these columns, the corresponding field with a value of “Mandatory” shall be present in the leaf certificate.
Likewise, the corresponding field with a value of “Optional” can be present or absent in the leaf certificate. As a note,
this table reflects the minimum requirements from the perspective of this specification. The vendor, users of the
SPDM endpoint, and other standards such as RFC 5280 can place additional or more-restrictive requirements.

Table 42 — Field requirements

. q . n GenericCert L.
Field DeviceCert / AliasCert Requirements i Description
Requirements

If present in
the leaf
certificate,
the CA value
shall be
FALSE . The
CA value
shall be
present and
set to TRUE
for

Basic Constraints Mandatory Mandatory

intermediate
and root
certificates.

Version 1.3.0 Published 101

Security Protocol and Data Model (SPDM) Specification

Field

Version

Serial Number

Signature Algorithm

Issuer

Subject Name

DeviceCert / AliasCert Requirements

Mandatory

Mandatory

Mandatory

Mandatory

Mandatory

GenericCert
Requirements

Mandatory

Mandatory

Optional

Optional

Optional

DSP0274

Description

If present,
the version
of the
encoded
certificate
shall be
present and
shall be 3
(encoded as
value 2).

If present,
the CA-
assigned
serial
number shall
be present
with a
positive
integer
value.

If present,
the
Signature
algorithm
that the CA
uses shall be
present.

If present,
the CA
distinguished
name shall
be specified.

If present,
the subject
name shall
be present
and shall
represent the
distinguished
name
associated
with the leaf
certificate.

102

Published

Version 1.3.0

DSP0274

Security Protocol and Data Model (SPDM) Specification

GenericCert

Field DeviceCert / AliasCert Requirements Description

Validity Mandatory
Subject Public Key Info Mandatory
Key Usage Mandatory

403 Table 43 — Optional fields

Field

Subject Alternative Name otherName

Extended Key Usage (EKU)

SPDM Non-critical Certificate Extension

404 Certificate validity details

Requirements

If present,
see
Optional Certificate
validity
details, and
RFC 5280.

If present,
the device
public key
Mandatory and the
algorithm
shall be
present.

If present,
the key
usage bit for
digital
signature

Optional

shall be set.

Description

In some cases, it might be desirable to provide device-specific information
as part of the leaf certificate. DMTF chose the otherName field with a
specific format to represent the device information. The use of the
otherName field also provides flexibility for other alliances to provide
device-specific information as part of the leaf certificate. See the
Definition of otherName using the DMTF OID. Note that otherName field
formats specified by other standards are permissible in the certificate.

If present in a certificate, the Extended Key Usage extension indicates one
or more purposes for which the public key should be used. See Extended
Key Usage authentication OIDs.

If present in a certificate, the SPDM Non-critical Certificate Extension
indicates one or more non-critical OIDs associated with the certificate. See
SPDM Non-Critical Certificate Extension OID.

405 As per RFC 5280, the certificate validity period is the time interval during which the CA warrants that it will maintain
information about the status of the certificate. The field is represented as an ASN.1-encoded SEQUENCE of two dates:
the date when the certificate validity period begins (notBefore) and the date when the certificate validity period

ends (notAfter).

406 For a leaf certificate whose chain is stored in Slot 0, the notBefore date should be the date of certificate creation,

Version 1.3.0

Published 103

Security Protocol and Data Model (SPDM) Specification

DSP0274

and the notAfter date should be set to GeneralizedTime value 999912312359597 . Immutable leaf certificates’
notAfter dates should be set appropriately to ensure that the leaf certificate will not expire during the practical

lifetime of the device.

407

For leaf certificates whose chains are stored in Slots 1-7, the notBefore date should be the date of certificate

creation. The notAfter date can be set according to end user requirements, including values that will result in
certificate expiration and thus require certificate renewal and device recertification during the lifetime of the device.

408
409

Definition of otherName using the DMTF OID
id-DMTF OBJECT IDENTIFIER :
id-DMTF-spdm OBJECT IDENTIFIER :

DMTFOtherName ::= SEQUENCE {
type-id DMTF-oid

value [0] EXPLICIT ub-DMTF-device-info

}
-- 0ID for DMTF device info --

id-DMTF-device-info OBJECT IDENTIFIER ::

DMTF-oid

-- All printable characters except ":" -

DMTF-device-string

-- Device Manufacturer --
DMTF-manufacturer

-- Device Product --
DMTF-product

-- Device Serial Number --
DMTF-serialNumber

-- Device information string

ub-DMTF-device-info
product":"DMTF-serialNumber})

410

411 10.8.2.1 Extended Key Usage authentication OIDs

412

The Leaf certificate example shows an example leaf certificate.

Definition of otherName using the DMTF OID shows the definition of otherName using the DMTF OID:

= { 136141412}

:= { id-DMTF 274 }

{136141412 2741}
OBJECT IDENTIFIER (id-DMTF-device-info)

UTF8String (ALL EXCEPT ":")

DMTF-device-string

DMTF-device-string

DMTF-device-string

UTF8String ({DMTF-manufacturer": "DMTF-

The following Extended Key Usage purposes are defined for SPDM certificate authentication:

» SPDM Responder Authentication { id-DMTF-spdm 3 }: The presence of this OID shall indicate that a leaf
certificate can be used for Responder authentication purposes.

+ SPDM Requester Authentication { id-DMTF-spdm 4 }: The presence of this OID shall indicate that a leaf certificate

104

Published

Version 1.3.0

413

414

415

416

417

418

419

420

421

DSP0274 Security Protocol and Data Model (SPDM) Specification

can be used for Requester authentication purposes.

The presence of both OIDs shall indicate that the leaf certificate can be used for both Requester and Responder
authentication purposes. If present, these OIDs shall appear in the leaf certificate.

A Responder device that supports mutual authentication should include the SPDM Responder Authentication OID
in the Extended Key Usage field of its leaf certificate. A Requester device that supports mutual authentication should
include the SPDM Requester Authentication OID in the Extended Key Usage field of its leaf certificate. Note that
alternate OIDs specified by other standards are permissible in the certificate.

10.8.2.2 SPDM Non-Critical Certificate Extension OID

The id-DMTF-spdm-extension OID is a container of non-critical SPDM OIDs and their corresponding values. The OID
value for id-DMTF-spdm-extension shall be {id-DMTF-spdm 6 }. Furthermore, this OID is a Certificate Extension as
defined in RFC 5280, and its encoding shall follow the Extension syntax also defined in RFC 5280. The Extension
syntax defines three parameters: extnID, critical, and extnValue . The values of these three parameters for id-
DMTF-spdm-extension shall be the DER encoding of the ASN.1 value as the DMTF SPDM Extension Format defines.

Definition of DMTF SPDM Extension Format

id-DMTF-spdm-extension Extension ::=

{
extnID { id-DMTF-spdm 6 }
critical FALSE
extnValue id-spdm-cert-oids
}
id-spdm-cert-oids ::= SEQUENCE SIZE (1..MAX) OF id-spdm-cert-oid
id-spdm-cert-oid ::= SEQUENCE
{
spdm0ID OBJECT IDENTIFIER
spdm0IDdefinition OCTET STRING OPTIONAL
}

The spdm0ID field shall contain an OID defined in this specification. Only designated OIDs, permitted by this
specification, shall be allowed in spdm0ID . The spdm0IDdefinition field shall be a DER encoding of the ASN.1
value of the definition indicated by spdm0ID .

These clauses describe the definitions and formats of the SPDM OIDs contained in id-DMTF-spdm-extension . If
present, these OIDs shall only be contained in id-DMTF-spdm-extension .

10.8.2.2.1 Hardware identity OID

The id-DMTF-hardware-identity OID is defined to help identify the hardware identity certificate in a chain
regardless of the certificate chain model used (DeviceCert or AliasCert).If the AliasCert model is used, this
OID shall not be present in any alias certificates in the chain. The id-DMTF-hardware-identity OID shall have a
format as Hardware identity OID format defines.

Version 1.3.0 Published 105

422

423

424

425

426

427
428
429

430
431

Security Protocol and Data Model (SPDM) Specification DSP0274

Hardware identity OID format

id-DMTF-hardware-identity id-spdm-cert-oid :: = {
spdm0ID { id-DMTF-spdm 2 }
spdm0IDdefinition ABSENT

10.8.2.2.2 Mutable certificate OID

Mutable certificates may include the id-DMTF-mutable-certificate OID to identify them as mutable. If used, this
OID shall be present in all mutable certificates in the chain. The id-DMTF-mutable-certificate OID shall have a
format as Mutable certificate OID format defines.

Mutable certificate OID format

id-DMTF-mutable-certificate id-spdm-cert-oid ::= {
spdm0ID { id-DMTF-spdm 5 }
spdm0IDdefinition ABSENT

10.9 CHALLENGE request and CHALLENGE_AUTH response messages

This request message shall authenticate a Responder through the challenge-response protocol.
Table 44 — CHALLENGE request message format shows the CHALLENGE request message format.

Table 45 — Successful CHALLENGE_AUTH response message format shows the CHALLENGE AUTH response message

format.
Table 46 — CHALLENGE_AUTH response attribute shows the CHALLENGE AUTH response attribute.

Table 44 — CHALLENGE request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1)
version.
Shall be 0x83 = CHALLENGE . See Table 4 — SPDM
1 RequestResponseCode 1
request codes.
Shall be the S1lotID . Slot number of the Responder
certificate chain that shall be used for authentication.
2 Paraml 1 If the public key of the Responder was provisioned to

the Requester in a trusted environment, the value in
this field shall be 0xFF ; otherwise it shall be
between 0 and 7 inclusive.

106 Published Version 1.3.0

432

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

Shall be the type of measurement summary hash
requested:
e 0x0 . No measurement summary hash
requested.

e 0x1.TCB measurements only.

3 Param?2 1 « OxFF . All measurements.

« All other values reserved.

If a Responder does not support measurements
(MEAS_CAP=00b in its CAPABILITIES response), the
Requester shall set this value to 0x0 .

4 Nonce 32 The Requester should choose a random value.
The Requester can include application-specific

36 Context 8 information in Context. The Requester should fill this
field with zeros if it has no context to provide.

Table 45 — Successful CHALLENGE_AUTH response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
Shall be 0x03 = CHALLENGE AUTH . See Table 5 —
1 RequestResponseCode 1 -
SPDM response codes.
Shall be the Response Attribute Field. See Table 46 —
2 Param1 1

CHALLENGE_AUTH response attribute.

Shall be the slot mask. The bit in position K of this
byte shall be set to 1b if and only if slot number K
contains a certificate chain for the protocol version in

3 Param?2 1 the SPDMVersion field. (Bit O is the least significant
bit of the byte.) This field is reserved if the public key
of the Responder was provisioned to the Requester
in a trusted environment.

Shall be either the hash of the certificate chain as
Table 33 — Certificate chain format describes or, if
the public key of the Responder was provisioned to
the Requester in a trusted environment, the public

4 CertChainHash H key used for authentication. The Requester can use
this value to check that the certificate chain or public
key matches the one requested.

This field shall be in hash byte order.

4+ H Nonce 32 Shall be the Responder-selected random value.

Version 1.3.0 Published 107

Security Protocol and Data Model (SPDM) Specification

Byte offset Field

36+ H MeasurementSummaryHash

36 + H + MSHLength OpaqueDatalength

38 + H + MSHLength OpaqueData

Size (bytes)

MSHLength = H orO

OpaqueDatalength

DSP0274

Description

If the Responder does not support measurements

(MEAS_CAP=00b in its CAPABILITIES response) or if
the requested Param2 = 0x0 , this field shall be
absent.

If the requested Param2 = 0x1 , this field shall be the
combined hash of measurements of all measurable
components considered to be in the TCB required to
generate this response, computed as
hash(Concatenate(MeasurementBlock[0],
MeasurementBlock[1], ...)) , where
MeasurementBlock[x] denotes a measurement of
an element in the TCB and hash is the negotiated
base hashing algorithm. Measurements are
concatenated in ascending order based on their
measurement index as Table 53 — Measurement
block format describes.

If the requested Param2 = 0x1 and if there are no
measurable components in the TCB required to
generate this response, this field shall be 0 .

If the requested Param2 = OxFF , this field shall be
computed as
hash(Concatenate(MeasurementBlock[0O],
MeasurementBlock[1], ...,
MeasurementBlock[n])) of all supported
measurement blocks available in the measurement
index range 0x01 - OxFE , concatenated in
ascending index order. Indices with no associated
measurements shall not be included in the hash
calculation. See the Measurement index assignments
clause.

If the Responder supports both raw bit stream and
digest representations for a given measurement
index, the Responder shall use the digest form.

This field shall be in hash byte order.

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be © if no OpaqueData is
provided.

The Responder can include Responder-specific
information and/or information that its transport
defines. If present, this field shall conform to the
selected opaque data format in
OtherParamsSelection .

108

Published

Version 1.3.0

433

434

435

DSP0274

Byte offset

38 + H + MSHLength
+ OpaqueDatalength

46 + H + MSHLength
+ OpaqueDatalength

Security Protocol and Data Model (SPDM) Specification

Field Size (bytes) Description
This field shall be identical to the Context field of

RequesterContext 8 .
the corresponding request message.
Shall be the Responder’s signature. SigLen is the
size of the asymmetric-signing algorithm output that
the Responder selected in the last ALGORITHMS

.) response message to the Requester. The
Signature SiglLen

CHALLENGE_AUTH signature generation and
CHALLENGE_AUTH signature verification clauses,
respectively, define the signature generation and
verification processes.

Table 46 — CHALLENGE_AUTH response attribute

Bit offset Field Description

Shall contain the SlotID inthe Paraml field of the corresponding CHALLENGE request.
If the Responder’s public key was provisioned to the Requester previously, this field shall

3:0 SlotID
(3:01 be 0xF . The Requester can use this value to check that the certificate matched what was
requested.
[6:4] Reserved Reserved.
DEPRECATED: When mutual authentication is supported by both Responder and
Requester, the Responder shall set this bit to indicate that the Responder wants to
DEPRECATED: N
7 . authenticate the identity of the Requester using the basic mutual authentication flow. The
BasicMutAuthReq

Requester shall not set this bit in a basic mutual authentication flow. See Basic mutual
authentication flow. If mutual authentication is not supported, this bit shall be zero.

10.9.1 CHALLENGE_AUTH signature generation

To complete the CHALLENGE_AUTH signature generation process, the Responder shall complete these steps:

436 1. The

Responder shall construct M1, and the Requester shall construct M2 message transcripts. For

Responder authentication, see the request ordering and message transcript computation rules for M1/
M2 table. For Requester authentication in the mutual authentication scenario, see the Mutual

auth

entication message transcript clause.

437 - If aresponse contains ErrorCode=ResponseNotReady :
438 Concatenation function is performed on the contents of both the original request and the
successful response received during RESPOND IF READY . Neither the error response
(ResponseNotReady) nor the RESPOND IF READY request shall be included in M1/M2.
439 - If aresponse contains an ErrorCode other than ResponseNotReady :
Version 1.3.0 Published 109

Security Protocol and Data Model (SPDM) Specification DSP0274

440 No concatenation function is performed on the contents of both the original request and
response.

441 2. The Responder shall generate:

Signature = SPDMsign(PrivKey, M1, "challenge auth signing");

442 where:

o SPDMsign is described in Signature generation.

o PrivKey shall be the private key associated with the leaf certificate of the Responder in
slot=Paraml of the CHALLENGE request message. If the public key of the Responder was
provisioned to the Requester, then PrivKey shall be the associated private key.

443 10.9.2 CHALLENGE_AUTH signature verification
444 Any modifications to the previous request messages or to the corresponding response messages by an active person-
in-the-middle adversary or media error will result in M2 != M1 and thus lead to verification failure.

445 To complete the CHALLENGE AUTH signature verification process, the Requester shall complete this step:

446 1. The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, M2, "challenge auth
signing");

447 where:

o SPDMsignatureVerify is described in Signature verification. If result is success, the
verification was successful.
o PubKey shall be the public key associated with the leaf certificate of the Responder with
slot=Paraml of the CHALLENGE request message. If the public key of the Responder was
provisioned to the Requester, PubKey is the provisioned public key.

448 Figure 10 — Responder authentication: Runtime challenge-response flow shows the high-level request-response
message flow and sequence for the authentication of the Responder for runtime challenge-response.

449 Figure 10 — Responder authentication: Runtime challenge-response flow

110 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

450
1. The Requester sends a !
I
CHALLENGE request message. [CHALLENGE———) .
| N 1. The Responder computes signature using
once
| the Nonce and generates a
| CHALLENGE_AUTH response message
CHALLENGE_AUTH |
I
2. The Requester verifies |
Responder's signature. Cert Chain Hash, Nonce, |
Measurement SummaryHash, :
OpaqueData, Signature |
I
I I
451 10.9.2.1 Request ordering and message transcript computation rules for M1 and M2
452 This clause applies to Responder-only authentication.
453 Table 47 — Request ordering and message transcript computation rules for M1/M2 defines how the message

transcript is constructed for M1 and M2, which are used in signature calculation and verification in the
CHALLENGE_AUTH response message.

454 The possible request orderings leading up to and including CHALLENGE shall be:

* GET VERSION, GET CAPABILITIES, NEGOTIATE ALGORITHMS , GET DIGESTS, GET CERTIFICATE, CHALLENGE
(A1, B1, C1)

* GET VERSION, GET CAPABILITIES, NEGOTIATE ALGORITHMS , GET DIGESTS, CHALLENGE (Al, B3, C1)

GET VERSION, GET CAPABILITIES, NEGOTIATE ALGORITHMS , GET CERTIFICATE , CHALLENGE (Al, B4, C1)

* GET VERSION, GET CAPABILITIES, NEGOTIATE ALGORITHMS , CHALLENGE (Al, B2, C1)

+ GET DIGESTS, GET CERTIFICATE, CHALLENGE (A2, B1, C1)

* GET DIGESTS, CHALLENGE (A2, B3, C1)

* GET CERTIFICATE, CHALLENGE (A2, B4, C1)

* CHALLENGE (A2, B2, C1)

455 Immediately after Reset, M1 and M2 shall be null.

456 After the Requester receives a successful CHALLENGE AUTH response or the Requester sends a GET MEASUREMENTS
request, M1 and M2 shall be set to null .If a Negotiated State has been established, this will remain intact.

457 If a Requester sends a GET VERSION message, the Requester and Responder shall set M1 and M2 to null, clear all
Negotiated State and recommence construction of M1 and M2 starting with the new GET_VERSION message.

458 For additional rules, see general ordering rules.

459 Table 47 — Request ordering and message transcript computation rules for M1/M2

Requests Implementation requirements M1/M2=Concatenate(A, B, C)

Initial value N/A M1/M2=null

Version 1.3.0 Published 111

Security Protocol and Data Model (SPDM) Specification DSP0274

Requests Implementation requirements M1/M2=Concatenate(A, B, C)

Requester issues this request to allow the
Requester and Responder to determine an agreed-
upon Negotiated State . Also issued when the

GET VERSION issued . M1/M2=null
Requester detects an out-of-sync condition, or
when the signature verification fails, or when the
Responder provides an unexpected error response.
GET _VERSION , . . .
- Requester shall always issue these requests in this
GET CAPABILITIES, d Al= VCA
order.
NEGOTIATE_ALGORITHMS issued
After M1/M2 were re-initialized to null dueto a
Reset or a completed CHALLENGE_AUTH response,
Requester skipped these requests if the Responder
GET_VERSION , . L. q
= had previously indicated CACHE CAP=1 . In this
GET CAPABILITIES , A2=VCA
= . case, the Requester and Responder shall proceed
NEGOTIATE_ALGORITHMS skipped
with the previously determined Negotiated
State . These requests and responses are still
required for M1/M2 construction.
After NEGOTIATE_ALGORITHMS request completion
or after M1/M2 were re-initialized to null due to
GET DIGESTS, GET CERTIFICATE Bl=Concatenate(GET_DIGESTS, DIGESTS,
o - a Reset or a completed CHALLENGE AUTH
issued . R . GET CERTIFICATE, CERTIFICATE)
response, Requester issued these requests in this -
order if it had skipped the previous three requests.
After M1/M2 were re-initialized to null duetoa
GET DIGESTS, GET CERTIFICATE Resetor a completed CHALLENGE AUTH response, r——
=nu

skipped Requester skipped these requests because it could
use previously cached certificate information.

After M1/M2 were re-initialized to null dueto a
Reset or a completed CHALLENGE_AUTH response,
Requester skipped the GET CERTIFICATE request B3=Concatenate(GET DIGESTS, DIGESTS)
because it could use the previously cached
CERTIFICATE response

GET_DIGESTS issued
GET_CERTIFICATE skipped

After M1/M2 were re-initialized to null dueto a
Reset or a completed CHALLENGE_AUTH response,

GET_DIGESTS skipped, Requester skipped the GET DIGESTS request B4=Concatenate (GET_CERTIFICATE,
GET CERTIFICATE issued because it could use the previously cached CERTIFICATE)

CERTIFICATE response to make a byte-by-byte

comparison.

Requester issued this request to complete security
Cl=Concatenate(CHALLENGE,

CHALLENGE AUTH(excluding Signature)) . See
Table 44 — CHALLENGE request message format.

verification of current requests and responses. The
Signature bytes of CHALLENGE _AUTH shall not be
included in C.

CHALLENGE issued

CHALLENGE completion Completion of CHALLENGE sets M1/M2to null. M1/M2=null

112 Published Version 1.3.0

460

461

462

463

464

465

466
467

DSP0274 Security Protocol and Data Model (SPDM) Specification

Requests Implementation requirements M1/M2=Concatenate(A, B, C)

If the Requester issued commands other than

. GET_DIGESTS, GET_CERTIFICATE, and
Other issued - _ . M1/M2=null
CHALLENGE and skipped CHALLENGE completion,

then M1/M2 are setto null .

The Basic mutual authentication flow is DEPRECATED. Implementations should use session-based mutual
authentication as Figure 21 — Session-based mutual authentication example shows or optimized session-based
mutual authentication as Figure 22 — Optimized session-based mutual authentication example shows.

DEPRECATED

10.9.3 Basic mutual authentication

Unless otherwise stated, if the Requester supports mutual authentication, the requirements placed on the Responder
in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Requester.
Unless otherwise stated, if the Responder supports mutual authentication, the requirements placed on the Requester
in the CHALLENGE request and CHALLENGE_AUTH response messages clause shall also apply to the Responder. The
preceding two sentences essentially describe a role reversal, unless otherwise stated.

The basic mutual authentication flow shall start when the Requester successfully receives a CHALLENGE AUTH with
BasicMutAuthReq set. This flow shall utilize message encapsulation as described in the
GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages clauses to retrieve request
messages. The basic mutual authentication flow shall end when the encapsulated request flow ends.

This flow shall only allow GET DIGESTS, GET CERTIFICATE , CHALLENGE , and their corresponding responses to be
encapsulated. If other requests are encapsulated, the Requester can send an ERROR message of
ErrorCode=UnexpectedRequest and shall terminate the flow.

Figure 11 — Mutual authentication basic flow illustrates, as an example, the basic mutual authentication flow.

Figure 11 — Mutual authentication basic flow

Version 1.3.0 Published 113

468

469

470
471

Security Protocol and Data Model (SPDM) Specification

=
=

DSP0274

Both Requester
and Responder
set MUT_AUTH_CAP

bits.

BasicMutAuthReq is
set in the response.

Requester Responder
| |
I I
} GET_VERSION ;| ' |
| < VERSION I
I GET_CAPABILITIES 4>’l‘
< CAPABILITIES
I
I
I NEGOTIATE_ALGORITHMS 4),1-‘
— €—— ALGORITHMS I
I
I
I GET_DIGESTS }I—I
< DIGESTS
I
I
GET_CERTIFICATE 47#‘
CERTIFICATE I
I
I
I CHALLENGE >
L CHALLENGE_AUTH 4[' =
e - — — — — — — — — — — — — — |— = —
[BASIC k GET_ENCAPSULATED_REQUEST() »
MUTUAL |
| AUTHENTICATION / |
| FLOW ENCAPSULATED_REQUEST (GET_DIGEST) |
 —
| I DELIVER_ENCAPSULATED_RESPONSE (DIGEST)
| <€~ ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE)
| | DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE) l
: ! ENCAPSULATED_RESPONSE_ACK (CHALLENGE) i
| | DELIVER_ENCAPSULATED_RESPONSE (CHALLENGE_AUTH) —> l
!_ : <€——— ENCAPSULATED_RESPONSE_ACK () I

10.9.3.1 Mutual authentication message transcript

This clause applies to the Responder authenticating the Requester in a basic mutual authentication scenario.

Table 39 — Basic mutual authentication message transcript defines how the message transcript is constructed for M1

114

Published

Version 1.3.0

472

473

474

475

476

477

478

479

480

DSP0274 Security Protocol and Data Model (SPDM) Specification

and M2, which are used in signature calculation and verification in the CHALLENGE_AUTH response message when the

Responder authenticates the Requester.

The possible request orderings for the basic mutual authentication flow shall be one of the following (the Flow ID is in
parenthesis):

* GET DIGESTS, GET CERTIFICATE, CHALLENGE (BMAFO0)

* GET DIGESTS, CHALLENGE (BMAFT)

* GET _CERTIFICATE, CHALLENGE (BMAF2)

« CHALLENGE (BMAF3)

When the basic mutual authentication flow starts, that is, when GET ENCAPSULATED REQUEST is issued, M1 and M2
shall be set to null.

Table 48 — Basic mutual authentication message transcript

Flow ID M1/M2

BMAFO Concatenate(VCA, GET DIGESTS, DIGESTS, GET CERTIFICATE, CERTIFICATE, CHALLENGE , CHALLENGE AUTH
without the signature)

BMAF1 Concatenate(VCA, GET DIGESTS, DIGESTS, CHALLENGE , CHALLENGE AUTH without the Signature)

BMAF2 Concatenate(VCA, GET_CERTIFICATE, CERTIFICATE, CHALLENGE , CHALLENGE AUTH without the signature)

BMAF3 Concatenate(VCA, CHALLENGE , CHALLENGE_AUTH without the signature)

For GET CERTIFICATE and CERTIFICATE , these messages might need to be issued multiple times to retrieve the
entire certificate chain. Thus, each instance of the request and response shall be part of M1/M2 in the order that they

are issued.

DEPRECATED

10.10 Firmware and other measurements

This clause describes request messages and response messages associated with endpoint measurement. All request
messages in this clause shall be supported by an endpoint that returns MEAS CAP=01b or MEAS CAP=10b in its
CAPABILITIES response.

Figure 12 — Measurement retrieval flow shows the high-level request-response flow and sequence for endpoint
measurement. If the MEAS FRESH CAP bit in the CAPABILITIES response message returns 0 and if the Requester
requires fresh measurements, the Responder shall be Reset before GET_MEASUREMENTS is resent. The mechanisms
employed for Resetting the Responder are outside the scope of this specification.

Figure 12 — Measurement retrieval flow

Version 1.3.0 Published 115

481

482

483

484

485
486
487

488

Security Protocol and Data Model (SPDM) Specification DSP0274

I
1. The Requester sends a GET MEASUREMENTS |

GET_MEASUREMENTS request | N 1. The Responder sends a
message. | once MEASUREMENTS response message.
|

rMEASUREMENTS:

Number of

measurements,

2. Verify signature and verify length, Nonce,

measurements match expected measurement
values. blocks,

signature.

10.11 GET_MEASUREMENTS request and MEASUREMENTS response
messages

Measurements in SPDM are represented in the form of measurement blocks. A measurement block defines the
measurement block structure. A device can present measurements of different elements of its internal state, as well as
metadata to assist in the attestation of its state via measurements, as separate blocks. The GET_MEASUREMENTS
request message enables a Requester to query a Responder for the number of individual measurement blocks it
supports and request either specific blocks or all available blocks. The MEASUREMENTS response message returns the
requested blocks. A collection of one or more measurement blocks is called a measurement record.

Because issuing GET_MEASUREMENTS clears the M1/M2 message transcript, it is recommended that a Requester does
not send this message until it has received at least one successful CHALLENGE AUTH response message from the
Responder. This ensures that the information in message pairs GET_DIGESTS / DIGESTS and

GET_CERTIFICATE / CERTIFICATE has been authenticated at least once.

Table 49 — GET_MEASUREMENTS request message format shows the GET_MEASUREMENTS request message format.
Table 50 — GET_MEASUREMENTS request attributes shows the GET_MEASUREMENTS request message attributes.

Table 52 — Successful MEASUREMENTS response message format shows the MEASUREMENTS response message
format. The measurement blocks in MeasurementRecord shall be sorted in ascending order by index.

Table 49 — GET_MEASUREMENTS request message format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM

0 SPDMVersion 1 .
version.

Shall be 0xE® = GET_MEASUREMENTS . See Table 4 —

1 RequestResponseCode 1
SPDM request codes.

Shall be Request attributes. See Table 50 —

2 Param1 1 .
GET_MEASUREMENTS request attributes.

116 Published Version 1.3.0

DSP0274

Byte offset

4 + NL

5+ NL

Field

Param?2

Nonce

SlotIDParam

Context

Security Protocol and Data Model (SPDM) Specification

Size (bytes)
1

NL =320r0
1

8

489 Table 50 — GET_MEASUREMENTS request attributes

Bit offset

Field

SignatureRequested

Description

Shall be a Measurement operation.
* Avalue of 0x0 shall query the Responder for
the total number of measurement blocks
available.

* Avalue of 0xFF shall request all measurement
blocks.

* Avalue between 0x1 and OxFE, inclusive, shall
request the measurement block at the index
corresponding to that value.

The Requester should choose a random value. This
field is only present if Bit [0] of Paraml is 1. See
Table 50 — GET_MEASUREMENTS request attributes.

This field is only present if Bit [0] of Paraml is 1.

* Bit [7:4]. Reserved.

* Bit [3:0]. Shall be the SlotID . Slot number of
the Responder certificate chain that shall be
used for authenticating the measurement(s). If
the Responder’s public key was provisioned to
the Requester previously, this field shall be 0xF .
See Table 50 — GET_MEASUREMENTS request
attributes.

The Requester can include application-specific
information in Context. The Requester should fill this
field with zeros if it has no context to provide.

Description

If the Responder can generate a signature (MEAS_CAP is 16b in
the CAPABILITIES response and either BaseAsymSel or
ExtAsymSelCount is non-zero) a value of 1 indicates that a
signature on the measurement log is required. The Nonce field
shall be present in the request when this bit is set. The Responder
shall generate and send a signature in the response.

Avalue of 0 indicates that the Requester does not require a
signature. The Responder shall not generate a signature in the
response. The Nonce field shall be absent in the request.

For Responders that cannot generate a signature (MEAS_CAP is
01b inthe CAPABILITIES response or both BaseAsymSel and
ExtAsymSelCount are zero), the Requester shall always use @ .

Version 1.3.0

Published 17

490
491

Security Protocol and Data Model (SPDM) Specification DSP0274

Bit offset Field

1 RawBitStreamRequested

2 NewMeasurementRequested
[7:3] Reserved

Measurement index assignments

Description

This bit is applicable only if the measurement specification
supports only two representations, raw bit stream and digest, such
as when MeasurementSpecification of the Measurement block
format is set to DMTF , as Table 53 — Measurement block format
describes. If the measurement specification supports other
representations, this bit is ignored.

If the Responder can return either a raw bit stream or a hash for
the requested measurement, value 1 shall request the Responder
to return the raw bit stream version of such measurement. If the
Responder cannot return a raw bit stream for the measurement
(for example, if the raw bit stream contains confidential data that
the Responder cannot expose), it shall return the corresponding
hash. Another scenario in which the Responder cannot return a raw
bit stream is when the MEASUREMENTS message is greater than the
MaxSPDMmsgSize of the Requester. In cases where the Responder
cannot return a raw bit stream, the Requester can simply request a
digest.

Value 0 shall request the Responder to return a hash version of
the measurement. If the Responder cannot return a hash of the
measurement (for example, if the measurement represents a data
structure where a digest is not applicable), it shall return the
corresponding raw bit stream.

If the Responder has pending updates to measurement blocks that
have not yet taken effect, then value 1 shall be used to request
the Responder to return new values of the measurement blocks at
the indices requested in Param2 .

Value @ shall be used to request the Responder to return the
current values of the measurement blocks at the requested indices.

If the Responder has no pending updates to the measurement
blocks at the requested indices, then the Responder shall return
the current values of the measurement blocks, regardless of the
value of NewMeasurementRequested .

Reserved.

This specification imposes no requirements on the scope, type, or format of measurement a device associates with a

particular measurement index in the range 0x1 to OxEF . As a result, Responders can use the same index to report

different types of measurements based on their implementation. If available, a Requester can use a measurement

manifest to discover information about the specific measurement types available from a particular Responder and the
indices to which they correspond. When measurements follow the DMTF measurement specification format that Table
54 — DMTF measurement specification format describes, a measurement with a

DMTFSpecMeasurementValueType[6:0] equal to either 0x04 or 0x0A is the measurement manifest.

118

Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

492 To aid interoperability, this specification reserves indices 0xFO to OxFE inclusive for specific purposes. If a
Responder supports a type of measurement that Table 51 — Measurement index assigned range defines, it shall
always assign to it the corresponding index value. A Responder shall not assign indices 0xFO to OxFE to
measurements types other than those that Table 51 — Measurement index assigned range defines.

493 Table 51 — Measurement index assigned range
Measurement Index Measurement type Description
OxFO - OxFC Reserved Reserved.
Shall be the metadata on available measurements, as type
OxFD Measurement manifest DMTFSpecMeasurementValueType[6:0] = 0x04 or
DMTFSpecMeasurementValueType[6:0] = 0x0A defines.
. Shall be structured device mode information, as type
OxFE Device mode

DMTFSpecMeasurementValueType[6:0] = 0x05 defines.

494 Table 52 — Successful MEASUREMENTS response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0x60 = MEASUREMENTS . See Table 5 —
1 RequestResponseCode 1
SPDM response codes.
When Param2 in the requested measurement
operation is 0, this parameter shall return the total
2 Param1l 1

number of measurement indices on the device.
Otherwise, this field is reserved.

Version 1.3.0 Published 119

Security Protocol and Data Model (SPDM) Specification

Byte offset Field

3 Param2

4 NumberOfBlocks

5 MeasurementRecordLength
8 MeasurementRecord

8+ L Nonce

Size (bytes)

L

MeasurementRecordLength

32

DSP0274

Description

Bit [7:6]. Reserved.

Bit [5:4]. Content changed. If this message contains
a signature, this field shall indicate if one or more
MeasurementRecord fields of previous
MEASUREMENTS responses in the same
measurement log have changed.

00b : The Responder does not detect changes of
MeasurementRecord fields of previous
MEASUREMENTS responses in the same
measurement log, or this message does not contain
a signature.

01b : The Responder detected that one or more
MeasurementRecord fields of previous
MEASUREMENTS responses in the measurement log
being signed have changed. The Requester might
consider issuing GET_MEASUREMENTS again to
acquire latest measurements.

10b : The Responder detected no change in
MeasurementRecord fields of previous
MEASUREMENTS responses in the measurement log
being signed.

11b : Reserved.

Bit [3:0]. Shall be the SlotID . If this message
contains a signature, this field shall contain the slot
number of the certificate chain specified in the
GET_MEASUREMENTS request, or 0xF if the
Responder’s public key was provisioned to the
Requester previously. If this message does not
contain a signature, this field shall be set to 0x0 .

Shall be the number of measurement blocks in the
MeasurementRecord .

If Param2 in the requested measurement operation
is 0, this field shall be 0.

Shall be the size of the MeasurementRecord in
bytes.

If Param2 in the requested measurement operation
is 0, this field shall be 0.

Shall be the concatenation of all measurement
blocks that correspond to the requested
Measurement operation. Measurement block
defines the measurement block structure.

The Responder should choose a random value. This
field shall always be present.

120

Published

Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be 0 if no OpaqueData is
provided.

40+ L OpaqueDatalength 2

The Responder can include Responder-specific
information and/or information that its transport

42 + L OpaqueData OpaqueDatalLength defines. If present, this field shall conform to the
selected opaque data format in

OtherParamsSelection .
42+ L + This field shall be identical to the Context field of
RequesterContext 8 .
OpaqueDatalLength the corresponding request message.

Shall be Signature of the measurement log,
excluding the Signature field and signed using the
private key associated with the leaf certificate. The
Responder shall use the asymmetric signing
algorithm it selected during the last ALGORITHMS
Signature SiglLen response message to the Requester, and SiglLen is
the size of that asymmetric signing algorithm
output. This field is conditional and is only present

50+ L +
OpaqueDatalength

in the MEASUREMENTS response corresponding to a
GET_MEASUREMENTS request with Paraml1[@] setto
iy

495 10.11.1 Measurement block

496 Each measurement block that the MEASUREMENTS response message defines shall contain a four-byte descriptor,
offsets 0 through 3, followed by the measurement data that corresponds to a particular measurement index and
measurement type.

497 Table 53 — Measurement block format shows the format for a measurement block:

498 Table 53 — Measurement block format

Byte offset Field Size (bytes) Description

Shall be the index. When Param2 of the
GET_MEASUREMENTS request is between 0x1 and
OXFE , inclusive, this field shall match the request.

0 Index 1 . e .

Otherwise, this field shall represent the index of the
measurement block, where the index starts at 1 and

ends at the index of the last measurement block.

Version 1.3.0 Published 121

499

500

501
502

503

504

505

506

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

Bit mask. The value shall indicate the measurement
specification that the requested Measurement
follows and shall match the selected measurement
specification (MeasurementSpecificationSel)in
the ALGORITHMS message. See Table 21 —
Successful ALGORITHMS response message format.
Only one bit shall be set.

1 MeasurementSpecification 1

The Measurement specification field format table
defines the format for this field.

2 MeasurementSize 2 Shall be the size of Measurement , in bytes.

Shall be the measurement value whose format the
selected measurement specification

(MeasurementSpecificationSel) defines. If
DMTFmeasSpec is selected, the format of this field
shall be as Table 54 — DMTF measurement

4 Measurement MeasurementSize

specification format defines.

10.11.1.1 DMTF specification for the Measurement field of a measurement block

The present clause is the specification for the format of the Measurement field in a measurement block when the
MeasurementSpecification field’s Bit O (DMTF) is set. Table 54 — DMTF measurement specification format specifies

this format.

10.11.1.1.1 Measurement manifest

A measurement manifest refers to a data structure that describes the contents of other indices or itself contains
measurements. For instance, a manifest may describe which indices describe the different firmware modules’
measurements. When the Table 54 — DMTF measurement specification format is in use, this specification defines
multiple overarching manifest formats, as described in the DMTFSpecMeasurementValueType values table.

When DMTFSpecMeasurementValueType[6:0]=0x04 , the measurement manifest type is a freeform manifest. When
read, the manifest data is placed in the Measurement field of the Table 53 — Measurement block format. The format
of a freeform manifest is implementation specific and outside the scope of this specification.

When DMTFSpecMeasurementValueType[6:0]=0x0A , the measurement manifest type is a structured measurement
manifest. The structured manifest starts with an SVH header as Table 56 — Manifest measurement block format
describes. The SVH header is used to indicate the standards body or vendor that defines the manifest format. The
format of the Manifest data in a structured measurement manifest is outside the scope of this specification.

10.11.1.1.2 Hash-extend measurements

A device may support reporting of measurements through an “extend” scheme, which works as follows:

122 Published Version 1.3.0

DSP0274

initialize HEM = MH bytes of 0s

Security Protocol and Data Model (SPDM) Specification

for each extend operation, perform HEM = hash(Concatenate(HEM, DataToExtend)) for all data

elements to extend

507 An example of such a scheme is the Platform Configuration Register “extend” function in Trusted Platform Modules.
The hash() function is the measurement hash algorithm specified by the most recent ALGORITHMS response
message. The initial value of a hash-extend measurement (HEM) shall be MH bytes whose bits are all setto 0, where
MH is the size of MeasurementHashAlgo in the most recent ALGORITHMS response message. The hash-extend
measurement is updated by “extending” the current value to include the next data to extend (DataToExtend). The

extend operation is calculating the digest of the current value concatenated with the data to extend. Then repeat the

extend operation for additional data to extend.

508 Hash-extend measurements are reported in a measurement block. A Responder that reports hash-extend
measurements shall set DMTFSpecMeasurementValueType[6:0] to 0x8 for the corresponding measurement index.

509 Table 54 — DMTF measurement specification format
Byte offset Field Size (bytes)
0 DMTFSpecMeasurementValueType 1
1 DMTFSpecMeasurementValueSize 2
3 DMTFSpecMeasurementValue MS

510 Table 55 — DMTFSpecMeasurementValueType values

Description

Composed of:
+ Bit [7]. Shall indicate the representation in
DMTFSpecMeasurementValue .
+ Bit [6:0]. Indicates what is being measured by
DMTFSpecMeasurementValue .

These values are set independently and are
interpreted as follows:
* [7]=0b . Digest.
* [7]1=1b . Raw bit stream. The Responder should
ensure the raw bit stream does not contain
secrets.

» See DMTFSpecMeasurementValueType values
for defined values for
DMTFSpecMeasurementValueType[6:0].

Shall be the size of DMTFSpecMeasurementValue , in
bytes.

When DMTFSpecMeasurementValueType[7]=0b , the
DMTFSpecMeasurementValueSize shall be derived
from the measurement hash algorithm that the
ALGORITHMS response message returns.

Shall be the cryptographic hash or raw bit stream, as
indicated in DMTFSpecMeasurementValueType[7] .
For cryptographic hashes or digests, this field shall
be in hash byte order. The vendor defines the byte
order for raw bit streams.

Version 1.3.0 Published

123

Security Protocol and Data Model (SPDM) Specification DSP0274

DMTFSpecMeasurementValueType[6:0] Description

0x0 Immutable ROM.

0x1 Mutable firmware.

0x2 Hardware configuration, such as straps.

Firmware configuration, such as configurable firmware

0x3 .
policy.

Freeform measurement manifest. When
DMTFSpecMeasurementValueType[6:0]=0x4 , the
0x4 Responder should support setting
DMTFSpecMeasurementValueType[7] to either 6b or 1b.
The format of this manifest is device specific.

Structured representation of debug and device mode. See
Ox5 Device mode field of a measurement block. When
X
DMTFSpecMeasurementValueType[6:0]=0x5 ,

DMTFSpecMeasurementValueType[7] shall be setto 1b .

Mutable firmware’s version number. This specification does
not mandate a format for firmware version number. When
DMTFSpecMeasurementValueType[6:0]=0x7 ,
DMTFSpecMeasurementValueType[7] should be setto 1b .

0x6

Mutable firmware’s security version number, which should
0x7 be formatted as an 8-byte unsigned integer. When
X
DMTFSpecMeasurementValueType[6:0]=0x7 ,

DMTFSpecMeasurementValueType[7] should be setto 1b .

Hash-extend measurement. The measurement reported is
an HEM value as defined in Hash-extend measurements.
When DMTFSpecMeasurementValueType[6:0]=0x8 ,
DMTFSpecMeasurementValueType[7] shall be setto 6b .

0x8

Informational. The measurement is for the Requester’s
information only and does not carry sensitive security
0x9 attributes. For example, human-readable boot progress
information. When
DMTFSpecMeasurementValueType[6:0]=0x9 ,

DMTFSpecMeasurementValueType[7] shall be setto 1b .

Structured measurement manifest. When
DMTFSpecMeasurementValueType[6:0]=0xA , the
Responder shall support setting

OxA DMTFSpecMeasurementValueType[7] to 1b, and should
support setting DMTFSpecMeasurementValueType[7] to
0b . The manifest shall follow the format described in
Manifest format for a measurement block.

All other values Reserved.

124 Published Version 1.3.0

511

DSP0274

Security Protocol and Data Model (SPDM) Specification

10.11.1.2 Device mode field of a measurement block

Byte offset Field Size (bytes) Description
Fields with bits set to 1 indicate support for reporting
the associated state in OperationalModeState .
* Bit [0]. Shall indicate support for reporting
device in manufacturing mode.
« Bit [1]. Shall indicate support for reporting
device in validation mode.
* Bit [2]. Shall indicate support for reporting
device in normal operational mode.
0 OperationalModeCapabilities 4 Bit [3]. Shall indicate support for reporting
device in recovery mode.
* Bit [4]. Shall indicate support for reporting
device in Return Merchandise Authorization
(RMA) mode.
« Bit [5]. Shall indicate support for reporting
device in decommissioned mode.
« All other values reserved.
Fields with bits set to 1 indicate true for the reported
state.
« Bit [0]. Shall indicate the device is in
manufacturing mode.
< Bit [1]. Indicates the device is in validation mode.
« Bit [2]. Shall indicate the device is in normal
4 OperationalModeState 4 S EIE e s
+ Bit [3]. Shall indicate the device is in recovery
mode.
« Bit [4]. Shall indicate the device is in RMA mode.
< Bit [5]. Shall indicate the device is in
decommissioned mode.
« All other values reserved.
Version 1.3.0 Published 125

512

513

514

Security Protocol and Data Model (SPDM) Specification

DSP0274

Byte offset Field Size (bytes) Description

Fields with bits set to 1 indicate support for reporting

the associated state in DeviceModeState .

8 DeviceModeCapabilities 4

Bit [0]. Shall indicate support for reporting non-
invasive debug mode is active.

Bit [1]. Shall indicate support for reporting
invasive debug mode is active.

Bit [2]. Shall indicate support for reporting non-
invasive debug mode has been active this Reset
cycle.

Bit [3]. Shall indicate support for reporting
invasive debug mode has been active this Reset
cycle.

Bit [4]. Shall indicate support for reporting
invasive debug mode has been active on this
device at least once since exiting manufacturing
mode.

All other values reserved.

Fields with bits set to 1 indicate true for the reported

state.

12 DeviceModeState 4

10.11.1.3 Manifest format for a measurement block

Bit [0]. Shall indicate non-invasive debug mode
is active.

Bit [1]. Shall indicate invasive debug mode is
active.

Bit [2]. Shall indicate non-invasive debug mode
has been active this Reset cycle.

Bit [3]. Shall indicate invasive debug mode has
been active this Reset cycle.

Bit [4]. Shall indicate invasive debug mode has
been active on this device at least once since
exiting manufacturing mode.

All other values reserved.

When DMTFSpecMeasurementValueType[6:0]=0xA , the response shall be either a manifest or the digest of a
manifest. If DMTFSpecMeasurementValueType[7]1=0b , then the Measurement field of the Measurement block shall
contain a digest of the structure described in Table 56 — Manifest measurement block format. If
DMTFSpecMeasurementValueType[7]=1b , then the Measurement field of the Measurement block shall contain a

manifest in the format described in Table 56 — Manifest measurement block format.

Table 56 — Manifest measurement block format

126 Published

Version 1.3.0

515

516

DSP0274

Byte offset

2 + VendorIDLen

Security Protocol and Data Model (SPDM) Specification

Field Size (bytes) Description

Shall be a standards body or vendor-defined header,
SVH 2 + VendorIDLen as described in Table 64 — Standards body or
vendor-defined header (SVH).

Shall contain the manifest data, as defined by the
Manifest Variable registry, standards body, or vendor specified in the
ID and VendorID fields.

10.11.2 MEASUREMENTS signature generation

While a Requester can opt to require a signature in each of the request-response messages, it is advisable that the
cost of the signature generation process is minimized by amortizing it over multiple request-response messages

where applicable.

In this scheme, the Requester issues a number of requests without requiring signatures followed by

a final request requiring a signature over the entire set of request-response messages exchanged. The steps to

complete this scheme are as follows:

517 1. The Responder shall construct measurement log L1 and the Requester shall construct measurement

log L2 over their observed messages:

L1/L2 = Concatenate(VCA, GET MEASUREMENTS REQUEST1, MEASUREMENTS RESPONSE1, ...,
GET_MEASUREMENTS REQUESTn-1, MEASUREMENTS_ RESPONSEn-1,
GET_MEASUREMENTS_REQUESTn, MEASUREMENTS RESPONSEN)

518 where:

o

o

Concatenate is the standard concatenation function.

GET_MEASUREMENTS REQUEST1 is the entire first GET _MEASUREMENTS request message under
consideration, where the Requester has not requested a signature on that specific
GET_MEASUREMENTS request.

MEASUREMENTS RESPONSE1 is the entire MEASUREMENTS response message without the signature
bytes that the Responder sent in response to GET_MEASUREMENTS REQUEST1 .

GET_MEASUREMENTS REQUESTn-1 is the entire last consecutive GET_MEASUREMENTS request
message under consideration, where the Requester has not requested a signature on that specific
GET_MEASUREMENTS request.

MEASUREMENTS RESPONSEn-1 is the entire MEASUREMENTS response message without the
signature bytes that the Responder sent in response to GET MEASUREMENTS REQUESTn-1 .
GET_MEASUREMENTS REQUESTn is the entire first GET _MEASUREMENTS request message under
consideration, where the Requester has requested a signature on that specific GET_MEASUREMENTS
request. n is a number greater than or equal to 1. When n equals 1, the Requester has not
made any GET MEASUREMENTS requests without signature prior to issuing a GET_MEASUREMENTS
request with signature.

MEASUREMENTS RESPONSEn is the entire MEASUREMENTS response message without the signature

Version 1.3.0

Published 127

523

524

527

Security Protocol and Data Model (SPDM) Specification DSP0274

bytes that the Responder sent in response to GET_MEASUREMENTS REQUESTn .

519 Any communication between Requester and Responder other than a GET_MEASUREMENTS request or
response re-initializes L1/L2 computation to null . The GET MEASUREMENTS requests and
MEASUREMENTS responses before the L1/L2 re-initialization will not be covered by the signature in the
final MEASUREMENTS response. Consequently, it is recommended that the Requester not use the
measurements before verifying the signature.

520 An ERROR message of ErrorCode=ResponseNotReady shall not re-initialize L1/L2 - Requester and
Responder shall continue to construct L1/L2 with GET _MEASUREMENTS and MEASUREMENTS . An error
response with any error code other than ResponseNotReady shall re-initialize L1/L2 to null.

521 2. The Responder shall generate:

Signature = SPDMsign(PrivKey, L1, "measurements signing");

522 where:

o SPDMsign is described in Signature generation.

o PrivKey shall be the private key of the Responder associated with the leaf certificate stored in
SlotID of SlotIDParam in GET MEASUREMENTS . If the public key of the Responder was
provisioned to the Requester, then PrivKey shall be the associated private key.

10.11.3 MEASUREMENTS signature verification

To complete the MEASUREMENTS signature verification process, the Requester shall complete this step:

525 1. The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, L2, "measurements signing")

526 where:

o SPDMsignatureVerify is described in Signature verification. A successful verification is when
result is success .
o PubKey shall be the public key associated with the leaf certificate stored in SlotID of
SlotIDParam in GET MEASUREMENTS . PubKey is extracted from the CERTIFICATE response.If
the public key of the Responder was provisioned to the Requester, then PubKey shall be the
provisioned public key.

Figure 13 — Measurement signature computation example shows an example of a typical Requester-Responder
protocol where the Requester issues 1 to n-1 GET MEASUREMENTS requests without a signature, which is followed by a
single GET_MEASUREMENTS request n with a signature.

128 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

528 Figure 13 — Measurement signature computation example

529

Requester Responder

GET_MEASUREMENTS |——”—GET_MEASU REMENTS (1, Nosm

request 1 with no | . MEASUREMENTS
signature request MEASUREMENTS (1, NoSig) response 1 with no
signature

:

GET_MEASUREMENTS (n-1, NOSH’ MEASUREMENTS
. response n-1 with no
MEASUREMENTS (n-1, NoSig)

GET_MEASUREMENTS
request n-1 with no

signature request

signature

GET_MEASUREMENTS
request n with signature

I
I
[
il
I
I
|
I
[
I
I
[

response n with signature
computed as described

request i&———MEASUREMENTS (n, Sig)

as described

I

I
GET_MEASUREMENTS (n, Sig)—l:ll MEASUREMENTS

I

I

I

I

I
Verify Signature computed :
I

530 10.12 ERROR response message

531 For an SPDM operation that results in an error, the Responder should send an ERROR message to the Requester.
532 Table 57 — ERROR response message format shows the ERROR response format.

533 Table 58 — Error code and error data shows the detailed error code, error data, and extended error data.

534 Table 59 — ResponseNotReady extended error data shows the ResponseNotReady extended error data.

535 Table 60 — Registry or standards body ID shows the registry or standards body ID.

536 Table 61 — ExtendedErrorData format for vendor or other standards-defined ERROR response message shows the
ExtendedErrorData format definition for vendor or other standards-defined ERROR response messages.

537 Table 57 — ERROR response message format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM

0 SPDMVersion 1 .
version.

Version 1.3.0 Published 129

538

Security Protocol and Data Model (SPDM) Specification

Byte offset

Field

RequestResponseCode

Param1

Param?2

ExtendedErrorData

Table 58 — Error code and error data

ErrorCode

Reserved

InvalidRequest

Reserved

Busy

UnexpectedRequest

Unspecified

DecryptError

UnsupportedRequest

Value

0x00

0x01

0x02

0x03

0x04

0x05

0x06

0x07

DSP0274

Shall be 0x7F = ERROR . See Table 5 — SPDM

Shall be the ErrorCode. See Table 58 — Error code

Shall be the Error data. See Table 58 — Error code

Shall be Optional extended data. See Table 58 —

Size (bytes) Description
1

response codes.
1

and error data.
1

and error data.
0-32

Error code and error data.

Description Error data
Reserved. Reserved
One or more request fields

. . 0x00
are invalid
Reserved. Reserved
The Responder received the
request message and the
Responder decided to ignore
the request message, but the

0x00

Responder might be able to
process the request message
if the request message is
sent again in the future.

The Responder received an
unexpected request

message. For example, 0x00
CHALLENGE before
NEGOTIATE_ALGORITHMS .

Unspecified error occurred. 0x00

The receiver cannot decrypt

or verify data during the Reserved
session.
The RequestResponseCode
RequestResponseCode

or the SubCode (if

applicable) in the request
. request message.
message is unsupported.

or the SubCode in the

ExtendedErrorData
Reserved

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided.

No extended error data is
provided

130

Published

Version 1.3.0

DSP0274

Security Protocol and Data Model (SPDM) Specification

ErrorCode Value Description Error data ExtendedErrorData
The Responder has delivered
. an encapsulated request to No extended error data is
RequestInFlight 0x08 o . Reserved)
which it is still waiting for the provided.
response.
The Requester delivered an .
. . . No extended error data is
InvalidResponseCode 0x09 invalid response for an Reserved)
encapsulated response. provided.
o Maximum number of No extended error data is
SessionLimitExceeded 0x0A . Reserved .
concurrent sessions reached. provided.
The Request message
. . received by the Responder is No extended error data is
SessionRequired 0x0B . Reserved .
only allowed within a provided.
session.
Bit[7:3]. Reserved.
The device requires a reset to
complete the requested Bit[2:0]. If sent in
. operation. This ErrorCode response to GET CSR, No extended error data is
ResetRequired 0x0C . .
can be sent in response to the Responder- provided.
the GET_CSR or assigned
SET_CERTIFICATE message. CSRTrackingTag .
Otherwise, shall be 0.
The response is greater than See Table 62 —
ResponseToolarge 0x0D the MaxSPDMmsgSize of the Reserved ExtendedErrorData format for
requesting SPDM endpoint. ResponseToolarge.
The request is greater than
RequestToolarge 0x0E the MaxSPDMmsgSize of the Reserved Reserved
receiving SPDM endpoint.
The response is greater than
DataTransferSize and less See Table 63 —
LargeResponse 0xOF than or equal to Reserved ExtendedErrorData format for
MaxSPDMmsgSize of the LargeResponse.
requesting SPDM endpoint.
The SPDM message is lost.
For example, this error code
can be used to indicate the
Messagelost 0x10 loss of a Large Request, Reserved Reserved
Large Response, or the
request in a
ResponseNotReady .
Version 1.3.0 Published 131

539

Security Protocol and Data Model (SPDM) Specification

ErrorCode

InvalidPolicy

Reserved

VersionMismatch

ResponseNotReady

RequestResynch

OperationFailed

NoPendingRequests

Reserved

Vendor or Standards-Defined

Value

Ox11

0x12-0x40

0x41

0x42

0x43

0x44

0x45

0x46—0xFE

OxFF

Description Error data

The Responder received one
or more messages that
violated its security policy.

For example, if a Responder
requires both encryption and
MAC capabilities in a secure Reserved
session, and the Requester
only supports encryption,
then the Responder would
return this error code if the
Requester sends
KEY_EXCHANGE .

Reserved Reserved
Requested SPDM version is
not supported or is a

) PP . 0x00
different version from the
selected version.
See the RESPOND_IF_READY

0x00

request message format.

Responder is requesting

Requester to reissue

GET_VERSION to re- 0x00
synchronize. An example is
following a firmware update.

An internal error occurred
upon servicing the request 0x00
issued by the Requester.

The Responder does not
have any pending request for

a Reserved
GET_ENCAPSULATED_REQUEST

message.

Reserved. Reserved

Shall indicate the
registry or standards

Vendor or standards-defined

values in the ID column
of Table 60 — Registry
or standards body ID.

Table 59 — ResponseNotReady extended error data

body using one of the

DSP0274

ExtendedErrorData

Reserved

Reserved

No extended error data is
provided.

See Table 59 —
ResponseNotReady extended
error data.

No extended error data is
provided.

No extended error data is
provided.

Reserved

Reserved

See Table 61 —
ExtendedErrorData format for
vendor or other standards-
defined ERROR response
message for format definition.

132

Published

Version 1.3.0

540
541

DSP0274
Byte offset Field
0 RDTExponent
1 RequestCode
2 Token
8 RDTM

Table 60 — Registry or standards body ID

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

Description

Shall be the exponent expressed in logarithmic
(base-2 scale) to calculate RDT time in ps after
which the Responder can provide successful
completion response.

For example, the raw value 8 indicates that the

Responder will be ready in 2% =256 us.

Requester should use RDT to avoid continuous
pinging and issue the RESPOND IF READY request
message, as Table 65 — RESPOND_IF_READY request
message format shows, after RDT time.

For timing requirement details, see Table 7 — Timing
specification for SPDM messages.

Shall be the request code that triggered this
response.

Shall be the opaque handle that the Requester shall
pass in with the RESPOND_IF READY request
message, as Table 65 — RESPOND_IF_READY request
message format shows. The Responder can use the
value in this field to provide the correct response
when the Requester issues a RESPOND_IF READY
request.

Shall be the multiplier used to compute WT max in ps
to indicate that the response might be dropped after
this delay.

The multiplier shall always be greater than 1.
The Responder might also stop processing the initial
request if the same Requester issues a different

request.

For timing requirement details, see Table 7 — Timing
specification for SPDM messages.

For algorithm encoding in extended algorithm fields, consult the respective registry or standards body unless

otherwise specified.

Version 1.3.0

Published

133

Security Protocol and Data Model (SPDM) Specification

ID

0x0

0x1

0x2

0x3

0x4

0x5

0x6

0x7

0x8

0x9

Vendor ID length (bytes)

Registry or standards body name

DMTF

TCG

usB

PCI-SIG

IANA

HDBaseT

MIPI

CXL

JEDEC

VESA

DSP0274

Description

DMTF does not have a
Vendor ID registry. At
present, DMTF does not
define any algorithms
for use in extended
algorithms fields.

Vendor is identified by
using TCG Vendor ID
Registry. For extended
algorithms, see TCG
Algorithm Registry.

Vendor is identified by
using the vendor ID
assigned by USB.

Vendor is identified
using PCI-SIG Vendor ID.

The Private Enterprise
Number (PEN) assigned
by the Internet Assigned
Numbers Authority
(IANA) identifies the
vendor.

Vendor is identified by
using HDBaseT HDCD
entity.

The Manufacturer ID
assigned by MIPI
identifies the vendor.

Vendor is identified by
using CXL vendor ID.

Vendor is identified by
using JEDEC vendor ID.

For fields and formats
defined by the VESA
standards body, there is
no Vendor ID registry.

134

Published

Version 1.3.0

https://www.dmtf.org/
https://trustedcomputinggroup.org/
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/vendor-id-registry
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://trustedcomputinggroup.org/resource/tcg-algorithm-registry/
https://www.usb.org/
https://www.pcisig.com/
https://pcisig.com/membership/member-companies
https://www.iana.org/
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://www.iana.org/assignments/enterprise-numbers/enterprise-numbers
https://hdbaset.org/
https://mipi.org/
https://mid.mipi.org/
https://www.computeexpresslink.org/
https://www.jedec.org/
https://vesa.org/

DSP0274 Security Protocol and Data Model (SPDM) Specification

ID Vendor ID length (bytes) Registry or standards body name Description

The CBOR Tag Registry
that identifies the
format of the element,
as assigned by the
Internet Assigned
Numbers Authority
(IANA). The encoding of
the CBOR tag indicates
the length of the tag.

. When a CBOR Tag is

0xA Variable IANA CBOR .

used with a standards
body or vendor-defined
header, the
VendorIDLen field shall
be set to the length of
the encoded CBOR tag,
followed by the data
payload, which starts
with an encoded CBOR
tag.

542 Table 61 — ExtendedErrorData format for vendor or other standards-defined ERROR response message

Byte offset Field Size (bytes) Description

Shall be the length of the VendorID field.

If the vendor defines the error, the value of this field
shall equal the “Vendor ID length”, as Table 60 —
Registry or standards body ID describes, of the
corresponding registry or standards body name.

0 Len 1 If a registry or standards body defines the error, this
field shall be zero (@), which also indicates that the
VendorID field is not present.

The Error Data field in the ERROR message
indicates the registry or standards body name (that
is, Param2) and is one of the values in the ID
column of Table 60 — Registry or standards body ID.

The value of this field shall indicate the Vendor ID as

assigned by the registry or standards body. Table 60

— Registry or standards body ID describes the length

of this field. Shall be in little-endian format.

1 VendorID Len

The name of the registry or standards body in the
ERROR is indicated in the Error Data field (thatis,
Param2) and is one of the values in the ID column

of Table 60 — Registry or standards body ID.

Version 1.3.0 Published 135

https://www.iana.org/
https://www.iana.org/assignments/cbor-tags/cbor-tags.xhtml

543

544

545

546

547

Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes)

1+ Len OpaqueErrorData Variable

Table 62 — ExtendedErrorData format for ResponseToolarge
Byte offset Field Size (bytes)

0 ActualSize 4

Table 63 — ExtendedErrorData format for LargeResponse

Byte offset Field Size (bytes)

0 Handle 1

10.12.1 Standards body or vendor-defined header

DSP0274

Description

The vendor or standards body defines this value.

Description

Shall be the size of the actual response.

Description

Shall be a unique value that identifies the Large SPDM
Response and shall be the same value for all chunks of
the same large SPDM message.

The value of this field should either sequentially increase
or sequentially decrease with each large SPDM message
with the expectation that it will wrap around after
reaching the maximum or minimum value, respectively,
of this field. See CHUNK_GET request and
CHUNK_RESPONSE response message.

This specification uses the format that Table 64 — Standards body or vendor-defined header (SVH) describes to help
identify the entity that defines the format for a given payload. The clauses in the other parts of this specification

indicate to which payload this header applies.

Table 64 — Standards body or vendor-defined header (SVH)

Byte offset Field Size (bytes)
0 D 1

1 VendorIDLen 1

2 VendorID VendorIDLen

Description

Shall be one of the values in the ID column of Table
60 — Registry or standards body ID.

Shall be the Length in bytes of the VendorID field.

If the given payload belongs to a standards body or
registry, this field shall be 0.

Otherwise, the given payload belongs to the vendor
and therefore, this field shall be the length indicated
in the “Vendor ID length” column of Table 60 —

Registry or standards body ID for the respective ID .

If VendorIDLen is greater than zero, this field shall
be the ID of the vendor corresponding to the 1D
field. Otherwise, this field shall be absent.

136 Published

Version 1.3.0

548

549

550

551
552
553

554
555

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.13 RESPOND_IF_READY request message format

This request message shall ask for the response to the original request upon receipt of the ResponseNotReady error
code. If the response to the original request is ready, the Responder shall return that response message. If the
response to the original request is not ready, the Responder shall return an ERROR message of

ErrorCode = ResponseNotReady and return the same token as the previous ResponseNotReady response message.

The validity of the RESPOND IF READY request (see the SPDM Request and Response messages validity table) is
defined by the original request that caused the RESPOND IF READY flow. This means the last request to which the
Responder sent an ERROR message of ErrorCode=ResponseNotReady .

Figure 14 — RESPOND IF READY flow leading to completion shows the RESPOND IF READY flow:

Figure 14 — RESPOND_IF_READY flow leading to completion

Requester Responder
I I
| Sends response in less than CT
N I CHALLENGE(0x83) L ps to meet the crypto timeout
| Less than CT s requirement. .
) | ResponseNotReady with
Waits for more than ERROR (ResponseNotReady, 0x7, 8, 4) I Token=0x7, RDTExponent = 8 and
WT =2 "8 us but I RDTM = 4

less than WTMax = RESPOND IF READY(0x83. 0x7) l
((2A8)x4)_us LAY _r_ (X 5 XI

I
[
: Less than CT us Processing is complete

:d—CHALLENGE_AUTH()

Table 55 — RESPOND IF READY request message format shows the RESPOND IF READY request message format.

Table 65 — RESPOND_IF_READY request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0xFF = RESPOND_IF_READY . See Table 4 —
1 RequestResponseCode 1 -

SPDM request codes.

Version 1.3.0 Published 137

556

557

558

559

560

561

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

Shall be the original request code that triggered the
ResponseNotReady error code response. Shall match

2 Param1 1
the request code returned as part of the
ResponseNotReady extended error data.
Shall be the token that was returned as part of the
3 Param2 1

ResponseNotReady extended error data.

10.14 VENDOR_DEFINED_REQUEST request message

A Requester intending to define a unique request to meet its needs can use this request message. Table 66 —
VENDOR_DEFINED_REQUEST request message format defines the format.

The Requester should send this request message only after sending the GET VERSION , GET CAPABILITIES, and
NEGOTIATE_ALGORITHMS request sequence.

If the vendor intends that these messages are to be used before a session has been established, and the vendor
wishes to have the requests authenticated, then the vendor shall indicate how the transcript and/or message
transcript are changed to add the vendor-defined commands.

Table 66 — VENDOR_DEFINED_REQUEST request message format shows the VENDOR DEFINED REQUEST request
message format.

Table 66 — VENDOR_DEFINED_REQUEST request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
Shall be OxFE = VENDOR DEFINED REQUEST . See
1 RequestResponseCode 1
Table 4 — SPDM request codes.
2 Param1 1 Reserved.
3 Param2 1 Reserved.

Shall indicate the registry or standards body by using
4 StandardID 2 one of the values in the ID column of Table 60 —
Registry or standards body ID.

Shall be the length of the Vendor ID field. If the
VendorDefinedReqPayload is standards-defined,

6 Len 1 Len shall be 0 .If the VendorDefinedReqPayload
is vendor-defined, Len shall equal “Vendor ID
length”, as Table 60 — Registry or standards body ID

describes.

138 Published Version 1.3.0

562

563

564

565

DSP0274

Byte offset Field

7 VendorID

7 + Len Reglength

7+ Len +2 VendorDefinedReqPayload

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

Len

RegLength

Description

Shall be the Vendor ID as assigned by the registry or
standards body. Shall be in little-endian format.

Shall be the length of the
VendorDefinedRegPayload .

This field shall be used to send the request payload.

Other DMTF specifications may define VENDOR DEFINED REQUEST with StandardID setto 0. See
VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications for more information.

10.15 VENDOR_DEFINED_RESPONSE response message

A Responder can use this response message in response to VENDOR DEFINED REQUEST . Table 67 —
VENDOR_DEFINED_RESPONSE response message format defines the format.

Table 67 — VENDOR_DEFINED_RESPONSE response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
Shall be 0x7E = VENDOR DEFINED RESPONSE . See
1 RequestResponseCode 1
Table 5 — SPDM response codes.
2 Param1 1 Reserved.
3 Param2 1 Reserved.
Shall indicate the registry or standards body using
4 StandardID 2 one of the values in the ID column of Table 60 —
Registry or standards body ID.
Shall be the length of the Vendor ID field. If the
VendorDefinedRespPayload is standards-defined,
length shall be 0 .If the
6 Len 1 .)
VendorDefinedRespPayload is vendor-defined,
length shall equal “Vendor ID length” as Table 60 —
Registry or standards body ID describes.
Shall indicate the Vendor ID as assigned by the
7 VendorID Len registry or standards body. Shall be in little-endian
format.
Shall be the length of the
7 + Len RespLength 2 .
VendorDefinedRespPayload
. This value shall be used to send the response
7+ Len +2 VendorDefinedRespPayload RegLength
payload.
Version 1.3.0 Published 139

Security Protocol and Data Model (SPDM) Specification DSP0274

566 10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF
specifications

567 Other DMTF specifications may define VENDOR DEFINED REQUEST and VENDOR DEFINED RESPONSE messages with
StandardID setto O (“DMTF’, as defined in Table 50 — Registry or standards body ID) and Len set to 0. In this case,
VENDOR DEFINED REQUEST and VENDOR DEFINED RESPONSE messages shall specify the underlying DMTF
specification that defines them. A DMTF specification which defines the data model of VendorDefinedReqPayload for
VENDOR DEFINED REQUEST and the data model of VendorDefinedRespPayload for VENDOR DEFINED RESPONSE shall
follow Table 68 — Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF.

568 Table 68 — Format of VendorDefinedReqPayload and VendorDefinedRespPayload when StandardID is DMTF

Byte offset Field Size (bytes) Description

Shall be the DMTF specification’s DSP number as a
0 DSPNumber 2 16-bit integer. For example, DSP0287 shall use
OXO11F .

Shall be the version number of the DMTF
specification whose DSP number is populated in the

2 DSPVersion 2 DSPNumber field. The format of the version number
shall follow Table 10 — VersionNumberEntry
definition.

Shall be the actual payload data defined by the
4 VendorPayload Variable DMTF specification whose DSP number is populated
in the DSPNumber field.

569 10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response
messages

570 This request message shall initiate a handshake between Requester and Responder intended to authenticate the
Responder (or, optionally, both parties), negotiate cryptographic parameters (in addition to those negotiated in the
last NEGOTIATE ALGORITHMS / ALGORITHMS exchange), and establish shared keying material.

Table 69 — KEY_EXCHANGE request message format shows the KEY_EXCHANGE request message format, and Table
71 — Successful KEY_EXCHANGE_RSP response message format shows the KEY EXCHANGE RSP response message
format. The handshake is completed by the successful exchange of the FINISH requestand FINISH RSP response
messages presented in the next clause. The handshake depends on the tight coupling between these two request/
response message pairs.

571 The Requester-Responder pair can support two modes of handshakes. If HANDSHAKE IN THE CLEAR CAP is setin
both the Requester and the Responder, all SPDM messages exchanged during the Session Handshake Phase are sent
in the clear (outside of a secure session). Otherwise both the Requester and the Responder use encryption and/or
message authentication during the Session Handshake Phase using the Handshake secret derived at the completion

140 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

of the KEY_EXCHANGE_RSP message for subsequent message communication until the completion of the
FINISH RSP message.

572 Figure 15 — Responder authentication key exchange example shows an example of a Responder authentication key
exchange:
573 Figure 15 — Responder authentication key exchange example
574
Requester Responder

. GET_VERSION
L‘ VERSION

|
|
|

, GET_CAPABILITIES—TI
e CAPABILITIES |
|

| NEGOTIATE_ALGORITHMS4TL‘
— ALGORITHMS ,
|
|
|
|

I GET_DIGESTS

e DIGESTS

| GET_CERTIFICATE—TL‘

t CERTIFICATE I
—_— - - - — —
l If supported N | |
— T KEY_EXCHANGE j] |
: J-4—KEY_EXCHANGE_RSP I |
| |
| | FINISH pl |
| |« FINISH_RSP |_| |

I
L |

575 Figure 16 — Responder authentication multiple key exchange example shows an example of multiple sessions using

two independent sets of root session keys that coexist at the same time. The specification does not require a specific
temporal relationship between the second KEY_EXCHANGE request message and the first FINISH RSP response

Version 1.3.0 Published 141

Security Protocol and Data Model (SPDM) Specification DSP0274

message. However, to simplify implementation, a Responder might respond with an ERROR message of
ErrorCode=Busy to the second KEY EXCHANGE request message until the first FINISH RSP response message is

complete.
576 Figure 16 — Responder authentication multiple key exchange example
577
Requester Responder

|
D KEY_EXCHANGE (K1)j
’LF‘KEY_EXCHANGE_RSP (K1) I
T FINISH (K1) T
' FINISH_RSP (K1) i
|:I Enables authenticated and/or |
r_ _____ encrypted data transfer (K1) _>:
: KEY_EXCHANGE(KZ)j
JTiKEY_EXCHANGE_RSP (K2)
I FINISH (K2) TI
da FINISH_RSP (K2)
1J Enables authenticated and/or :
I

I encrypted data transfer (K2)
I Authenticated and/or encrypted I

data transfer (K1) continues

578 The handshake includes an ephemeral Diffie-Hellman (DHE) key exchange in which the Requester and Responder
each generate an ephemeral (that is, temporary) Diffie-Hellman key pair and exchange the public keys of those key
pairs in the ExchangeData fields of the KEY_EXCHANGE request message and KEY_ EXCHANGE RSP response
message. The Responder generates a DHE secret by using the private key of the DHE key pair of the Responder and
the public key of the DHE key pair of the Requester provided in the KEY_EXCHANGE request message. Similarly, the
Requester generates a DHE secret by using the private key of the DHE key pair of the Requester and the public key of
the DHE key pair of the Responder provided in the KEY EXCHANGE RSP response message. The DHE secrets are
computed as specified in clause 7.4 of RFC 8446. Assuming that the public keys were received correctly, both the
Requester and Responder generate identical DHE secrets from which session secrets are generated.

579 Diffie-Hellman group parameters are determined by the DHE group in use, which is selected in the most recent
ALGORITHMS response. The contents of the ExchangeData field are computed as specified in clause 4.2.8 of RFC
8446. Specifically, if the DHE key exchange is based on finite-fields (FFDHE), the ExchangeData field in
KEY_EXCHANGE and KEY_EXCHANGE_RSP shall contain the computed public value (Y = g~X mod p) for the specified

142 Published Version 1.3.0

580

581

582

DSP0274 Security Protocol and Data Model (SPDM) Specification

group (see Table 17 — DHE structure for group definitions) encoded as a big-endian integer and padded to the left
with zeros to the size of p in bytes. If the key exchange is based on elliptic curves (ECDHE), the ExchangeData field in
KEY EXCHANGE and KEY EXCHANGE RSP shall contain the serialization of X and Y, which are the binary
representations of the x and y values respectively in network byte order, padded on the left by zeros if necessary. The
size of each number representation occupies as many octets as are implied by the curve parameters selected.
Specifically, X is [0: C - 1] and Y is [C : D - 1], where C and D are determined by the group (see Table 17 — DHE
structure).

For SM2_P256 key exchange, the identifiers IDa and IDpg that the GB/T 32918.3-2016 specification defines are needed
to derive the shared secret. If this algorithm is selected, the ID for the Requester (that is, IDa) shall be the
concatenation of “Requester-KEP-dmtf-spdm-v” and SPDMversionString . Likewise, the ID for the Responder (that is,
IDg) shall be the concatenation of “Responder-KEP-dmtf-spdm-v” and SPDMversionString .

A Requester should generate a new DHE key pair for each KEY_EXCHANGE request message that the Requester sends.
A Responder should generate a new DHE key pair for each KEY EXCHANGE RSP response message that the
Responder sends.

Table 69 — KEY_EXCHANGE request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0xE4 = KEY_EXCHANGE . See Table 4 —
1 RequestResponseCode 1 -
SPDM request codes.
Shall be the type of measurement summary hash
requested:
0x0 : No measurement summary hash requested.
0x1 : TCB measurements only.
2 Param1 1
OxFF : All measurements.
All other values reserved.
If a Responder does not support measurements
(MEAS_CAP=00b in its CAPABILITIES response), the
Requester shall set this value to 0x0 .
Shall be the SlotID . Slot number of the Responder
certificate chain that shall be used for authentication.
If the public key of the Responder was provisioned to
3 Param2 1

the Requester in a trusted environment, the value in
this field shall be 0xFF ; otherwise it shall be
between 0 and 7 inclusive.

Version 1.3.0 Published 143

583

Security Protocol and Data Model (SPDM) Specification

Byte offset

40

40+ D

42 + D

Field

RegSessionID

SessionPolicy

Reserved

RandomData

ExchangeData

OpaqueDatalength

OpaqueData

Table 70 — Session policy

Size (bytes)

32

OpaqueDatalLength

DSP0274

Description

Shall be the two-byte Requester contribution to allow
construction of a unique four-byte session ID
between a Requester-Responder pair. The final
session ID (SessionID) = Concatenate(RegSessionID,
RspSessionID).

Shall be the session policy as Table 70 — Session
policy defines.

Reserved.
Shall be the Requester-provided random data.

Shall be the DHE public information generated by
the Requester. If the DHE group selected in the most
recent ALGORITHMS response is finite-field-based
(FFDHE), the ExchangeData represents the
computed public value. If the selected DHE group is
elliptic-curve-based (ECDHE), the ExchangeData
represents the X and Y values in network byte order.
Specifically, X is [0: C - 1] and Y is [C: D - 1]. In both
cases the size of D (and C for ECDHE) is derived from
the selected DHE group, as described in Table 23 —
DHE structure.

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be 0 if no OpaqueData is
provided.

If present, shall be the OpaqueData sent by the
Requester. Used to indicate any parameters that the
Requester wishes to pass to the Responder as part of
key exchange. If present, this field shall conform to
the selected opaque data format in
OtherParamsSelection .

144

Published

Version 1.3.0

DSP0274

Bit offset

[7:2]

Field

TerminationPolicy

EventAllPolicy

Reserved

Security Protocol and Data Model (SPDM) Specification

Description

This field specifies the behavior of the Responder when the
Responder completes a runtime code or configuration update that
affects the hardware or firmware measurement of the Responder.
The Requester selects the value. If not set, the Responder shall
terminate the session when the runtime update has taken effect. If
set, the Responder shall decide whether to terminate or continue
with the session based on its own policy. A policy example is one
where the Responder terminates the session whenever an update
to configuration or runtime code changes the security version of
the firmware that manages SPDM sessions. The policy of the
Responder is outside the scope of this specification.

To terminate a session, the Responder shall either respond with an
ERROR message of ErrorCode=RequestResynch to any SPDM
request received within the session or silently discard any request
received within the session until a GET_VERSION request is
received.

If set, the Responder shall subscribe the Requester to all events the
Responder supports. Upon successfully entering the application
phase of a session, the Responder may immediately send events.

If EVENT_CAP is not setin CAPABILITIES , the Responder shall
either respond with an ERROR message of
ErrorCode=InvalidRequest or silently discard the request.

Reserved

584 Table 71 — Successful KEY_EXCHANGE_RSP response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM

0 SPDMVersion 1 .
version.
Shall be 0x64 = KEY_EXCHANGE_RSP . See Table 5 —

1 RequestResponseCode 1 - -
SPDM response codes.
Shall be HeartbeatPeriod.
The value of this field shall be zero if Heartbeat is not

2 Param1l 1 supported by one of the endpoints. Otherwise, the
value shall be in units of seconds. Zero is a legal
value if Heartbeat is supported, and this means that a
heartbeat is not desired on this session.

3 Param2 1 Reserved.

Version 1.3.0 Published 145

Security Protocol and Data Model (SPDM) Specification

Byte offset

Field

RspSessionID

MutAuthRequested

SlotIDParam

RandomData

Size (bytes)

32

DSP0274

Description

Shall be the two-byte Responder contribution to
allow construction of a unique four-byte session ID
between a Requester-Responder pair. The final
session ID = Concatenate(ReqSessionID,
RspSessionID).

Bit 0. If set, the Responder is requesting to
authenticate the Requester (Session-based mutual
authentication) without using the encapsulated
request flow.

Bit 1. If set, Responder is requesting Session-based
mutual authentication with the encapsulated request
flow.

Bit 2. If set, Responder is requesting Session-based
mutual authentication with an implicit GET DIGESTS
request. The Responder and Requester shall follow
the optimized encapsulated request flow.

Bit [7:3]. Reserved.

At most one bit of Bit 0, Bit 1, or Bit 2 shall be set.

For encapsulated request flow and the optimized
encapsulated request flow details, see the
GET_ENCAPSULATED_REQUEST request and
ENCAPSULATED_REQUEST response messages
clause.

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID . Slot number of the
Requester certificate chain that shall be used for
mutual authentication, if MutAuthRequested Bit O is
set. If the public key of the Requester was
provisioned to the Responder through other means,
the value in this field shall be 0xF ; otherwise it shall
be between 0 and 7 inclusive. All other values
reserved.

For any other value of MutAuthRequested , this field
shall be set to @ and ignored by the Requester.

Shall be the Responder-provided random data.

146

Published

Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

Shall be the DHE public information generated by
the Responder. If the DHE group selected in the most
recent ALGORITHMS response is finite-field-based
(FFDHE), the ExchangeData represents the
computed public value. If the selected DHE group is

40 ExchangeData D elliptic-curve-based (ECDHE), the ExchangeData
represents the X and Y values in network byte order.
Specifically, X is [0: C - 1] and Y is [C: D - 1]. In both
cases the size of D (and C for ECDHE) is derived from
the selected DHE group, as described in Table 23 —
DHE structure.

If the Responder does not support measurements
(MEAS_CAP=00b in its CAPABILITIES response) or
requested Paraml = 0x0 , this field shall be absent.

If the requested Paraml = 0x1 , this field shall be the
combined hash of measurements of all measurable
components considered to be in the TCB required to
generate this response, computed as
hash(Concatenate(MeasurementBlock[0],
MeasurementBlock[1], ...)) , where
MeasurementBlock[x] denotes a measurement of
an element in the TCB and hash is the negotiated
base hashing algorithm. Measurements are
concatenated in ascending order based on their
measurement index as Table 53 — Measurement
block format describes.

If the requested Paraml = 0x1 and if there are no
measurable components in the TCB required to

40+ D MeasurementSummaryHash MSHLength = H or0 . e
generate this response, this field shall be © .

If requested Paraml = OxFF , this field shall be
computed as
hash(Concatenate(MeasurementBlock[0],
MeasurementBlock[1], ...,
MeasurementBlock[n])) of all supported
measurements available in the measurement index
range 0x01 - OxFE , concatenated in ascending
index order. Indices with no associated
measurements shall not be included in the hash
calculation. See the Measurement index assignments
clause.

If the Responder supports both raw bit stream and
digest representations for a given measurement

index, the Responder shall use the digest form.

This field shall be in hash byte order.

Version 1.3.0 Published 147

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be 0 if no OpaqueData is
provided.

40 + D + MSHLength OpaqueDatalength 2

If present, shall be the OpaqueData sent by the
Responder. Used to indicate any parameters that the
Responder wishes to pass to the Requester as part of
42 + D + MSHLength OpaqueData OpaqueDatalLength Lo
key exchange. If present, this field shall conform to
the selected opaque data format in

OtherParamsSelection .

Shall be the Signature over the transcript. SigLen
is the size of the asymmetric signing algorithm
42 + D + MSHLength . output the Responder selected via the last
Signature SiglLen
+ OpaqueDatalength ALGORITHMS response message to the Requester.
The Transcript for KEY_EXCHANGE_RSP signature

defines the construction of the transcript.
Conditional field.

If the Session Handshake Phase is encrypted and/or
message authenticated, this field shall be of length H
and shall equal the HMAC of the transcript hash,
using finished key as the secret key and using the
negotiated hash algorithm as the hash function. The
transcript hash shall be the hash of the transcript for
KEY_EXCHANGE_RSP HMAC as Transcript for
KEY_EXCHANGE_RSP HMAC shows. The
finished_key shall be derived from the Response
Direction Handshake Secret and is described in
Finished_key derivation. HMAC is described in RFC
2104.

42 + D + MSHLength
+ OpaqueDatalLength ResponderVerifyData H or0

+ SiglLen

If both the Requester and Responder set
HANDSHAKE IN THE_CLEAR CAP to 1, this field shall
be absent.

585 10.16.1 Session-based mutual authentication

586 Mutual authentication for KEY EXCHANGE occurs in the session handshake phase of a session.

587 To perform authentication of a Requester, the Responder sets the appropriate bit in the MutAuthRequested field of
the KEY EXCHANGE RSP message. When either Bit 1 or Bit 2 of MutAuthRequested are set, the encapsulated request
flow or the optimized encapsulated request flow shall be used accordingly to enable the Responder to obtain the
certificate chains and certificate chain digests of the Requester. For flow details and illustrations, see
GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages.

588 When either bit 1 or bit 2 of MutAuthRequested are set, the only allowed messages in this phase of the session shall

148 Published Version 1.3.0

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

589

590

591

592

593

594

595

596

DSP0274 Security Protocol and Data Model (SPDM) Specification

be GET DIGESTS, DIGESTS, GET CERTIFICATE, CERTIFICATE, and ERROR . If the Requester receives other requests
during this flow, the Requester can respond with an ERROR message of ErrorCode=UnexpectedRequest and shall
terminate the session.

If Bit 0 of MutAuthRequested is set, then mutual authentication shall be performed without exchanging any
messages between KEY EXCHANGE RSP and FINISH request. This is useful for Responders that have obtained a
Requester’s certificate chains in a previous interaction.

10.16.1.1 Specify Requester certificate for session-based mutual authentication

The SPDM key exchange protocol is optimized to perform key exchange with the least number of messages
exchanged. For Responder-only authentication and for mutual authentication where the Responder has obtained the
certificate chains of the Requester in a previous interaction, key exchange is carried out with two request/response
message pairs (KEY_EXCHANGE and KEY_ EXCHANGE RSP ; FINISH and FINISH RSP).In other cases where mutual
authentication is desired, additional encapsulated messages are exchanged between KEY EXCHANGE RSP and
FINISH to enable the Responder to obtain the certificate chains and certificate chain digests of the Requester.
However, in all cases the certificate chain (or raw public key) the Requester should authenticate against is specified by
the Responder via the SlotID field in KEY_EXCHANGE RSP , which precedes the aforementioned encapsulated
messages. This means that a Responder has no way of knowing in advance which SlotID value to use when
authenticating a Requester whose certificates it has not obtained in a previous interaction, other than the default
(Slot 0).

To address this case, the Responder explicitly designates the certificate chain to be used via the final

ENCAPSULATED RESPONSE ACK request issued inside the encapsulated request flow. Specifically, if either Bit 1 or 2 in
MutAuthRequested is setto 1,the Responder shall use an ENCAPSULATED RESPONSE ACK request with

Param2 = 0x02 and a 1-byte-long Encapsulated Request field containing the SlotID value. The Requester shall
use the certificate chain corresponding to the slot specified in the Encapsulated Request field.

If Bit 0 of MutAuthRequested is set, then no encapsulated messages are exchanged after KEY_EXCHANGE_RSP and
the certificate chain of the Requester is determined by the value of SlotIDParam in KEY EXCHANGE RSP .

10.17 FINISH request and FINISH_RSP response messages

This request message shall complete the handshake between Requester and Responder initiated by a KEY EXCHANGE
request. The purpose of the FINISH requestand FINISH RSP response messages is to provide key confirmation,
bind the identity of each party to the exchanged keys and protect the entire handshake against manipulation by an
active attacker. Upon receiving a FINISH request, the Responder shall ensure the session and the corresponding
session ID were created through a KEY_EXCHANGE request and corresponding KEY_EXCHANGE_RSP response. Table 72
— FINISH request message format shows the FINISH request message format and Table 73 — Successful
FINISH_RSP response message format shows the FINISH RSP response message format.

Table 72 — FINISH request message format

Version 1.3.0 Published 149

597

598

Security Protocol and Data Model (SPDM) Specification

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Param1l

3 Param2

4 Signature

4 + SiglLen RequesterVerifyData

Size (bytes)

SigLen

DSP0274

Description

Shall be the SPDMvVersion as described in SPDM
version.

Shall be 0xE5 = FINISH . See Table 4 — SPDM
request codes.

Bit 0. If set, the Signature field is included. This bit
shall be set when Session-based mutual
authentication occurs. All other bits reserved.

Shall be the SlotID . Only valid if Paraml = 0x01,
otherwise reserved. Slot number of the Responder
certificate chain that shall be used for authentication.
If the public key of the Responder was provisioned to
the Requester in a trusted environment, the value in
this field shall be 0xFF ; otherwise it shall be
between 0 and 7 inclusive.

Shall be the Signature over the transcript. SiglLen
is the size of the asymmetric signing algorithm

(RegBaseAsymAlg) output the Responder selected
via the last ALGORITHMS response message to the
Requester. If Paraml = 0x00 , SiglLen is zero and
this field shall be absent. Transcript for FINISH
signature, mutual authentication defines the
construction of the transcript, signature generation,
and verification.

Shall be an HMAC of the transcript hash using the
finished key as the secret key and using the
negotiated hash algorithm as the hash function. For
mutual authentication, the transcript hash shall be
the hash of the transcript for FINISH HMAC, mutual
authentication as the transcript for FINISH HMAC,
mutual authentication shows. Otherwise, it shall be
the hash of the transcript for FINISH HMAC,
Responder-only authentication as the transcript for
FINISH HMAC, Responder-only authentication shows.
The finished key shall be derived from Request
Direction Handshake Secret and is described in
Finished_key derivation. HMAC is described in RFC
2104.

If the handshake is performed in the clear (that is, if HANDSHAKE IN THE CLEAR CAP = 1 for both Requester and

Responder), and if either Bit 1 or Bit 2 in KEY_EXCHANGE RSP . MutAuthRequested is set, then upon receiving FINISH
the Responder shall confirm that the value in FINISH . Param2 matches the value that the Responder specified in the
final ENCAPSULATED RESPONSE ACK . EncapsulatedRequest .

Table 73 — Successful FINISH_RSP response message format

150

Published

Version 1.3.0

https://tools.ietf.org/html/rfc2104
https://tools.ietf.org/html/rfc2104

DSP0274

Byte offset

Field

SPDMVersion

RequestResponseCode

Paraml

Param2

ResponderVerifyData

Security Protocol and Data Model (SPDM) Specification

Size (bytes) Description

Shall be the SPDMvVersion as described in SPDM
version.

Shall be 0x65 = FINISH RSP . See Table 5 — SPDM
response codes.

1 Reserved.
1 Reserved.

Conditional field.

If the Session Handshake Phase is encrypted and/or
message authenticated (that is, if either the
Requester or the Responder set

HANDSHAKE IN_THE_CLEAR CAP to 0), this field shall
be absent.

If both the Requester and Responder support
HANDSHAKE IN_THE_CLEAR CAP field, this field shall
be of length H and shall equal the HMAC of the
transcript hash using finished key as the secret

H or0 key and using the negotiated hash algorithm as the
hash function. For Session-based mutual
authentication, the transcript hash shall be the hash
of the transcript for FINISH RSP HMAC, as the
transcript for FINISH_RSP HMAC, mutual
authentication shows. Otherwise, the transcript hash
shall be the hash of the transcript for FINISH RSP
HMAC, Responder-only authentication as the
transcript for FINISH_RSP HMAC, Responder-only
authentication shows. The finished key shall be
derived from Response Direction Handshake Secret
and is described in Finished_key derivation. HMAC is
described in RFC 2104.

599 10.17.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE

600 Transcript for KEY_EXCHANGE_RSP signature shows the transcript for the KEY EXCHANGE RSP signature:

601 Transcript for KEY_EXCHANGE_RSP signature

L
2.

w

v

VCA

[DIGESTS].* (if issued and MULTI KEY CONN RSP is true).

Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

[KEY_EXCHANGE] . *

[KEY EXCHANGE RSP] . * exceptthe Signature and ResponderVerifyData fields.

Version 1.3.0

Published 151

https://tools.ietf.org/html/rfc2104

Security Protocol and Data Model (SPDM) Specification DSP0274

602 The Responder shall generate the KEY EXCHANGE RSP signature from:

SPDMsign(PrivKey, transcript, "key exchange rsp signing");

603 where

* SPDMsign is described by the Signature generation clause.

* PrivKey shall be the private key of the Responder associated with the leaf certificate stored in SlotID in
KEY_EXCHANGE . If the public key of the Responder was provisioned to the Requester, then PrivKey shall be the
associated private key.

* transcript shall be the concatenation of the messages for a KEY EXCHANGE RSP signature.
604 The leaf certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY EXCHANGE request.

605 Likewise, the Requester shall verify the KEY EXCHANGE RSP signature using SPDMsignatureVerify(PubKey,
signature, transcript, "key exchange rsp signing") , where transcript is the concatenation of the messages
fora KEY_EXCHANGE RSP signature and PubKey is the public key of the leaf certificate of the Responder. The leaf
certificate of the Responder shall be the one indicated by SlotID in Param2 of KEY_ EXCHANGE request.

SPDMsignatureVerify is described in Signature verification. A successful verification shall be when
SPDMsignatureVerify returns success .

606 Transcript for KEY_EXCHANGE_RSP HMAC shows the transcript for KEY EXCHANGE RSP HMAC:
607 Transcript for KEY_EXCHANGE_RSP HMAC

1. VCA
2. [DIGESTS].* (if issued and MULTI_KEY CONN RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *
5. [KEY_EXCHANGE RSP] . * except the ResponderVerifyData field.

608 Transcript for FINISH signature, mutual authentication shows the transcript for the FINISH signature with mutual
authentication:

609 Transcript for FINISH signature, mutual authentication

1. VCA
2. [DIGESTS].* (if issued and MULTI KEY CONN RSP is true).

w

Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

[KEY EXCHANGE] . *
[KEY EXCHANGE RSP] . *
[DIGESTS].* (if encapsulated DIGEST isissued and MULTI KEY CONN_REQ is true).

N o vk

Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public
key in its provisioned format, if a certificate is not used.

152 Published Version 1.3.0

610

611

612

613

614

615

616

617

DSP0274 Security Protocol and Data Model (SPDM) Specification

8. [FINISH] . SPDM Header Fields

The Requester shall generate the FINISH signature from SPDMsign(PrivKey, transcript, "finish signing") ,
where transcript is the concatenation of the messages for FINISH signature and the PrivKey is the private key
of the leaf certificate of the Requester. The leaf certificate of the Requester shall be the one indicated in SlotID in
Param2 of FINISH request. SPDMsign is described in Signature generation.

Likewise, the Responder shall verify the FINISH signature using SPDMsignatureVerify(PubKey, signature,
transcript, "finish signing") , where transcript isthe concatenation of the messages fora FINISH signature
and the PubKey is the public key of the leaf certificate of the Requester. The leaf certificate of the Requester shall be
the one indicated in SlotID in Param2 of the FINISH request. SPDMsignatureVerify is described in Signature
verification. A successful verification is when SPDMsignatureVerify returns success .

Transcript for FINISH HMAC, Responder-only authentication shows the transcript for FINISH HMAC with Responder-
only authentication:

Transcript for FINISH HMAC, Responder-only authentication

1. VvCA
2. [DIGESTS].* (if issued and MULTI_KEY CONN RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *
5. [KEY_EXCHANGE_RSP] . *
6. [FINISH] . SPDM Header Fields

Transcript for FINISH HMAC, mutual authentication shows the transcript for FINISH HMAC with mutual
authentication:

Transcript for FINISH HMAC, mutual authentication

1. VCA
2. [DIGESTS].* (if issued and MULTI KEY CONN RSP is true).

w

Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

[KEY EXCHANGE] . *
[KEY EXCHANGE RSP] . *
[DIGESTS].* (if encapsulated DIGEST isissued and MULTI KEY CONN_REQ is true).

N o vk

Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public
key in its provisioned format, if a certificate is not used.

8. [FINISH] . SPDM Header Fields
9. [FINISH] . Signature

Transcript for FINISH_RSP HMAC, Responder-only authentication shows the transcript for FINISH RSP HMAC with
Responder-only authentication:

Transcript for FINISH_RSP HMAC, Responder-only authentication

Version 1.3.0 Published 153

618

619

620

621

622

623

624

Security Protocol and Data Model (SPDM) Specification DSP0274

1. vCA
2. [DIGESTS].* (if issued and MULTI_KEY CONN RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the

public key in its provisioned format, if a certificate is not used.
4 [KEY EXCHANGE] . *
5. [KEY_EXCHANGE RSP] . *
6. [FINISH] . *
7. [FINISH RSP] . SPDM Header fields

Transcript for FINISH_RSP HMAC, mutual authentication shows the transcript for FINISH RSP HMAC with mutual
authentication:

Transcript for FINISH_RSP HMAC, mutual authentication

1. VCA
2. [DIGESTS].* (if issued and MULTI KEY CONN RSP is true).

w

Hash of the specified certificate chain in DER format (that is, Param2 of KEY_ EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

[KEY_EXCHANGE] . *
[KEY_EXCHANGE RSP] . *
[DIGESTS].* (if encapsulated DIGEST isissued and MULTI KEY CONN_REQ is true).

Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public
key in its provisioned format, if a certificate is not used.

8. [FINISH] . *
9. [FINISH RSP] . SPDM Header fields

N o v ok

When multiple session keys are being established between the same Requester-Responder pair, the Signature over
the transcript during FINISH request is computed using only the corresponding KEY_ EXCHANGE ,
KEY EXCHANGE RSP, and FINISH request parameters.

For additional rules, see general ordering rules.

The Pre-Shared Key (PSK) key exchange scheme provides an option for a Requester and a Responder to perform

session key establishment with Symmetricokey cryptography. This option is especially useful for endpoints that do not
support asymmetric-key cryptography or certificate processing. This option can also be leveraged to expedite session

key establishment even if asymmetric-key cryptography is supported.

This option requires the Requester and Responder to have prior knowledge of a common PSK before the handshake.

fReVallie'of tRelPSK. For these same reasons, the HANDSHAKE IN THE CLEAR CAP is not applicable in a PSK key

154 Published Version 1.3.0

Léon GALL

Léon GALL

Léon GALL

Léon GALL

625

626

627

628

629
630

DSP0274 Security Protocol and Data Model (SPDM) Specification

exchange. Thus, for PSK-based session establishment, both the Responder and the Requester shall ignore the
HANDSHAKE IN THE CLEAR CAP bit.

A Requester can pair with multiple Responders. Likewise, a Responder can pair with multiple Requesters. A Requester-
Responder pair can be provisioned with one or more PSKs. An endpoint can act as a Requester to one device and

simultaneously a Responder to another device. {Iflboth'endpoints can'act as Requester or Responder, then the

fmechanism for PSK'provisioning!is outside the scope of this specification. The size of the provisioned PSK is

determined by the security strength requirements of the application, but it should be at least 128 bits. It is

fecommended to be at least 256 bits in order to resist dictionary attacks, particularly when the Requester and

Responder cannot both contribute sufficient entropy during the exchange.
Two message pairs are defined for this option:

* PSK_EXCHANGE / PSK_EXCHANGE_RSP
* PSK_FINISH / PSK_FINISH RSP

The PSK_EXCHANGE message carries three responsibilities:

1. Prompts the Responder to retrieve the specific PSK.
2. Exchanges contextual information between the Requester and the Responder.

3. Proves to the Requester that the Responder knows the correct PSK and has derived the correct session
keys.

Figure 17 — PSK_EXCHANGE: Example shows an example of the PSK_EXCHANGE message:

Figure 17 — PSK_EXCHANGE: Example

Version 1.3.0 Published 155

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Security Protocol and Data Model (SPDM) Specification DSP0274

631
Requester Responder
T |
|

: GET_VERSION

1y VERSION :
| Optional - [GET_CAPABILITIES ! |
L CAPABILITIES	
	NEGOTlATE_ALGORlTHMS;Tj
> ALGORITHMS ,	
————— R e	
If rted	
If supported	PSK_EXCHANGE Il
L p———PSK_EXCHANGE_RSP	
	PSK_FINISH
> PSK_FINISH_RSP ,	

| |
!_ I I |

632 Table 74 — PSK_EXCHANGE request message format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM
version.

0 SPDMVersion 1

Shall be 0xE6 = PSK EXCHANGE . See Table 4 —

1 RequestResponseCode 1
SPDM request codes.

156 Published Version 1.3.0

DSP0274

Byte offset

10

12

12+ P

12+ P + R

Field

Paraml

Param?2

ReqSessionID

OpaqueDatalength

PSKHint

RequesterContext

OpaqueData

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

OpaqueDatalLength

Description

Shall be the type of measurement summary hash
requested:

0x0 : No measurement summary hash requested.

0x1 : TCB measurements only.

OxFF : All measurements.

All other values reserved.

If a Responder does not support measurements
(MEAS_CAP=00b in its CAPABILITIES response), the
Requester shall set this value to 0x0 .

Shall be the session policy. See Table 70 — Session
policy.

Shall be the two-byte Requester contribution to allow
construction of a unique four-byte session ID
between a Requester-Responder pair. The final
session ID = Concatenate(ReqSessionID,
RspSessionID).

Shall be the length of PSKHint in bytes.
Shall be the length of RequesterContext in bytes.

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be © if no OpaqueData is
provided.

Shall be the information required by the Responder
to retrieve the PSK. Optional.

Shall be the context of the Requester. Shall include a
nonce or non-repeating counter of at least 32 bytes
and, optionally, relevant information contributed by
the Requester.

Optional. If present, the OpaqueData sent by the
Requester is used to indicate any parameters that the
Requester wishes to pass to the Responder as part of
PSK-based key exchange. If present, this field shall
conform to the selected opaque data format in
OtherParamsSelection .

633 The field PSKHint is optional. It is absent if P is set to 0. It is introduced to address two scenarios:

+ The Responder is provisioned with multiple PSKs and §tores themin'seclire storage.

Version 1.3.0

Published

157

Léon GALL

Léon GALL

634

635

636

Security Protocol and Data Model (SPDM) Specification

DSP0274

- The Responder does not store the actual value of the PSK but can derive the PSK using PSkHint . For example, if
the Responder has an immutable UDS (Unique Device Secret) in fuses, then during provisioning a PSK can be
derived from the UDS (or a derivative value) and a non-secret salt known by the Requester. During session key
establishment, the salt value is sent to the Responder in PSKHint of PSK EXCHANGE . This'mechanism allows the

The ReguesterContext is the contribution of the Requester to session key derivation. It shall contain a fionce or

non-repeating counter to ensure that the derived session keys are ephemeral to mitigate against replay attacks. If a
non-repeating counter is used, the counter'shall'not be reset for the lifetime of the device. The RequesterContext

can also contain other information from the Requester.

Upon receiving a PSK_EXCHANGE request, the Responder:

1
2
3.
4

Generates PSK from PSKHint , if necessary.

Generates ResponderContext , if supported.

Derives the finished key of the Responder by following the key schedule.

Constructs the PSK_EXCHANGE_RSP response message and sends it to the Requester.

Table 75 — PSK_EXCHANGE_RSP response message format

Byte offset

10

Field

SPDMVersion

RequestResponseCode

Param1

Param2

RspSessionID

Reserved

Q

OpaqueDatalength

Size (bytes)

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x66 = PSK_EXCHANGE RSP . See Table 5 —
SPDM response codes.

Shall be HeartbeatPeriod.

The value of this field shall be zero if Heartbeat is not
supported by one of the endpoints. Otherwise, the
value shall be in units of seconds. Zero is a legal
value if Heartbeat is supported, and this means that a
heartbeat is not desired on this session.

Reserved.

Shall be the two-byte Responder contribution to
allow construction of a unique four-byte session ID
between a Requester-Responder pair. The final
session ID (SessionID) = Concatenate(RegSessionID,
RspSessionID).

Reserved.
Shall be the length of ResponderContext in bytes.

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be 0 if no OpaqueData is
provided.

158

Published

Version 1.3.0

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

If the Responder does not support measurements
(MEAS_CAP=00b in its CAPABILITIES response)or
requested Paraml = 0x0 , this field shall be absent.

If the requested Paraml = 0x1 , this field shall be the
combined hash of measurements of all measurable
components considered to be in the TCB required to
generate this response, computed as
hash(Concatenate(MeasurementBlock[0],
MeasurementBlock[1], ...)) , where
MeasurementBlock[x] denotes a measurement of
an element in the TCB and hash is the negotiated
base hashing algorithm. Measurements are
concatenated in ascending order based on their
measurement index as Table 53 — Measurement
block format describes.

If the requested Paraml = 0x1 and if there are no
measurable components in the TCB required to

12 MeasurementSummaryHash MSHLength = H or 0 . oo
generate this response, this field shall be 0 .

If requested Paraml = OxFF , this field shall be
computed as
hash(Concatenate(MeasurementBlock[0],
MeasurementBlock[1], ...,
MeasurementBlock[n])) of all supported
measurements available in the measurement index
range 0x01 - OxFE , concatenated in ascending
index order. Indices with no associated
measurements shall not be included in the hash
calculation. See the Measurement index assignments
clause.

If the Responder supports both raw bit stream and
digest representations for a given measurement
index, the Responder shall use the digest form.

This field shall be in hash byte order.

Shall be the context of the Responder. Optional. If
12 + MSHLength ResponderContext Q present, shall include a nonce and/or information
contributed by the Responder.

Optional. If present, the OpaqueData sent by the

Responder is used to indicate any parameters that
12 + WSHLength + 0 OpaqueData OpaqueDataLength the Responder wishes to pass to the Requester as

part of PSK-based key exchange. If present, this field
shall conform to the selected opaque data format in

OtherParamsSelection .

Version 1.3.0 Published 159

637

638

639

640

641

642

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

12 + MSHLength + Q . Shall be the data to be verified by the Requester
ResponderVerifyData H) o

+ OpaqueDatalength using the finished key of the Responder.

The ResponderContext is the contribution of the Responder to session key derivation. It should contain a nonce or
non-repeating counter and other information from the Responder. If a non-repeating counter is used, the counter
shall not be reset for the lifetime of the device. Because the Responder can be a constrained device that cannot
generate a nonce, ResponderContext is optional. However, the Responder is required to use ResponderContext if it
can generate a nonce.

Note that the nonce in ResponderContext is critical for anti-replay. If a nonce is not present in ResponderContext ,
then the Responder is not challenging the Requester for real-time knowledge of the PSK. Such a session is subject to
replay attacks—that is, a person-in-the-middle attacker could record and replay prior PSK_EXCHANGE and
PSK_FINISH messages and set up a session with the Responder. But the bogus session would not leak secrets, so
long as the PSK and session keys of the prior replayed session are not compromised.

If ResponderContext is absent, such as when PSK CAP inthe CAPABILITIES of the Responderis 01b, the
Requester shall not send PSK FINISH , because the session keys are solely determined by the Requester and the
Session immediately enters the Application Phase. If and only if the ResponderContext is present in the response,
such as when PSK CAP inthe CAPABILITIES of the Responderis 10b, the Requester shall send PSK FINISH with
RequesterVerifyData to prove that it has derived correct session keys.

To calculate ResponderVerifyData , the Responder calculates an HMAC. The HMAC key is the finished key of the
Responder. The data is the hash of the concatenation of all messages sent up to this point between the Requester
and the Responder. For messages that are encrypted, the plaintext messages are used in calculating the hash.

[GET VERSION].*

[VERSION].*

[GET CAPABILITIES].* (if issued)

[CAPABILITIES].* (if issued)

[NEGOTIATE ALGORITHMS].* (if issued)

[ALGORITHMS] .* (if issued)

[PSK EXCHANGE] . *

[PSK_EXCHANGE RSP].* except the ResponderVerifyData field

0 NOoO U WN

Note that, even if CERTIFICATE and Responder-signed response messages (such as CHALLENGE AUTH) were issued,
these messages would not be included in the data for calculating ResponderVerifyData . In other words, the identity
of the signer of the response messages is not bound to the identity of the sender of PSK EXCHANGE RSP . Therefore,
to mitigate Responder identity impersonation, if the Requester has received a response with a signature and if there is
no cryptographic binding between the signer of the Responder-signed response and the sender of
PSK_EXCHANGE RSP , then the Requester should not issue PSK EXCHANGE . The method of cryptographic binding
between the signer of the Responder-signed response and the sender of PSK_EXCHANGE RSP is outside the scope of
this specification.

Upon receiving PSK_EXCHANGE RSP , the Requester:

1. Derives the finished key of the Responder by following the key schedule.

160 Published Version 1.3.0

Léon GALL

DSP0274 Security Protocol and Data Model (SPDM) Specification

2. Verifies ResponderVerifyData by calculating the HMAC in the same manner as the Responder. If
verification fails, the Requester terminates the session.

3. If the Responder contributes to session key derivation, such as when the ResponderContext field is
present in the PSK_EXCHANGE RSP response, it constructs the PSK_FINISH request and sends it to the
Responder.

643 If a successful PSK EXCHANGE RSP has been received by the Requester, and the PSK CAP of the Responderis 16b,
and the ResponderContext field is presentin the PSK_EXCHANGE RSP response then, for the session ID created by
the PSK_EXCHANGE and PSK_EXCHANGE RSP messages, the next request shall be PSK_FINISH .

644 10.19 PSK_FINISH request and PSK_FINISH_RSP response messages

645 These messages shall complete the mutually-authenticated handshake between Requester and Responder initiated
by a PSK_EXCHANGE request. The PSK_FINISH request proves to the Responder that the Requester knows the PSK
and has derived the correct session keys. This is achieved by an HMAC value calculated with the finished key of
the Requester and messages of this session. The Requester shall send PSK_FINISH only if ResponderContext is
present in PSK_EXCHANGE RSP . Upon receiving a PSK FINISH request, the Responder shall ensure the session and
the corresponding session ID were created through a PSK_EXCHANGE request and corresponding PSK_EXCHANGE RSP
response.

646 Table 76 — PSK_FINISH request message format describes the PSK FINISH request message format:

647 Table 76 — PSK_FINISH request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
Shall be 0xE7 = PSK_FINISH . See Table 4 — SPDM
1 RequestResponseCode 1
request codes.
2 Paraml 1 Reserved.
3 Param2 1 Reserved.
. Shall be the data to be verified by the Responder
4 RequesterVerifyData H

using the finished key of the Requester.

648 To calculate RequesterVerifyData , the Requester calculates an HMAC. The key is the finished key of the
Requester, as described in the Key schedule clause. The data is the hash of the concatenation of all messages sent so
far between the Requester and the Responder. For messages that are encrypted, the plaintext messages are used in
calculating the hash.

1. [GET_VERSION].*
2. [VERSION].*
3. [GET_CAPABILITIES].* (if issued)

Version 1.3.0 Published 161

649
650

651

652

653

654

655

656
657

Security Protocol and Data Model (SPDM) Specification DSP0274

[CAPABILITIES].* (if issued)
[NEGOTIATE_ALGORITHMS].* (if issued)

[ALGORITHMS].* (if issued)

[PSK EXCHANGE] . *

[PSK_EXCHANGE RSP].*

[PSK FINISH].* except the RequesterVerifyData field

©O© 00 N O U~

For additional rules, see general ordering rules.

Upon receiving the PSK FINISH request, the Responder derives the finished key of the Requester and calculates
the HMAC independently in the same manner and verifies that the result matches RequesterVerifyData . If
verification is successful, the Responder constructs the PSK_FINISH RSP response and sends it to the Requester.
Otherwise, the Responder sends the Requester an ERROR message of ErrorCode=InvalidRequest .

Table 77 — Successful PSK_FINISH_RSP response message format describes the successful PSK_FINISH RSP
response message format:

Table 77 — Successful PSK_FINISH_RSP response message format

Byte offset Field Size (bytes) Description

) Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1

version.

Shall be 0x67 = PSK FINISH RSP . See Table 5 —
1 RequestResponseCode 1

SPDM response codes.
2 Param1 1 Reserved.
3 Param2 1 Reserved.

10.20 HEARTBEAT request and HEARTBEAT_ACK response messages

This request shall keep a session alive if HEARTBEAT is supported by both the Requester and Responder. The
HEARTBEAT request shall be sent periodically as indicated in HeartbeatPeriod in either the KEY EXCHANGE RSP or
PSK_EXCHANGE_RSP response messages. The Responder shall terminate the session if session traffic is not received

for two successive HeartbeatPeriod s. Likewise, the Requester shall terminate the session if session traffic, including
ERROR responses, is not received for two successive HeartbeatPeriod s. Session traffic includes encrypted data at

the transport layer. How an SPDM endpoint is informed of encrypted data at the transport layer is outside the scope
of this specification. The Requester can retry HEARTBEAT requests.

The timer for the Heartbeat period shall start at either the transmission (for Responders) or the reception (for
Requesters) of either the FINISH RSP or the PSK FINISH RSP response messages. When determining the value of
HeartbeatPeriod , the Responder should ensure this value is sufficiently greater than T1 .

For session termination details, see session termination phase.

Table 78 — HEARTBEAT request message format describes the message format.

162 Published Version 1.3.0

658

659
660

661

662

663

664

665
666

DSP0274 Security Protocol and Data Model (SPDM) Specification

Table 78 — HEARTBEAT request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0xE8 = HEARTBEAT request. See Table 4 —
1 RequestResponseCode 1
SPDM request codes.
2 Paraml 1 Reserved.
3 Param2 1 Reserved.

Table 79 — HEARTBEAT_ACK response message format describes the format for the Heartbeat Response.

Table 79 — HEARTBEAT_ACK response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
Shall be 0x68 = HEARTBEAT ACK response. See Table
1 RequestResponseCode 1
5 — SPDM response codes.
2 Param1l 1 Reserved.
3 Param2 1 Reserved.

10.20.1 Heartbeat additional information

The transport layer might allow the HEARTBEAT request to be sent from the Responder to the Requester. This is
recommended for transports capable of asynchronous bidirectional communication.

10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages

This request shall be used to update session keys. There are many reasons for doing this, but an important one is
when the per-record nonce will soon reach its maximum value and roll over. The KEY_UPDATE request can also be
issued by the Responder using the GET _ENCAPSULATED REQUEST mechanism. A KEY_UPDATE request shall perform
the operation given in Paraml and defined in Table 82 — KEY_UPDATE operations. Because the Responder can also
send this request, it is possible that two simultaneous key updates, one for each direction, can occur. However, only
one KEY UPDATE request for a single direction shall occur at a time. Until the session key update synchronization
successfully completes, subsequent KEY UPDATE requests for the same direction shall be considered a retry of the
original KEY_UPDATE request.

Table 80 — KEY_UPDATE request message format describes the KEY UPDATE request message format:

Table 80 — KEY_UPDATE request message format

Version 1.3.0 Published 163

667
668

669
670

Security Protocol and Data Model (SPDM) Specification

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Paraml

3 Param2

Size (bytes)

DSP0274

Description

Shall be the SPDMvVersion as described in SPDM
version.

Shall be 0xE9 = KEY_UPDATE Request. See Table 4 —
SPDM request codes.

Shall indicate the key operation. See Table 82 —
KEY_UPDATE operations.

Shall be the requesting SPDM endpoint assigned tag.
This field shall contain a unique number to aid the
responding SPDM endpoint in differentiating
between the original and any retry requests. A retry
request shall contain the same tag number as the
original.

Table 81 — KEY_UPDATE_ACK response message format describes the KEY_UPDATE_ACK response message format:

Table 81 — KEY_UPDATE_ACK response message format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Param1l

3 Param2

Size (bytes)

Description

Shall be the SPDMversion as described in SPDM
version.

Shall be 0x69 = KEY_UPDATE_ACK response. See
Table 5 — SPDM response codes.

Shall indicate the key operation. This field shall reflect
the Key Operation field of the request. See Table 82
— KEY_UPDATE operations

Shall be the tag. This field shall reflect the Tag
number (Param2) from the KEY_UPDATE request.

Table 82 — KEY_UPDATE operations describes the KEY _UPDATE operations:

Table 82 — KEY_UPDATE operations

Value Operation Description
0 Reserved Reserved.
Shall update only the single-direction key associated with the direction of
1 UpdateKey
the request.
2 UpdateAllKeys Shall update the keys for both directions.
) Shall ensure that the key update is successful and that old keys can be safely
3 VerifyNewKey .
discarded.
4 - 255 Reserved Reserved.
164 Published Version 1.3.0

671

672

673

674
675
676

677

678

679

680

681

682

683

684

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.21.1 Session key update synchronization

In the key update process, to clarify, the term “sender” means the SPDM endpoint that issued the KEY UPDATE
request, and the term “receiver” means the SPDM endpoint that received the KEY UPDATE request. To ensure the key
update process is seamless while still allowing the transmission and reception of records, both sender and receiver
shall follow the prescribed method described in this clause.

The data transport layer shall ensure that data transfer during key updates is managed in such a way that the correct
keys are used before, during, and after the key update operation. How this is accomplished by the data transport
layer is outside the scope of this specification.

Both the sender and the receiver shall derive the new keys as detailed in Major secrets update.
The sender shall not use the new transmit key until after reception of the KEY UPDATE ACK response.

The sender and receiver shall use the new key on the KEY UPDATE request with the VerifyNewKey command and all
subsequent commands until another key update is performed.

In the case of a KEY_UPDATE request with UpdateAllKeys , the receiver shall use the new transmit key for the
KEY_UPDATE_ACK response. The KEY_UPDATE request with UpdateAllKeys should only be used with physical
transports that are single master to ensure that simultaneous UpdateAllKeys requests do not occur.

If the sender has not received KEY_UPDATE_ACK , the sender can retry or end the session. The sender shall not
proceed to the next step until successfully receiving the corresponding KEY UPDATE ACK .

Upon the successful reception of the KEY UPDATE ACK , the sender shall transmit a KEY_UPDATE request with the
VerifyNewKey operation using the new session keys. The sender can retry until the corresponding KEY_UPDATE ACK
response is received. However, the sender shall be prohibited, at this point, from restarting this process or going back
to a previous step. Its only recourse in error handling is either to retry the same request or to terminate the session.

For UpdateKey , upon successful reception and verification of the KEY UPDATE with the VerifyNewKey operation,
the receiver can discard the old session keys. For UpdateAllKeys , upon successful reception and verification of the
KEY UPDATE_ACK with the UpdateAllKeys operation, the sender can discard the old session keys that protect
receiver-sent messages. Upon successful reception and verification of the KEY _UPDATE with the VerifyNewKey
operation, the receiver can discard the old session keys that protect sender-sent messages.

In certain scenarios, the receiver might need additional time to process the KEY_UPDATE request such as when
processing data already in its buffer. Thus, the receiver can reply with an ERROR message of ErrorCode=Busy . The
sender should retry the request after a reasonable period of time and with a reasonable number of retries to prevent
premature session termination.

Finally, it bears repeating that a key update in one direction can happen simultaneously with a key update in the
opposite direction. In this case, the aforementioned synchronization process occurs independently but simultaneously
for each direction.

Figure 18 — KEY_UPDATE protocol example flow illustrates a typical key update initiated by the Requester to update
its secret. In this example, the Responder and Requester are both capable of message authentication and encryption.

Figure 18 — KEY_UPDATE protocol example flow

Version 1.3.0 Published 165

Security Protocol and Data Model (SPDM) Specification DSP0274

685

Requester

KEY_EXCHANGE Responder

i

I

KEY_EXCHANGE_RSP ,

L {FINISH (S] ——p

@ @ «@———] {FINISH_RSP yqs, 11
id——J { Application Data }

EOLC

|

. 4

Encrypted and Authenticated -
by 8, and S, depending on
direction.

{ KEY_UPDATE }:[[S,]]

Key Operation == UpdateKey,
Tag == 0x01

|
+
I
|
I
|
|
|
|
|
|
|
|
-l
|
|
|
|
I
|
|
I
|
|
L

<« { KEY_UPDATE_ACK }:[[S,]]

. Key Operation == UpdateKey,

. — -)

(——— {KEY_UPDATE):[[S,,,,]

Legend:

Authenticated and
Encrypted Session

Notice new - -~
secrets used!

Key Operation == VerifyNewKey

Tag == 0x02 ™ A@\AA

<¢— {KEY_UPDATE_ACK }:[[S,]]

Tag == 0x02

4——' { Application Data } |——>
I

Encrypted and Authenticated - - -1
by S, .., and S, depending

i
1
I
I
I
I
I
}
1
[}
i
E Key Operation == VerifyNewKey
1
1
I
I
]
I
I
i
1
:

on direction.

686 Figure 19 — KEY_UPDATE protocol change all keys example flow illustrates a typical key update initiated by the
Requester to update all secrets. In this example, the Responder and Requester are both capable of message
authentication and encryption.

687 Figure 19 — KEY_UPDATE protocol change all keys example flow

166 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

688

Requester KEY_EXCHANGE Responder

I

KEY_EXCHANGE_RSP ,

I

{ FINISH }:[[S]| F———p

;—
i » | { FINISH_RSP }::[[S,]] 4|j|
(:: (:: i<__J { Application Data }

@&

|

.-

Encrypted and authenticated -
by 8, and S, depending on
direction.

I
+
I
I
1
1
I
I
I
I
E
< 71— {KEY_UPDATE }[[S,]]
I
i Key Operation == UpdateAllKeys, T
| Tag == 0x01 BN
1 AN
| “
I
L

<« { KEY_UPDATE_ACK }:[[S

3,new]]

-t

4, Key Operation == UpdateAllKeys,

= (S«
W/ E Tag == 0x01
X
=it

(——— {KEY_UPDATE):[[S,,,,]

Notice new - -~
secrets used!

Key Operation == VerifyNewKey
Tag == 0x02

= A@A
<! { KEY_UPDATE_ACK}:[[S,]I W

Key Operation == VerifyNewKey
Tag == 0x02

4——' { Application Data } |——>
I

Legend:

Authenticated and
Encrypted Session

Encrypted and authenticated - -- 1
by S, .., and S, depending

|
I
|
|
|
|
|
|
|
I
|
|
|
|
I
|
|
|
I
|
|
|
|
1
|
1

on direction.

689 10.21.2 KEY_UPDATE transport allowances

690 On some transports, bidirectional communication can occur asynchronously. On such transports, the transport can
allow or disallow the KEY _UPDATE to be sent asynchronously without using the GET_ENCAPSULATED REQUEST
mechanism. The transport should define the actual method to use. Such a definition is outside the scope of this
specification.

Version 1.3.0 Published 167

Security Protocol and Data Model (SPDM) Specification DSP0274

691 Figure 20 — KEY_UPDATE protocol example flow 2 illustrates a key update over a physical transport that has a
limitation whereby only a single device (often called the “primary”) is allowed to initiate all transactions on that bus.
This physical transport specifies that a Responder shall alert the Requester through a side-band mechanism and to
utilize the GET _ENCAPSULATED REQUEST mechanism to fulfill SPDM-related requirements. Note also in this example
that the Requester and Responder are both capable of encryption and message authentication.

692 Figure 20 — KEY_UPDATE protocol example flow 2

168 Published Version 1.3.0

DSP0274

693

Requester

Security Protocol and Data Model (SPDM) Specification

Responder

Encrypted and Authenticated - -|-
by §, and S, depending on
direction.

: Encrypted and

: Authenticated by S,
;and S, depending
: on direction.

{ FINISH }::[IS ,]]

| |
]]
E—| KEY_EXCHANGE !
<—| KEY_EXCHANGE_RSP .
——

|

{ FINISH_RSP }:[[S

Wl

{ GET_ENCAPSULATED_REQUEST }
A

{ ENCAPSULATED_REQUEST
SIS

Request == KEY_UPDATE
Key Operation == UpdateKey,
Tag == 0x01

{ DELIVER_ENCAPSULATED_RESPONSE }

RIS

Fo - -

—

7

Response == KEY_UPDATE_ACK
Key Operation == UpdateKey,
Tag == 0x01

F———mmmmmm———— - —

i

{ ENCAPSULATED_RESPONSE_ACK }
S | A

Request == KEY_UPDATE
Key Operation == VerifyNewKey,
Tag == 0x02

{ DELIVERﬁENCAPSULATEDiRESPONSQ

=[1S,11 -

Response == KEY_UPDATE_ACK
Key Operation == VerifyNewKey,
Tag == 0x02

{ ENCAPSULATED_RESPONSE_ACHK
=[S

3, new]]

Responder seeks attention from
....: Requester via Transport-specific :
Methodology

-|--- -.. _ Notice new

secrets used!

Legend:

Authenticated and
Encrypted Session

Version 1.3.0

Published

169

694

695

696

697

698

699

700

701

702

Security Protocol and Data Model (SPDM) Specification DSP0274

10.22 GET_ENCAPSULATED_REQUEST request and
ENCAPSULATED_REQUEST response messages

In certain use cases, such as mutual authentication, the Responder needs the ability to issue its own SPDM request
messages to the Requester. Certain transports prohibit the Responder from asynchronously sending out data on that
transport. Cases like these are addressed through message encapsulation, which preserves the roles of Requester and
Responder as far as the transport is concerned but enables the Responder to issue its own requests to the Requester.
Message encapsulation is only allowed in certain scenarios, as described in various clauses in other parts of this
specification. For example, Figure 21 — Session-based mutual authentication example and Figure 22 — Optimized
session-based mutual authentication example illustrate the use of this scheme.

A Requester issues a GET_ENCAPSULATED REQUEST request message to retrieve an encapsulated SPDM request
message from the Responder. The response to this message is an ENCAPSULATED REQUEST that encapsulates the
SPDM request message as if the Responder were acting as a Requester. Table 83 — GET_ENCAPSULATED_REQUEST
request message format describes the request message format. The Responder shall use the same SPDM version the
Requester used.

10.22.1 Encapsulated request flow

The encapsulated request flow starts with the Requester sending a GET ENCAPSULATED REQUEST message and ends
with an ENCAPSULATED RESPONSE ACK that carries no more encapsulated requests. The GET ENCAPSULATED REQUEST
shall only be issued once, with the exception of retries. This is also illustrated in Figure 21 — Session-based mutual
authentication example.

When the Requester issues a GET ENCAPSULATED REQUEST , the encapsulated request flow shall start. Upon the
successful reception of the ENCAPSULATED REQUEST and when the encapsulated response is ready, the Requester
shall continue the flow by issuing the DELIVER ENCAPSULATED RESPONSE . During this period, the Requester shall not
issue any other message, with the exception of GET VERSION, RESPOND IF READY , or

DELIVER ENCAPSULATED RESPONSE .If a Responder receives a request other than DELIVER ENCAPSULATED RESPONSE ,
RESPOND _IF READY , or GET VERSION , the Responder should respond with an ERROR message of
ErrorCode=RequestInFlight .

10.22.2 Optimized encapsulated request flow

The optimized encapsulated request flow is similar to the encapsulated request flow but without the need of a
GET ENCAPSULATED REQUEST . This is because the encapsulated request accompanies one of the Session-Secrets-
Exchange responses; thereby removing the obligation on the Requester to issue a GET_ENCAPSULATED REQUEST .
When the Responder includes an encapsulated request with a Session-Secrets-Exchange response, the optimized
encapsulated request flow shall start. See Figure 22 — Optimized session-based mutual authentication example.

When the Requester successfully receives a Session-Secrets-Exchange response with an included encapsulated
request, the Requester shall send a DELIVER ENCAPSULATED RESPONSE after processing the encapsulated request.
The Requester shall not issue any other requests except for DELIVER ENCAPSULATED RESPONSE , RESPOND IF READY ,

170 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

and GET VERSION . If a Responder receives a request other than DELIVER ENCAPSULATED RESPONSE ,
RESPOND IF READY , or GET VERSION , the Responder should respond with an ERROR message of
ErrorCode=RequestInFlight .

703 Figure 21 — Session-based mutual authentication example shows an example of session-based mutual
authentication:

704 Figure 21 — Session-based mutual authentication example

Version 1.3.0 Published 171

Security Protocol and Data Model (SPDM) Specification DSP0274

705
Requester Responder
| |
I I
— GET_VERSION —-r|
! < VERSION |
T GET_CAPABILITIES > !
< CAPABILITIES
|
I
I NEGOTIATE_ALGORITHMS o
— <€ ALGORITHMS T
|
T GET_DIGESTS > !
< DIGESTS '
I
' GET_CERTIFICATE —}J-‘
< CERTIFICATE T
|
T KEY_EXCHANGE j
< KEY_EXCHANGE_RSP() T
Session-Bas, R [
MUTUAL L TH GET_ENCAPSULATED_REQUEST() > | \
- ' ENCAPSULATED_REQUEST (GET_DIGEST) I |
Encapsulated
| I DELIVER_ENCAPSULATED_RESPONSE (DIGEST) | chuist
: ENCAPSULATED_RESPONSE_ACK (GET_CERTIFICATE) | Flow
| L——|: DELIVER_ENCAPSULATED_RESPONSE (CERTIFICATE) > :
| ’_I'ji ENCAPSULATED_RESPONSE_ACK () [roeeee |. /
L — FINSH—» L
:{ FINISH_RSP I
| |
706 Figure 22 — Optimized session-based mutual authentication example shows an example of optimized session-based
mutual authentication:
707 Figure 22 — Optimized session-based mutual authentication example

172 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

708

Requester Responder
| |

|
H GET_VERSION —)ﬁ
! VERSION

< T

, GET_CAPABILITIES 4yﬁ

< CAPABILITIES |

|

NEGOTIATE_ ALGORITHMS ——>

| ¢ ALGORITHMS :

|

: GET_DIGESTS —)ﬁ
< DIGESTS

' GET_CERTIFICATE —T‘-‘
< CERTIFICATE

T KEY_EXCHANGE >
<— KEY_EXCHANGE_RSP+GET_DIGEST —-J

|§e§i0n_§a§r DELIVER_ENCAPSULATED_RESPONSE(DIGEST)
MUTUAL_/ UTH N N

«€— ENCAPSULATED_RESPONSE_ACK(GET_CERTIFI

Optimized

—

Encapsulated

Request

DELIVER_ENCAPSULATED_RESPONSE(CERTIFICATE) —>|

l | Flow
< ENCAPSULATED_RESPONSE_AGK@)—l
L U — - — — — — — — — — — — —— — — '_ —_—
I FINISH P e Y
:{ FINISH_RSP

709 Table 83 — GET_ENCAPSULATED_REQUEST request message format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM
version.

0 SPDMVersion 1

Version 1.3.0 Published 173

710
711

712

713

714

Security Protocol and Data Model (SPDM) Specification

Byte offset Field

1 RequestResponseCode
2 Paraml

3 Param2

Size (bytes)

DSP0274

Description

Shall be OXEA = GET_ENCAPSULATED REQUEST . See
Table 4 — SPDM request codes.

Reserved.

Reserved.

Table 84 — ENCAPSULATED_REQUEST response message format describes the format of this response.

Table 84 — ENCAPSULATED_REQUEST response message format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Param1l

3 Param2

4 EncapsulatedRequest

10.22.3 Triggering GET_ENCAPSULATED_REQUEST

Size (bytes)

Variable

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x6A = ENCAPSULATED REQUEST response.
See Table 5 — SPDM response codes.

Shall be the Responder-allocated Request ID.

This field should be unique to help the Responder
match response to request.

Reserved.
Shall be the SPDM Request Message.

The value of this field shall represent a valid SPDM
request message. The length of this field is
dependent on the SPDM Request message. The field
shall start with the SPDMVersion field. The
SPDMVersion field of the Encapsulated Request
shall be the same as the SPDMversion of the
ENCAPSULATED REQUEST response. Both
GET_ENCAPSULATED REQUEST and

DELIVER ENCAPSULATED RESPONSE shall be invalid
requests, and the Requester should respond with an
ERROR message of ErrorCode=UnexpectedRequest
if these requests are encapsulated.

Once a session has been established, the Responder might wish to send a request asynchronously, such as a

KEY_ UPDATE request, but cannot due to the limitations of the physical bus or transport protocol. In such a scenario,

the transport and/or physical layer is responsible for defining an alerting mechanism for the Requester. Upon
receiving the alert, the Requester shall issue a GET_ENCAPSULATED REQUEST to the Responder.

If the physical transport cannot define an alerting mechanism to the Requester, the Requester can still use the

encapsulated request flow as a polling mechanism by periodically sending the GET_ENCAPSULATED REQUEST

174

Published

Version 1.3.0

715

716

77

718

719

720

721

722

723
724

DSP0274 Security Protocol and Data Model (SPDM) Specification

message. If the Responder receives a GET_ENCAPSULATED REQUEST and has no request pending, the Responder
should respond with an ERROR message of ErrorCode=NoPendingRequests .

10.22.4 Additional constraints

The GET _ENCAPSULATED REQUEST and ENCAPSULATED REQUEST messages shall only be allowed to encapsulate
certain requests in certain scenarios. For details about these constraints, see the Session, Basic mutual authentication,
and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

10.23 DELIVER_ENCAPSULATED_RESPONSE request and
ENCAPSULATED_RESPONSE_ACK response messages

As a Requester processes an encapsulated request, it needs a mechanism to deliver back the corresponding response.
That mechanism shall be the DELIVER ENCAPSULATED RESPONSE and ENCAPSULATED RESPONSE ACK messages. The
DELIVER ENCAPSULATED RESPONSE , which is an SPDM request, encapsulates the response and delivers it to the
Responder. The ENCAPSULATED RESPONSE_ACK , which is an SPDM response, acknowledges the reception of the
encapsulated response.

Furthermore, if there are additional requests from the Responder, the Responder shall provide the next request in the
ENCAPSULATED_RESPONSE_ACK response message.

In an encapsulated request flow, the Requester shall not send any other requests after the successful reception of the
first encapsulated request, with the exception of DELIVER ENCAPSULATED RESPONSE , RESPOND IF READY , or

GET VERSION . If a Responder receives a request other than DELIVER ENCAPSULATED RESPONSE , RESPOND IF READY ,
or GET VERSION after the successful reception of the first DELIVER ENCAPSULATED RESPONSE , the Responder should
respond with an ERROR message of ErrorCode=RequestInFlight .

If Param2 of ENCAPSULATED RESPONSE ACK is setto 0x00 or 0x02 , then this shall be the final encapsulated flow
message that the Responder shall issue and the encapsulated flow shall be completed.

The timing parameters for the response shall depend on the encapsulated request. This enables the Responder to
process the response before delivering the next request. See Additional information.

Table 85 — DELIVER_ENCAPSULATED_RESPONSE request message format describes the request message format.

Table 85 — DELIVER_ENCAPSULATED_RESPONSE request message format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM

0 SPDMVersion 1 .
version.

Shall be 0xEB = DELIVER ENCAPSULATED RESPONSE

1 RequestResponseCode 1
Request. See Table 4 — SPDM request codes.

Version 1.3.0 Published 175

Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes)
2 Param1l 1

3 Param2 1

4 EncapsulatedResponse Variable

DSP0274

Description
Shall be the Request ID.

The Requester shall use the same Request ID (that
is, Paraml) that was provided by the Responder in
the corresponding ENCAPSULATED REQUEST or
ENCAPSULATED RESPONSE ACK .

If the value was not provided by the Responder (for
example, in the first message of an optimized
encapsulated request flow), Request ID shall be 0.

Reserved.
Shall be the SPDM Response Message.

The value of this field shall represent a valid SPDM
response message. The length of this field is
dependent on the SPDM Response message. The
field shall start with the SPDMversion field. The
SPDMVersion field of the Encapsulated Response
shall be the same as the SPDMVersion of the
DELIVER _ENCAPSULATED_ RESPONSE request. Both
ENCAPSULATED REQUEST and

ENCAPSULATED RESPONSE ACK shall be invalid
responses, and the Responder should respond with
an ERROR message of
ErrorCode=InvalidResponseCode if these
responses are encapsulated.

725 Table 86 — ENCAPSULATED_RESPONSE_ACK response message format describes the response message format.

726 Table 86 — ENCAPSULATED_RESPONSE_ACK response message format

Byte offset Field Size (bytes)
0 SPDMVersion 1
1 RequestResponseCode 1
2 Param1l 1

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x6B = ENCAPSULATED RESPONSE ACK . See
Table 5 — SPDM response codes.

Shall be the Request ID.

If EncapsulatedRequest is present and if

Param2 = 0x01, this field should contain a unique
non-zero number to help the Responder match
response to request. Otherwise, this field shall be
0x00 .

176 Published

Version 1.3.0

727

728

DSP0274
Byte offset Field
3 Param2
4 AckRequestID
5 Reserved
8 EncapsulatedRequest

10.23.1 Additional information

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

Variable

Description
Shall indicate the payload Type.

If set to 0x00 , no request message is encapsulated
and the EncapsulatedRequest field is absent.

If set to 0x01 , the EncapsulatedRequest field
follows.

If setto 0x02,a 1-byte EncapsulatedRequest field
follows containing the SlotID of the Requester’s

certificate chain used for mutual authentication. The
value in this field shall be between 0 and 7 inclusive.

All other values reserved.

Shall be the same as Paraml of the

DELIVER _ENCAPSULATED RESPONSE request message.
The purpose of this field is to help the Requester
distinguish between new requests and retries.

Reserved.

If Param2 = 0x01 , the value of this field shall
represent a valid SPDM request message. The length
of this field is dependent on the SPDM Request
message. The field shall start with the SPDMVersion
field. The SPDMVersion field of the
EncapsulatedRequest shall be the same as the
SPDMVersion of the ENCAPSULATED REQUEST
response. Both GET_ENCAPSULATED_ REQUEST and
DELIVER ENCAPSULATED RESPONSE shall be invalid
requests, and the Requester shall respond with an
ERROR message of ErrorCode=UnexpectedRequest
if these requests are encapsulated.

If Param2 = 0x02 , the value of this field shall contain
the SlotID corresponding to the certificate chain
the Requester shall use for mutual authentication.
The field size shall be 1 byte.

If Param2 = 0x00 , this field shall be absent.

Using unique Request ID sis highly recommended to aid the Responder in differentiating between retries and new
DELIVER ENCAPSULATED RESPONSE messages. For example, if the Responder sent an ENCAPSULATED RESPONSE ACK

message with a new encapsulated request and the message failed in transmission over the wire, the Requester would
send a retry but that retry would still contain the response to the previous encapsulated request. Without a different

Version 1.3.0

Published

177

Security Protocol and Data Model (SPDM) Specification DSP0274

Request ID, the Responder might mistake the retried DELIVER ENCAPSULATED RESPONSE for a new request. This
mistake might cause further mistakes to occur.

729 The response timing for ENCAPSULATED RESPONSE ACK shall have the same timing constraints as the encapsulated
request. For example, if the encapsulated request is CHALLENGE_AUTH , the Responder, too, would adhere to CT
timing rules when it has a subsequent request. If necessary, the Requester can return an ERROR message of

ErrorCode=ResponseNotReady .

730 The DELIVER ENCAPSULATED RESPONSE and ENCAPSULATED RESPONSE_ACK messages shall only be allowed to
encapsulate certain requests in certain scenarios. For details about these constraints, see the Session, Basic mutual
authentication, and KEY_UPDATE request and KEY_UPDATE_ACK response messages clauses.

731 10.23.2 Allowance for encapsulated requests

732 Only certain requests can be encapsulated in any encapsulated request flow. Their corresponding responses,
including ERROR, can also be encapsulated. Additionally, these requests are only allowed in certain flows as
described in various parts of this specification. This consolidated list shall be the requests that are allowed to be
encapsulated:

* CHALLENGE

* GET CERTIFICATE

* GET DIGESTS

* KEY UPDATE

* SUBSCRIBE EVENT TYPES

* SEND EVENT

+ GET SUPPORTED EVENT TYPES
+ GET ENDPOINT INFO

733 If a request is not in this list, the request and its corresponding response shall be prohibited from being encapsulated.

734 10.23.3 Certain error handling in encapsulated flows

735 These clauses describe special error scenarios and their handling requirements.

736 10.23.3.1 Response not ready

737 In an encapsulated request flow, a Responder can issue an encapsulated request that can take up to CT time to
fulfill. When the Requester delivers an ERROR message of ErrorCode=ResponseNotReady , the Responder shall not
encapsulate another request by setting Param2 in ENCAPSULATED RESPONSE ACK to a value of zero. This effectively
and naturally terminates the encapsulated request flow.

738 The Responder should wait the amount of time indicated in the ERROR message for the particular error code.
739 When the timeout is near expiration, the Responder should perform the following:

1. Trigger its transport-defined alert mechanism to initiate the Encapsulated request flow.

178 Published Version 1.3.0

740

741

742

743

744
745

746

747

DSP0274 Security Protocol and Data Model (SPDM) Specification

2. When the Requester issues a GET_ENCAPSULATED REQUEST , the Responder should encapsulate the
RESPOND IF READY request populated with the information from the previous ERROR with

ResponseNotReady message.

o If the Responder does not do this, the Requester can drop the original response.

10.23.3.2 Timeouts

If the Responder is not receiving a response to its encapsulated request, the Responder can trigger its transport-

defined alert mechanism. When this occurs, if the Requester is in the middle of an existing encapsulated request flow

with the same Responder, then the existing flow shall terminate and the Requester shall restart the encapsulated

request flow.

Both Responder and Requester should comply with the timing requirements prescribed in Timing requirements.

10.24 END_SESSION request and END_SESSION_ACK response messages

This request shall terminate a session. See the Session termination phase clause.

Table 87 — END_SESSION request message format and Table 88 — End session request attributes describe this

format.

Table 87 — END_SESSION request message format

Byte offset Field Size (bytes)
0 SPDMVersion 1
1 RequestResponseCode 1
2 Param1l 1
3 Param2 1

Table 88 — End session request attributes

Bit offset Value Field

Negotiated State
Preservation Indicator

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be OxEC = END SESSION . See Table 4 — SPDM
request codes.

See Table 88 — End session request attributes.

Reserved.

Description

If the Responder supports Negotiated State caching
(CACHE_CAP=1), the Responder shall preserve the
cached Negotiated State. Otherwise, this field shall
be ignored.

Version 1.3.0 Published

179

Security Protocol and Data Model (SPDM) Speci

Bit offset Value Field

fication

Negotiated State
Preservation Indicator

[7:1] Reserved Reserved

DSP0274

Description

If the Responder supports Negotiated State caching
(CACHE_CAP=1), the Responder shall also clear the
cached Negotiated State as part of session
termination. If there is no cached Negotiated State to
be cleared due to a previous END_SESSION request
message with this field set to 1, this field shall be
ignored. If the Responder does not support
Negotiated State caching (CACHE_CAP=0), this field
shall be ignored.

Reserved.

748 Table 89 — END_SESSION_ACK response message format describes the response message.

749 Table 89 — END_SESSION_ACK response message format

Byte offset Field Size
0 SPDMVersion 1
1 RequestResponseCode 1
2 Param1 1
3 Param2 1

(bytes)

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x6C = END SESSION ACK .See Table 5 —
SPDM response codes.

Reserved.

Reserved.

750 Figure 23 — END_SESSION protocol flow shows the END_SESSION protocol flow:

751 Figure 23 — END_SESSION protocol flow

180

Published

Version 1.3.0

752

753

754

755

756
757

DSP0274 Security Protocol and Data Model (SPDM) Specification

Requester Responder
| |

|
D KEY_EXCHANGE D
’LF‘KEY_EXCHANGE_RSP
FINISH(K1)

[II FINISH_RSP(K1)

L Enables authenticated and/or
U encrypted data transfer (K1)

END_SESSION(K1)
l<7END SESSION_ACK(K1)

R e (R e W e 2

10.25 Certificate provisioning

These clauses describe the request and response messages used for provisioning a device with certificate chains.
Provisioning of Slot 0 should only be done in a trusted environment (such as a secure manufacturing environment).

10.25.1 GET_CSR request and CSR response messages

The GET CSR request message shall retrieve a Certificate Signing Request (CSR) from the Responder.

A Responder shall only process a GET CSR request if it already possesses an appropriate asymmetric key pair for the
signature suite (that is, the algorithms and associated parameters) required by the request. If more than one
signature suite are supported, selection of the appropriate signature suite (and, thus, the key pair) shall be
determined via the most recent ALGORITHMS response. Upon receiving a GET CSR request, a Responder shall
generate and sign a CSR for the corresponding public key. The CSR shall be populated with a combination of
attributes provided by the Requester via the RequesterInfo field and other attributes contributed by the Responder
itself. The RequesterInfo format shall comply with the PKCS #10 specification in RFC 2986, specifically the
CertificationRequestInfo format. OEM extensions (that is, OEM OIDs) shall be encoded using the Attributes
type. The Responder shall return an ERROR message of ErrorCode=InvalidRequest if it cannot support all the
fields included in the RequesterInfo .If the Responder receives a GET CSR request while another GET CSR request
is outstanding and if Overwrite is not specified (that is, Bit 7 of Param2 is setto 0b), the Responder can either
overwrite the existing request and process the new GET CSR request or respond with an ERROR message of
ErrorCode=Busy . If the Responder receives a GET_CSR request while another GET_CSR request is outstanding and

Version 1.3.0 Published 181

758

759

760
761
762

763

Security Protocol and Data Model (SPDM) Specification DSP0274

if Overwrite is specified (thatis, Bit 7 of Param2 is setto 1b), the Responder shall overwrite the existing request
and process the new GET_CSR request.

If the device requires a reset to complete the GET_CSR request, the device shall respond with an ERROR message of
ErrorCode=ResetRequired with Bit[2:0] of the Error Data field setto a Responder-assigned CSRTrackingTag
in the range of 1 to 7, inclusive. If the Responder requires a reset to process a GET_CSR request, but does not have
any available CSRTrackingTag s, it shall respond with an ERROR message of ErrorCode=Busy . After the Responder

has processed the reset, the Requester sends a GET_CSR request with Bit[5:3] in Param2 setto the
CSRTrackingTag that the Responder provided in the corresponding ERROR response, which signals to the
Responder to send the CSR response associated with the previous request. After a Requester has retrieved a CSR
response from a previous GET CSR request, the Responder can discard any associated CSR data and reuse the
CSRTrackingTag . If the Requester sends a GET_CSR request with a CSRTrackingTag that the Responder did not
generate, the Responder shall either respond with an ERROR message of ErrorCode=UnexpectedRequest or drop
the request.

The attributes of the resulting CSR and their values shall comply with the clauses presented in SPDM certificate
requirements and recommendations. If the GET CSR request conforms to the DeviceCert model, the resulting CSR
shall be for a Device Certificate. If the GET_CSR request conforms to the AliasCert model, the resulting CSR shall
be for a Device Certificate CA. If the GET CSR request conforms to the GenericCert model, the resulting CSR shall
be for a Generic Leaf Certificate. See Identity provisioning for more details.

Table 90 — GET_CSR request message format shows the GET CSR request message format.
Table 92 — CSR response message format shows the CSR response message format.

The CSRdata contained in a successful CSR response should be signed by an appropriate Certificate Authority. The
details of the Public Key Infrastructure used to verify and sign the CSR and make the final certificate available for
provisioning are outside the scope of this specification.

Table 90 — GET_CSR request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be OxED = GET_CSR . See Table 4 — SPDM
1 RequestResponseCode 1 -

request codes.

KeyPairID. The value of this field shall be the key pair
ID identifying the desired asymmetric key pair to use

2 Param1 1 in generating the CSR. If MULTI_KEY CONN_ RSP is
false, the value shall be zero; otherwise, the value
shall be non-zero.

Request Attributes. Shall be the format as Get CSR

3 Param?2 1 .)
request attributes defines.

Shall be the length of the RequesterInfo field in

4 RequesterInfoLength 2
au g bytes provided by the Requester. This field can be 0 .

182 Published Version 1.3.0

764

765

766

DSP0274

Byte offset Field
6 OpaqueDatalength
8 RequesterInfo
8 +
OpaqueData
RequesterInfolLength

Table 91 — Get CSR request attributes

Bit offset Field

[2:0] CSRCertModel
[5:3] CSRTrackingTag
6 Reserved

7 Overwrite

OpaqueDatalLength

Security Protocol and Data Model (SPDM) Specification

Description

Shall be the size of the OpaqueData field that
follows in bytes. The value should not be greater
than 1024 bytes. Shall be 0 if no OpaqueData is
provided.

Shall be the optional information provided by the
Requester. This field shall be DER-encoded.

RequesterInfolLength

The Requester can include vendor-specific
information for the Responder to generate the CSR.

This field is optional. If present, this field shall
conform to the selected opaque data format in
OtherParamsSelection .

Description

This field indicates the desired certificate model of the CSR. The
value and format of this field shall be the same as CertModel in
Certificate info.

If the Requester is requesting a previously requested GET _CSR
after a reset has completed, this field shall contain the
CSRTrackingTag of the associated GET CSR request.

Reserved.

If set, the Responder shall stop processing any existing GET CSR
request and overwrite it with this request, and the Responder shall
discard all previously generated CSRTrackingTag s.

The CSRCertModel field in GET CSR request attributes helps the Responder determine the content of the CSR. For
example, if the CSRCertModel indicates a device certificate model, the Responder may add additional OIDs such as

those OIDs defined in this specification. If the CSRCertModel indicates an alias certificate model, the Responder sets

the CA constraint to TRUE in the CSR.

Table 92 — CSR response message format

Byte offset Field Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion X
version.
Shall be 0x6D = CSR . See Table 5— SPDM response
1 RequestResponseCode
codes.
2 Param1l Reserved.
3 Param2 Reserved.
Version 1.3.0 Published 183

767

768

769

770

771
772

773

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description
4 CSRLength 2 Shall be the length of the CSRdata in bytes.
6 Reserved 2 Reserved.

Shall be the requested contents of the CSR. This field

8 CSRdat: CSRLength
ate end shall be DER-encoded.

The CSRdata format shall comply with the PKCS #10 specification in RFC 2986, specifically the
CertificationRequest format. When the Responder supports multiple asymmetric keys (MULTI_KEY CONN RSP is
true) in the SPDM connection, the SubjectPublicKeyInfo as defined in RFC 5280 shall contain values consistent
with the requested asymmetric key pair (KeyPairID) in the corresponding request.

10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

For Slot 0 provisioning, the Requester should issue SET CERTIFICATE only in a trusted environment (such as a
secure manufacturing environment). For slots 1-7, if the provisioning happens in a trusted environment, the
Requester should issue SET CERTIFICATE inside a secure session. If the provisioning for slots 1-7 is done outside of
a trusted environment, the Requester shall issue SET CERTIFICATE inside a secure session. Mutual authentication
and/or other means for checking the authorization of the Requester that issues the SET CERTIFICATE request
should be performed. Requester authorization is outside the scope of this specification. The device might require a
reset to complete the SET _CERTIFICATE request, potentially so that the device can generate AliasCert certificates
using lower firmware layers. If the device requires a reset to complete the SET CERTIFICATE request, then the device
shall respond with an ERROR message of ErrorCode=ResetRequired .If the device temporarily cannot write to a
slot, including in the case when it receives overlapping SET_CERTIFICATE requests from different Requesters, then
the device shall respond with an ERROR message of ErrorCode=Busy .

If Bit 7 of SET CERTIFICATE . Paraml issetto 1,the Responder shall erase the certificate chain present in the
slot identified by bits [3:0] of SET CERTIFICATE . Paraml and report it as unpopulated until it is re-provisioned. If the
operation completes successfully, the Responder shall respond with a SET_CERTIFICATE RSP response message with
bits [3:0] of Paraml identifying the SlotID of the slot that was erased. If the operation failed, the Responder shall
respond with an ERROR message of ErrorCode=OperationFailed .

Table 93 — SET_CERTIFICATE request message format shows the SET CERTIFICATE request message format.

Table 95 — Successful SET_CERTIFICATE_RSP response message format shows the SET_CERTIFICATE RSP response
message format.

Table 93 — SET_CERTIFICATE request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be OxEE = SET CERTIFICATE . See Table 4 —
1 RequestResponseCode 1

SPDM request codes.

184 Published Version 1.3.0

Léon GALL

Léon GALL

DSP0274
Byte offset Field Size (bytes)
2 Paraml 1
3 Param?2 1
4 CertChain Variable

Table 94 — Set certificate request attributes

Bit offset Field

[3:0] SlotID

[6:4] SetCertModel
7 Erase

Security Protocol and Data Model (SPDM) Specification

Description

Request attributes. Shall be the format that the set
certificate request attributes table defines.

KeyPairID. The value of this field shall be the unique
key pair number identifying the desired asymmetric
key pair to associate with SlotID . If support for
multiple asymmetric keys (MULTI_KEY CONN_RSP) is
false, the value of this field shall be zero.

Shall be the contents of the target certificate chain,
as specified in Certificates and certificate chains, with
the additional requirement that it include the root
certificate. If the Responder uses the AliasCert
model (ALIAS CERT CAP=1b inits CAPABILITIES
response) and SetCertModel is setto AliasCert,
this field shall contain a partial certificate chain from
the root CA to the Device Certificate CA. If the
Request attributes . Erase bit is set, this field
shall be absent.

Description

The certificate slot where the new certificate is written. The value in
this field shall be between 0 and 7 inclusive.

This field indicates the certificate model of the certificate chain.
The value and format of this field shall be the same as CertModel
in Certificate info. The value in this field shall match the value in
the CSRCertModel field from the corresponding GET_CSR
request.

If set, the certificate chain in the certificate slot identified by bits
[3:0] shall be deleted. Additionally, if this bit is set, the CertChain
field shall be absent and the value of SetCertModel shall be zero.

The Responder should verify that contents of the certificate chain meet the requirements in this specification for the

requested certificate model and key pair.

Table 95 — Successful SET_CERTIFICATE_RSP response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
Shall be 0x6E = SET CERTIFICATE_RSP . See Table 5
1 RequestResponseCode 1 - -
— SPDM response codes.
Version 1.3.0 Published 185

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description

Bit [7:4]. Reserved.

Bit [3:0]. Shall be the SlotID where the new

2 Param1 1 certificate is written. If the Erase bit is set in the
Request attributes field, this field shall contain
the SlotID of the slot that was erased. The value in
this field shall be between 0 and 7 inclusive.

3 Param2 1 Reserved.

777 10.26 Large SPDM message transfer mechanism

778 A large SPDM message is an SPDM message whose size is either greater than the DataTransferSize of the
receiving SPDM endpoint or greater than the transmit buffer size of the sending SPDM endpoint. These clauses
provide a transport-agnostic mechanism to transfer large SPDM messages. This mechanism will be used only if the
size of an SPDM message exceeds either the DataTransferSize of the receiving SPDM endpoint or the transmit
buffer size of the sending SPDM endpoint. Additionally, the transport may provide an alternative method to transfer
large SPDM messages. For SPDM messages that are less than or equal to both the DataTransferSize of the
receiving SPDM endpoint and the transmit buffer size of the sending SPDM endpoint, the sending SPDM endpoint
shall not utilize this transfer mechanism.

779 This transfer mechanism divides a large SPDM message into smaller fragments called chunks. The chunks shall be
numbered and shall be transferred in sequence. The chunks and their sequence of transfer are described thus:

+ The first chunk shall be assigned a numeric value of 0, the second chunk shall be assigned a numeric value of 1,
the third chunk shall be assigned a numeric value of 2, and this pattern shall continue up to and including the
last chunk. Each of these numeric values is called a chunk sequence number.

+ The first chunk shall contain the first set of bytes of the large SPDM message, the second chunk shall contain the
second set of bytes, the third chunk shall contain the third set of bytes, and this pattern shall continue up to and
including the last chunk.

 All chunks shall represent all bytes of the large SPDM message without altering the message in any way.

* The sequence of transfer shall start with chunk sequence number 0 and shall continue with sequentially
increasing chunk sequence numbers up to and including the last chunk.

* CHUNK_SEND , CHUNK GET , and their corresponding Responses shall be used to transfer these chunks.
780 The ChunkSeqNo fields indicate the chunk sequence number for a given chunk.

781 The requests and responses, which these clauses define, handle the transfer of each chunk.
782 10.26.1 CHUNK_SEND request and CHUNK_SEND_ACK response message
783 The CHUNK SEND request and the CHUNK SEND ACK response shall be used to send a request to an SPDM endpoint

when the size of the request is greater than either the DataTransferSize of the receiving SPDM endpoint or the
transmit buffer size of the sending SPDM endpoint.

186 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

784 Table 96 — CHUNK_SEND request format describes the format for the request.

785 Table 97 — Chunk sender attributes describes the chunk sender attributes.

786 Table 96 — CHUNK_SEND request format table

Byte offset Field Size (bytes)
0 SPDMVersion 1

1 RequestResponseCode 1

2 Param1 1

3 Param2 1

4 ChunkSegNo 2

6 Reserved 2

8 ChunkSize 4

12 LargeMessageSize Lo =0or4
12+ L0 SPDMchunk Variable

787 Table 97 — Chunk sender attributes

Bit offset Field
0 LastChunk
[7:1] Reserved

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x85 = CHUNK_SEND request. See Table 4 —
SPDM request codes.

Shall be the Request Attributes. See Table 97 —
Chunk sender attributes.

Shall be the handle. This field should uniquely
identify the transfer of a large SPDM message. The
value of this field shall be the same for all chunks of
the same large SPDM message. The value of this field
should either sequentially increase or sequentially
decrease with each large SPDM message and with
the expectation that it will wrap around after
reaching the maximum or minimum value,
respectively, of this field.

Shall identify the chunk sequence number associated
with SPDMchunk .

Reserved.

Shall indicate the size of SPDMchunk . See Additional
chunk transfer requirements.

Shall indicate the size of the large SPDM message
being transferred. This field shall only be present
when ChunkSeqgNo is zero and shall have a non-zero
value. The value of this field shall be greater than the
DataTransferSize of the receiving SPDM endpoint.

Shall contain the chunk of the large SPDM request
message associated with ChunkSegNo .

Description

If set, the chunk indicated by ChunkSeqNo shall
represent the last chunk of the large SPDM
message.

Reserved.

788 Table 98 — CHUNK_SEND_ACK response message format describes the format for the response.

Version 1.3.0 Published

187

Security Protocol and Data Model (SPDM) Specification

789 Table 98 — CHUNK_SEND_ACK response message format

DSP0274

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
0x05 = CHUNK_SEND_ACK response. See Table 5 —
1 RequestResponseCode 1
SPDM response codes.
Shall be the Response attributes. See Table 99 —
2 Param1 1 . .
Chunk receiver attributes.
Shall contain the handle from the corresponding
CHUNK_SEND request. This field should uniquely
3 Param2 1 identify the transfer of a large SPDM message. The
value of this field shall be the same for all chunks of
the same SPDM message.
Shall be the same as ChunkSegNo in the
4 ChunkSegNo 2]
corresponding request.
Shall be present on the last chunk (that is, when
LastChunk is set), or when the
EarlyErrorDetected bitin Paraml is set. This field
6 ResponseTolLargeRequest Variable shall contain the response to the large SPDM request
message. When the EarlyErrorDetected bitin
Paraml is set, this field shall contain an ERROR
message.
790 Table 99 — Chunk receiver attributes describes the chunk receiver attributes:

791 Table 99 — Chunk receiver attributes

Bit offset Field
0 EarlyErrorDetected
[7:1] Reserved

Description

If set, the receiver of a large SPDM
request message detected an error in
the Request before the last chunk was
received. If set, the sender of the large
SPDM request message shall terminate
the transfer of any remaining chunks.
After addressing the issue, the sender
of the failed large SPDM request
message can transfer the fixed large
SPDM request message as a new
transfer.

Reserved.

792 Table 98 — CHUNK_SEND_ACK response message format describes the format for the response.

793 Upon reception of the last chunk, the receiving SPDM endpoint shall respond with the response corresponding to the

large SPDM request message in ResponseToLargeRequest . If placing the response in ResponseToLargeRequest

188 Published

Version 1.3.0

794

795
796

797

798

799

800

DSP0274

causes the size of the CHUNK_SEND _ACK to exceed the DataTransferSize, the receiving end point shall, instead,

Security Protocol and Data Model (SPDM) Specification

respond to CHUNK SEND with an ERROR message of ErrorCode=LargeResponse . An ERROR message of

ErrorCode=LargeResponse shall not be allowed in ResponseTolLargeRequest . ERROR messages with other error

codes can be placed in ResponseToLargeRequest to distinguish between an ERROR message to the CHUNK SEND

request and an ERROR message that is a response to the large SPDM request message.

Figure 24 — Large SET_CERTIFICATE example illustrates the sending of a large SPDM request message to a

Responder.

Figure 24 — Large SET_CERTIFICATE example

SPDM Header

Chunk 0

Chunk 3

Requester

Large SET_CERTIFICATE Message

Total Message Size = 800

Chunk Size is DataTransferSize minus
the sizes of all the fields (except for SPDMchunk) of
CHUNK_SEND_REQUEST. Thus, 266 - 12 = 254 bytes.

Chunk Sequence 0 contains an extra field. Thus,
the Chunk Size for the first chunk is 266 - 16 = 250 bytes.

CHUNK_SEND

Handle 5

Chunk Sequence 0

Chunk Size 250 Bytes
Large Message Size 800 B
Chunk 0 Data

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 0

CHUNK_SEND
Handle 5

Chunk Sequence 1
Chunk Size 254 Bytes|
Chunk 1 Data

CHUNK_SEND_ACK
Handle 5
Chunk Sequence 1

CHUNK_SEND
Handle 5

Chunk Sequence 3
Last Chunk

Chunk Size 42 Bytes
Chunk 3 Data

CHUNK_SEND_ACK

Handle 5

Chunk Sequence 3

Last Chunk

Response: SET_CERTIFICATE_ﬁ

Responder
(DataTransferSize 266 Bytes)

SPDM Header

SET_CERTIFICATE_RSP

10.26.2 CHUNK_GET request and CHUNK_RESPONSE response message

CHUNK_GET request and CHUNK RESPONSE response shall be used to retrieve a Large SPDM Response from an SPDM
endpoint when the size of the Response is greater than the DataTransferSize of the SPDM endpoint receiving the

Response.

When responding to a Request of any size, if the corresponding response will be a Large SPDM Response, the

responding SPDM endpoint shall respond with an ERROR message of ErrorCode=LargeResponse . This ERROR

message contains a handle to uniquely identify the given Large SPDM Response. The handle shall be used for all

CHUNK_GET Requests retrieving the same large SPDM message. The value of the handle is indicated in the Handle
field of this ERROR message.

Table 100 — CHUNK_GET request format describes the format for the request.

Version 1.3.0

Published

189

801

802
803

Security Protocol and Data Model (SPDM) Specification

Table 100 — CHUNK_GET request format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Param1l

3 Param2

4 ChunkSegNo

Size (bytes)

DSP0274

Description

Shall be the SPDMVersion as described in SPDM
version.

Shall be 0x86 = CHUNK_GET request. See Table 4 —
SPDM request codes.

Reserved.

Shall contain a handle. This field shall be the same
value as given in the Handle field of the ERROR
message of ErrorCode=LargeResponse .

Shall indicate the desired chunk sequence number of
the Large SPDM Response to retrieve.

Table 101 — CHUNK_RESPONSE response format describes the format for the response.

Table 101 — CHUNK_RESPONSE response format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1)
version.
Shall be 0x06 = CHUNK RESPONSE response. See
1 RequestResponseCode 1
Table 5 — SPDM response codes.
Shall be the Response attributes. See Table 97 —
2 Param1l 1 ;
Chunk sender attributes.
Shall be the handle. This field shall be the same for
all chunks of the same Large SPDM Response. The
3 Param2 1 L ;
value of this field shall be the same value as in
Param2 field of CHUNK GET .
Shall identify the chunk sequence number associated
4 ChunkSegNo 2 with SPDMchunk . The value of this field shall be the
same value as ChunkSegNo in the CHUNK GET .
6 Reserved 2 Reserved.
8 ChunkSize 4 Shall indicate the si%e of SPDMchunk . See Additional
chunk transfer requirements.
Shall indicate the size of the large SPDM message
being transferred. Shall only be present when
12 LargeMessageSize L0 =0or4 ChunkSegNo is zero and shall have a non-zero value.
The value of this field should be greater than the
DataTransferSize of the receiving SPDM endpoint.
190 Published Version 1.3.0

804

805
806

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

. Shall contain the chunk of the large SPDM request
12+ L0 SPDMchunk Variable . .
message associated with ChunkSegNo .

Figure 25 — Large MEASUREMENT example illustrates the sending and retrieval of a Large SPDM Response that was
the result of a Requester issuing a GET_MEASUREMENTS request.

Figure 25 — Large MEASUREMENT example

Requester Responder
(DataTransferSize 312 Bytes)
| GET_M EASUREMENTS ! Responder creates the

- MEASUREMENTS response with a
total size of 1000 bytes.
This is > 312 bytes

Measurement Type Raw Bits

ERROR

ErrorCode=LargeResponse

I Handle = 17

SPDM Header
Chunk 0

|

Handle 17
Chunk Sequence 0

|

|

|

|

- [CHUNK_GET
=

|

|

|

|
CHUNK_RESPONSE '
Handle 17 |
|‘ Chunk Sequence 0 I
Chunk Size 296 Bytes
| Large Message Size 1000 Bytes |
| |
| |

ChunkOData « - - - - - ——— _ f____

CHUNK GET| ' L ——-—- - Z20s
I— Handle 17 >l
Chunk Sequence 1 |

[Chunk 3
CHUNK_RESPONSE |

|
[
[
|| Handle 17] Large MEASUREMENTS Message
[
[
[
[
[
[

Chunk Sequence 1

Chunk Size 300 Bytes Total Message Size = 1000

Chunk 1 Data

Chunk Size is DataTransferSize
minus the sizes of all the fields
(except for SPDMchunk) of
CHUNK_RESPONSE.

Thus, 312 - 12 = 300 bytes.

Chunk Sequence 0 contains an extra
field. Thus, the Chunk Size for the first
chunk is 312 - 16 = 296 bytes.

Chunk Sequence 3

CHUNK_RESPONSE
Handle 17

Chunk Sequence 3

Chunk Size: 104 Bytes

Chunk 3 Data

Last Chunk

|
|
|
|
|
CHUNK_GET |
|
|
|
|
|
|

Version 1.3.0 Published 191

807

808

809

810

811

812

813

Security Protocol and Data Model (SPDM) Specification DSP0274

10.26.3 Additional chunk transfer requirements

When transferring a large SPDM message, an SPDM endpoint shall be prohibited from transferring a chunk sequence
number (thatis, a ChunkSegNo) less than the current chunk sequence number. In other words, an SPDM endpoint
cannot go backwards in the transfer or re-send or re-retrieve a chunk sequence number less than the current one in

the transfer. However, due to retries, an SPDM endpoint might re-send or re-retrieve the current chunk number in the

transfer. Additionally, if the receiving SPDM endpoint receives an out-of-order chunk sequence number, the receiving
SPDM endpoint shall either silently discard the request or respond with an ERROR message of
ErrorCode=InvalidRequest .

The value of ChunkSize fields shall be one that ensures the total size of CHUNK SEND or CHUNK RESPONSE does not
exceed the DataTransferSize of the receiving SPDM endpoint. For all chunks that are not the last chunk,
ChunkSize shall be a value where the total size of CHUNK SEND or CHUNK RESPONSE shall be from
MinDataTransferSize to the DataTransferSize of the receiving SPDM endpoint. For the last chunk, ChunkSize
shall be a value where the total size of CHUNK_SEND or CHUNK_RESPONSE shall be equal to or less than the
DataTransferSize of the receiving SPDM endpoint.

While this transfer mechanism can carry any Request or Response, this transfer mechanism shall prohibit

CHUNK_SEND , CHUNK GET , and their corresponding responses to be transferred as chunks themselves. Additionally to
ensure the general interoperability and reliability of this transfer mechanism, these messages shall be prohibited from
being transferred in chunks using this transfer mechanism:

* GET_VERSION

* VERSION

* GET_CAPABILITIES

e CAPABILITIES with Paraml inthe GET CAPABILITIES request setto 0.

* ERROR
o An ERROR message with an ErrorCode other than LargeResponse can be placed in the
ResponseToLargeRequest of a CHUNK SEND ACK response.

This transfer mechanism can carry Requests and Responses that are involved in signature generation or verification
and other cryptographic computations. However, this transfer mechanism is not part of any signature generation or
verification or cryptographic computation. In other words, CHUNK_SEND , CHUNK GET , and their corresponding
responses shall not become part of any data or bit stream, such as message transcript, transcript, and so on, that are
used to verify or generate a signature or other cryptographic information. Signature generation, signature
verification, and other cryptographic computations operate on the large SPDM messages, themselves, which other
parts of this specification define.

The ERROR message of ErrorCode=ResponseNotReady shall not be used to directly respond to CHUNK SEND and
CHUNK_GET requests. However, the ResponseTolLargeRequest can contain an ERROR message of
ErrorCode=ResponseNotReady .

While a large SPDM message is being transferred in chunks, this large SPDM message is not considered a complete
SPDM message until the last chunk is received. Therefore, as soon as the CHUNK_SEND request begins transmission,
this large SPDM request message is considered to be outstanding.

192 Published Version 1.3.0

814

815

816

817

818

819

820

821

822

823
824

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.27 Key configuration

Key configuration is the ability to retrieve or configure various parameters pertaining to asymmetric keys for a given
SPDM endpoint. These clauses describe the requests and responses that provide key-configuration capabilities.

SPDM endpoints can contain key pair ID(s) (KeyPairID) that are fixed and already provisioned, key pair IDs that are
configurable, or an assortment of both types. For configurable key pair IDs, one or more parameters related to the
key pair are configurable. The requests and responses in these clauses provide the details for each KeyPairID . An
SPDM endpoint shall contain KeyPairID s starting from 1 to TotalKeyPairs inclusive and without gaps.

The Responder should authorize the Requester before allowing it to retrieve or change information related to a key
pair. The method of authorization is outside the scope of this specification.

In general, if a key pair ID is configurable, the high-level flow for provisioning and configuring a key pair ID to a
usable state should follow these steps:

1. Usethe GET KEY PAIR INFO request and its corresponding response to retrieve information about
one or more key pair ID(s).

2. Usethe SET KEY PAIR INFO request and its corresponding response to configure the key pair ID.
> Ensure the key pair ID is associated with one or more certificate slots.

3. Usethe GET_CSR and/or SET_CERTIFICATE requests and their corresponding responses to provision
a certificate chain to one or more of the certificate slots the key pair ID is associated with.

To return a key pair ID to its initial or default values, follow these steps:

1. Usethe GET KEY_PAIR INFO request and its corresponding response to retrieve information about
the desired key pair ID.
o In particular, note all the certificate slots the key pair ID is associated with.

2. Use the SET CERTIFICATE request and its corresponding response to erase all certificate chains
associated with the key pair ID.

3. Use the SET KEY PAIR INFO request and its corresponding response to erase the key pair ID.

Outside of a session, the Requester and Responder should only issue GET_KEY PAIR INFO, SET KEY PAIR INFO,
and their corresponding responses while in a trusted environment.

10.27.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response

The GET KEY_PAIR INFO request shall retrieve key pair information from the Responder. This request and its
response shall report information for all key pairs on the Responder independent of any negotiated parameters of the
current SPDM connection. This allows the Requester to inquire about key pair information for all key pair IDs without
restarting the SPDM connection.

Table 102 — GET_KEY_PAIR_INFO request message format shows the GET KEY PAIR INFO request message format.

Table 102 — GET_KEY_PAIR_INFO request message format

Version 1.3.0 Published 193

825

826

Security Protocol and Data Model (SPDM) Specification

Byte offset

Field

SPDMVersion

RequestResponseCode

Paraml

Param2

KeyPairlD

Size (bytes)

DSP0274

Description

Shall be the SPDMvVersion as described in SPDM
version.

GET KEY_PAIR INFO=0xFC . See Table 4 — SPDM
request codes.

Reserved.
Reserved.

The value of this field shall indicate which key pair
ID’s information to retrieve.

The corresponding successful response shall be the KEY PAIR INFO response as Table 103 — KEY_PAIR_INFO
response message format describes.

Table 103 — KEY_PAIR_INFO response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
KEY PAIR INFO = 0x7C . See Table 4 — SPDM
1 RequestResponseCode 1 - -
request codes.
2 Paraml 1 Reserved.
3 Param?2 1 Reserved.
. The value of this field shall indicate the total number
4 TotalKeyPairs 1 .
of key pairs on the Responder.
The value of this field shall be the same value as the
. KeyPairID field in the corresponding request. The
5 KeyPairlD 1 L . . .
remaining fields in this response shall pertain to the
requested key pair ID in the corresponding Request.
This field indicates the capabilities of the requested
key pair (KeyPairID). The format of this field shall
6 Capabilities 2 Y pair (KeyPairID). The
be as Table 104 — Key pair capabilities format
defines.
This field shall indicate the key usages the Responder
allows. The format of this field shall be as Key usage
8 KeyUsageCapabilities 2 bit mask defines. At least one bit shall be set. The
Responder shall indicate support for one or more key
usages by setting the corresponding bits.
194 Published Version 1.3.0

DSP0274

Byte offset

10

12

16

20

22

23

Security Protocol and Data Model (SPDM) Specification

Field Size (bytes)

CurrentKeyUsage 2

AsymAlgoCapabilities 4

CurrentAsymAlgo 4

PublicKeyInfoLen 2

AssocCertSlotMask 1

PublicKeyInfo Variable

Description

This field shall indicate the currently configured key
usage for the requested key pair ID. The format of
this field shall be as Key usage bit mask defines. If no
bits are set, this field shall indicate that the key usage
for this key pair ID has not yet been configured. More
than one bit can be set. If a bit is set, the Responder
shall support cryptographic operations (such as
signature generation) for the corresponding key
usage.

This field shall indicate the asymmetric algorithms
the Responder supports for this key pair ID. The
format of this field shall be as Table 105 —
Asymmetric algorithm capabilities format defines.
The Responder shall indicate support for one or
more asymmetric algorithms by setting the
corresponding bits. At least one bit shall be set.

This field shall indicate the currently configured
asymmetric algorithm for this key pair ID. The format
of this field shall be as Table 105 — Asymmetric
algorithm capabilities format defines. No more than
one bit shall be set. If no bits are set, this field shall
indicate that the asymmetric algorithm for this key
pair has not yet been selected. The set bit shall
indicate that the corresponding asymmetric
algorithm is currently configured.

This field shall indicate the size in bytes of the

PublicKeyInfo field in this request. A value of zero
shall indicate that the actual key pair is absent or has
yet to be generated. Otherwise, the value of this field
shall be non-zero.

This field is a bit mask representing the currently
associated certificate slots. A set bit at position X
shall indicate an association between certificate slot
X and the requested KeyPairID .If ShareableCap is
not set, no more than one bit shall be set.

The field shall contain the public key information for
the requested key pair ID. The format of this field
shall be the DER encoding of the
AlgorithmIdentifier structure in an X.509 v3
certificate. See the “4.1.2.7. Subject Public Key Info”
clauses in RFC 5280 for additional details. Within the
AlgorithmIdentifier structure, the parameters
member shall be present and contain values
consistent with the information pertaining to the
requested key pair ID.

Version 1.3.0

Published

195

827
828

829

830

Security Protocol and Data Model (SPDM) Specification

DSP0274

Table 104 — Key pair capabilities format defines the format for capabilities associated with a key pair ID.

Table 104 — Key pair capabilities format

Bit offset

All other bits

Field

GenKeyCap

ErasableCap

CertAssocCap

KeyUsageCap

AsymAlgoCap

ShareableCap

Reserved

Description

If set, this key pair identified by
the given KeyPairID can be
generated or regenerated.

If set, this key pair identified by
the given KeyPairID can be
erased.

If set, the Responder allows a
Requester to change the
association between the given
KeyPairID and CertSlot .

If set, the Responder allows a
Requester to change the key
usage for the given
KeyPairlID .

If set, the Responder allows a
Requester to change the
asymmetric algorithm for the
given KeyPairID .

If set, the Responder allows a
Requester to associate the
given KeyPairID with more
than one CertSlot . This bit
shall not be set if
CertAssocCap is not set.

Reserved.

Table 105 — Asymmetric algorithm capabilities format defines the bit mapping for asymmetric algorithms support.
See Table 136 — SPDM Asymmetric Signature Reference Information for references for the asymmetric algorithms.

Table 105 — Asymmetric algorithm capabilities format

Bit offset

Asymmetric Algorithm
RSA 2048

RSA 3072

RSA 4096

ECC NIST P256

ECC NIST P384

196

Published

Version 1.3.0

831

832

833
834

DSP0274

Bit offset

All other bits

Security Protocol and Data Model (SPDM) Specification

Asymmetric Algorithm
ECC NIST P521

SM2 P256

Ed25519

Ed448

Reserved.

10.27.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response

The SET KEY PAIR INFO request and the corresponding successful SET KEY PAIR INFO ACK response shall

configure one or more parameters for one key pair ID (KeyPairID).

Table 106 — SET_KEY_PAIR_INFO request message format defines the format for the SET KEY PAIR INFO request.

Table 106 — SET_KEY_PAIR_INFO request message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 X
version.
SET KEY PAIR INFO = OxFD . See Table 4 — SPDM
1 RequestResponseCode 1 - -
request codes.
Operation. This field shall indicate the desired
operation. The format of this field shall be the format
2 Param1l 1 as Table 107 — Key pair operations defines. If the
operation is KeyPairErase , all fields after
KeyPairID field in this request shall be absent.
3 Param2 1 Reserved.
) The value of this field shall indicate the key pair ID’s
4 KeyPairlD 1 ’ :
information to change.
5 Reserved 1 Reserved.
Version 1.3.0 Published 197

Security Protocol and Data Model (SPDM) Specification

Byte offset Field

6 DesiredKeyUsage

8 DesiredAsymAlgo

12 DesiredAssocCertSlotMask

DSP0274

Description

This field shall indicate the desired key usage

(KEY_PAIR INFO . CurrentKeyUsage) for the
requested key pair ID (KeyPairID). The format of
this field shall be as Key usage bit mask defines. If no
bits are set, the Responder shall not change the
current key usage. More than one bit can be set. The
Requester shall only select from bits that are set in
the KeyUsageCapabilities field of the
KEY_PAIR_INFO response for the requested
KeyPairlID .If KeyUsageCap is not set for the
requested KeyPairID, this field shall be zero.

This field shall indicate the desired asymmetric
algorithm (KEY_PAIR INFO . CurrentAsymAlgo) for
the requested key pair ID. The format of this field
shall be as Table 105 — Asymmetric algorithm
capabilities format defines. If no bits are set, the
Responder shall not change the current configuration
for the asymmetric algorithm. No more than one bit
shall be set. The Requester shall only select from bits
that are set in the AsymAlgoCapabilities field of
the KEY_PAIR_INFO response for the requested
KeyPairlID .If AsymAlgoCap is not set for the
requested KeyPairID, this field shall be zero.

This field is a bit mask representing the desired
certificate slot association. A set bit at position X shall
indicate an association between certificate slot X and
the requested KeyPairID . An unset bit at position X
shall indicate no association between certificate slot
X and the requested KeyPairID . The Responder
shall either remove an association or create an
association between the corresponding certificate
slot and the requested KeyPairID , depending on
the value of each bit in this field. If ShareableCap is
not set, no more than one bit shall be set.

835 Table 107 — Key pair operations defines a numeric mapping to an operation.

836 Table 107 — Key pair operations

Value

Operation Name

ParameterChange

Description

Shall indicate an operation that
modifies one or more key-related
parameters. The
DesiredKeyUsage ,
DesiredAsymAlgo , and
DesiredAssocCertSlotMask
fields shall be present.

198

Version 1.3.0

837

838

839

840
841

842

843

DSP0274

Value

Security Protocol and Data Model (SPDM) Specification

Operation Name

KeyPairErase

GenerateKeyPair

Description

Shall indicate an operation that
erases all information relating to a
KeyPairID . The
DesiredKeyUsage ,
DesiredAsymAlgo , and
DesiredAssocCertSlotMask
fields shall be absent.

Shall indicate an operation that
generates a new key pair for this
KeyPairID . The
DesiredKeyUsage ,
DesiredAsymAlgo , and
DesiredAssocCertSlotMask
fields shall be present.

Table 108 — SET_KEY_PAIR_INFO_ACK response message format defines the format for SET KEY PAIR INFO ACK

response.

Table 108 — SET_KEY_PAIR_INFO_ACK response message format

Byte offset Field

0 SPDMVersion

1 RequestResponseCode
2 Param1l

3 Param2

Size (bytes)

10.27.3 Key pair ID modification error handling

Description

Shall be the SPDMVersion as described in SPDM
version.

SET_KEY_PAIR_INFO_ACK = 0x7D . See Table 4 —
SPDM request codes.

Reserved.

Reserved.

These clauses describe some basic configuration error scenarios an SPDM endpoint should handle.

The first error scenario is a request for key generation (GenerateKeyPair) when no asymmetric algorithm has been

selected yet. A Responder should respond with an ERROR message of ErrorCode=OperationFailed .

Key usage for a key pair ID does not need to be specified until the key pair ID is associated with a certificate slot, so
this information is not needed for a GenerateKeyPair operation. The Responder should decide when it needs to

know the key usage information for a configurable key usage.

For a KeyPairErase or GenerateKeyPair operation request, the Responder shall ensure that the requested
KeyPairID has no association with any certificate slot. Otherwise, the Responder should respond with an ERROR

message of ErrorCode=OperationFailed .

Version 1.3.0

Published

199

844

845

846

847

848
849

850

Security Protocol and Data Model (SPDM) Specification DSP0274

10.28 Event mechanism

An SPDM endpoint may want to be notified of changes from another SPDM endpoint. These change notifications are
called events. The SPDM event mechanism provides a framework for the asynchronous notification of events over a
secure session. An Event Notifier is an SPDM endpoint sending an event, and an Event Recipient is an SPDM endpoint
receiving an event. An SPDM endpoint can be both an Event Notifier and an Event Recipient in the same secure
session. See Session for details on secure sessions. There can be multiple sessions between the same Responder and
same Requester. The event mechanism applies to each session individually.

An event is identified by its event group, event type, and an event instance ID. An event group is a group of all event
types a given standards body or vendor defines. An event type classifies the event by indicating its type. The event
instance ID is a unique numeric value that represents that occurrence of the event.

An Event Recipient can select the event types that it wants to receive. An event subscription is a list of event types an
Event Recipient wants to receive. The Event Notifier manages the event subscription. An Event Notifier shall only send
events of event types that match the event types in the event subscription. See DMTF Event Types for DMTF-defined
event types.

An Event Notifier shall not send any events in a session until an Event Recipient subscribes to one or more events.

The Event Flow diagram illustrates a typical event flow for event subscription and event delivery over a transport
capable of asynchronous bidirectional communication.

Figure 26 — Event flow diagram

200 Published Version 1.3.0

851

852

DSP0274

Event
Recipient

Security Protocol and Data Model (SPDM) Specification

<—| Session-Secrets-Exchange |—>

Event
Notifier

[

|

Cocoocoocoooooaoooon

)

GET_SUPPORTED_EVENTS

SUPPORTED_EVENTS

SUBSCRIBE_EVENTS

SUBSCRIBE_EVENTS_ACK

)

Legend:

Secure Session

SEND_EVENT

Event Group ID indicates DMTF

Event Instance ID ==
Measurement Event Details

EVENT_ACK

Ack-ed Event Instance ID ==

SEND_EVENT

Event Group ID indicates DMTF
Event Instance ID ==
Measurement Event Details

EVENT_ACK

Ack-ed Event Instance ID ==

'

For transports that prohibit a Responder from asynchronously sending out data, the Event Notifier and Event
Recipient can use the encapsulated request flow to deliver or receive events. The encapsulated request flow allows for
a polling methodology as Triggering GET ENCAPSULATED REQUEST describes.

Version 1.3.0

Published

201

853

854

855

856

857
858

859
860

Security Protocol and Data Model (SPDM) Specification DSP0274

When EVENT CAP is set, an Event Notifier shall support SUBSCRIBE EVENT TYPES, GET SUPPORTED EVENT TYPES,
SEND_EVENT , and their corresponding response messages.

10.28.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES
response message

These request and response messages retrieve the list of all event types supported by the Event Notifier. Each event
type belongs in an event group. An event group contains all event types belonging to the standards body or vendor
that defines them. The SVH identifies the event group. Within an event group, an event type ID identifies the event
type uniquely within the event group. Both the SVH and the event type ID ensure uniqueness for all event types in
this specification.

Usually, the Event Notifier does not need to support all event types within an event group or within all event groups.
However, the standards body or vendor defines the requirements for the event types they define.

Table 109 — GET_SUPPORTED_EVENT_TYPES request message format describes the message format.

Table 109 — GET_SUPPORTED_EVENT_TYPES request message format

Byte Offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
1 RequestResponseCode 1 OXE2 = GET SUPPORTED EVENT TYPES
2 Param1 1 Reserved.
3 Param2 1 Reserved.

Table 110 — SUPPORTED_EVENT_TYPES response message format describes the message format for this response.

Table 110 — SUPPORTED_EVENT_TYPES response message format

Byte Offset Field Size (bytes) Description
. Shall be the SPDMVersion as

0 SPDMVersion 1 . . .
described in SPDM version.
0x62 = SUPPORTED EVENT TYPES

1 RequestResponseCode 1 - -
Response
EventGroupCount. Shall be the

2 Param1l 1 number of event groups listed in
SupportedEventGroupsList .

3 Param2 1 Reserved.
The value of this field shall be the

. size in bytes of the
4 SupportedEventGroupsListLen 4

SupportedEventGroupsList
and shall be greater than zero.

202 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte Offset Field Size (bytes) Description

Shall be a list of all event types
grouped by event group
supported by the Event Notifier.
The format of this field shall be a
list of Event group. In this format,
each event group contains a list
of event types the Event Notifier
supports. If an event group is
. . present, it shall be present

8 SupportedEventGroupsList SupportedEventGroupsListLen .)
exactly once to avoid duplicates

and to minimize the size of this

response. The size of this field

shall be the value in

SupportedEventGroupsListlLen .

See Event group format
additional information for
additional details.

861 Table 111 — Event group format defines the format for listing event types in a single event group.

862 Table 111 — Event group format

Byte Offset Field Size (bytes) Description

Shall indicate the event
group the event type
belongs to. The format of

0 EventGroupld 2 + VendorIDLen this field shall be the SVH
format. The size of this
field shall be the size of
the SVH.

Shall be the total number
of event types listed in
the EventTypelList field
2 + VendorIDLen EventTypeCount 2 and belonging to
EventGroupId . The value
of this field shall be
greater than zero.

Shall be the standards
body or vendor-assigned
version number that
4 + VendorIDLen EventGroupVer 2 Lo R
indicates the version of
the event types belonging

to EventGroupId .

Version 1.3.0 Published 203

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte Offset Field Size (bytes) Description

Attributes. The format of
this field shall be defined
by the messages using
this Event groups format.
For the
SUPPORTED_EVENT_TYPES
6 + VendorIDLen Attributes 4 PERLIOITES IS BE
Event group format
additional information.
For the
SUBSCRIBE EVENT TYPES
request message, see
Additional subscription
list information.

Shall be a list of event
types in this Event Group
(EventGroupId). The
value in EventTypeCount
field shall indicate the
number of event types in
10 + VendorIDLen EventTypelList Variable this list. The format of this
field shall be a list of
Event Type Information.

If an event type is
present, it shall be
present exactly once.

863 Table 112 — Event type information format defines the format for a single event type.

864 Table 112 — Event type information format

Byte Offset Field Size (bytes) Description

Shall be a

numeric value
that uniquely
identifies this

0 EventTypeld 2
event type
within the
corresponding
event group.
2 Reserved 2 Reserved.
865 The EventGroupVer field allows for updates to the event type list such as a new event type. An Event Notifier should

add new event types to the end of the list.

204 Published Version 1.3.0

866

867

868

869

870

871

872

873

874

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.28.1.1 Event group format additional information

This clause describes further information for various fields in the Event groups format table. This format is present in
more than one SPDM message.

Many fields in the Event group format table have different definitions depending on which SPDM message uses this
table. For SUBSCRIBE EVENT TYPES , see Additional subscription list information for requirements on the Event group
format.

The following requirements shall apply to the Event group format table contained in SUPPORTED EVENT TYPES .

» The value of EventTypeCount field shall be greater than zero.
« The presence of an event type in the EventTypeList field shall indicate that the Event Notifier can send events
of this type.

e The value of Attributes shall be reserved.

10.28.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response
message

The SUBSCRIBE EVENT TYPES request and SUBSCRIBE EVENT TYPES ACK response messages allow an Event
Recipient to communicate the list of SPDM event types it is interested in receiving. This request replaces the current
subscription list.

An event subscription is a list of all event types to which an Event Recipient subscribes. Thus, an Event Notifier shall
send events when they occur to an Event Recipient if at least one event type is present in the event subscription of
the corresponding Event Recipient.

To subscribe or unsubscribe to an event group, an Event Recipient shall send the SUBSCRIBE EVENT TYPES request
message with a complete list of all event types to which the Event Recipient subscribes. An Event Notifier shall replace
the current event subscription with the new subscription from the latest SUBSCRIBE_EVENT TYPES message. If the
new subscription contains an unsupported or invalid event type, the Responder should respond with an ERROR
message of ErrorCode=InvalidRequest .If an Event Notifier supports multiple Event Recipients, the Event Notifier
shall support a unique event subscription list per session for each subscribed Event Recipient. The
SUBSCRIBE_EVENT_TYPES request message format describes the message format.

Table 113 — SUBSCRIBE_EVENT_TYPES request message format

Byte Offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in
0 SPDMVersion 1 i
SPDM version.
1 RequestResponseCode 1 OxFO = SUBSCRIBE EVENT TYPES

Version 1.3.0 Published 205

Security Protocol and Data Model (SPDM) Specification

Byte Offset Field Size (bytes)

2 Paraml 1

3 Param2 1

4 SubscribeListLen 4

8 SubscribeList SubscribelListLen

DSP0274

Description

SubscribeEventGroupCount. Shall be the
number of event groups in Subscribelist .

A value of zero shall indicate that the Event
Recipient no longer subscribes to any events.
This is the equivalent of an empty event
subscription or the removal of all event types
in an event subscription. If the value of this
field is zero, SubscribelListLen and
SubscribeList fields shall be absent.

Reserved.

The value of this field shall be the size in
bytes of SubscribelList . The value of this
field shall be greater than zero.

Shall be a list of event types grouped by
event group that the Event Notifier supports
and to which the Event Recipient is
subscribing. The format of this field shall be a
list of Event group. In this format, each event
group contains a list of event types to which
the Event Recipient subscribes. If an event
group is present, it shall be present exactly
once. The size of this field shall be the value
in SubscribeListLen field.

See Additional subscription list information
for additional requirements.

875 Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format describes the response format for the

SUBSCRIBE_EVENT TYPES request.

876 Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format

Byte Offset Field Size (bytes)
0 SPDMVersion 1
1 RequestResponseCode 1
2 Paraml 1
3 Param2 1

877 For event types defined by this specification, see DMTF event types.

Description

Shall be the SPDMVersion as
described in SPDM version.

©x70 = SUBSCRIBE_EVENT_TYPES ACK
Response

Reserved.

Reserved.

206 Published

Version 1.3.0

878

879

880

881

882
883

884

885

886

887

DSP0274 Security Protocol and Data Model (SPDM) Specification

10.28.2.1 Additional subscription list information

These clauses describe further information for various fields in SubscribeList whose format is the Event group
format.

The value of the EventTypeCount field shall be greater than or equal to zero. If EventTypeCount is zero, then
AllEventTypes shall also be set.

The presence of an event type in the EventTypeList field shall subscribe the Event Recipient to that event type.
Likewise, the absence of an event type in the EventTypeList field shall indicate that the Event Recipient does not or
no longer subscribes to this event type. Additionally, the absence of an event group in the SubscribelList shall
indicate that the Event Recipient does not or no longer subscribes to any event types in this event group.

The format of the Attributes field shall be as the SUBSCRIBE EVENT TYPES request attributes format table defines.

Table 115 — SUBSCRIBE_EVENT_TYPES request attributes format

Byte Offset Bit Offset Field Description

If set, the Event
Notifier shall
subscribe the
Event Recipient to
all event types
supported by the

0 0 AllEventT
ventlypes Event Notifier in
the corresponding
Event Group and
the value of
EventTypeCount

shall be zero.

0 [7:1] Reserved Reserved

1 [7:0] Reserved Reserved

2 [7:0] Reserved Reserved

3 [7:0] Reserved Reserved

If an Event Recipient sets AllEventTypes , it can receive events of event types it does not understand. In this
scenario, the Event Recipient shall respond with an EVENT ACK message as SEND_EVENT request and EVENT_ACK
response message describes and stop processing the unknown event type.

10.28.3 SEND_EVENT request and EVENT_ACK response message

To deliver subscribed events to an Event Recipient, the Event Notifier shall use the SEND EVENT request message.
This request can contain more than one event.

Table 116 — SEND_EVENT request message format describes this request.

Version 1.3.0 Published 207

888

889
890

Security Protocol and Data Model (SPDM) Specification DSP0274

Table 116 — SEND_EVENT request message format

Byte Offset Field Size (bytes) Description

) Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1

version.
1 RequestResponseCode 1 OxF1 = SEND EVENT
2 Param1l 1 Reserved.
3 Param2 1 Reserved.
Shall be the number of elements in
4 EventCount 4)
EventsList .
Shall be a list of Event Data. The list should be
. X sorted in numerically increasing event instance
8 EventsList Variable

ID order. The size of this field shall be the size of
this list.

Table 117 — Event data table describes the format for details of each event.

Table 117 — Event data table

Byte Offset Field Size (bytes) Description

Shall be the event instance id for the
0 EventInstanceld 4

event.
4 Reserved 4 Reserved.

Shall indicate the event group the
8 EventGroupld 2 + VendorIDLen event type belongs to. The format of
this field shall be SVH format.

Shall be the numeric value identifying

10 + VendorIDLen EventTypeld 2 the event type of this event in
EventGroupId .
12 + VendorIDLen EventDetailLen 2 Shall be the length of EventDetail .

208 Published Version 1.3.0

891
892

893
894

895

896

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte Offset Field Size (bytes) Description

Shall be the event-specific details of
the event indicated by
EventInstanceld , EventGroupId

and EventTypeld . The format and
further definition of this field is
specific to the event type indicated

14 + VendorIDLen EventDetail Variable by EventTypeId in the event group
indicated by EventGroupId . For the
DMTF event group, see Event type
details for further information. The
size of this field shall be the size of
the event-specific details for this
event.

Table 118 — EVENT_ACK response message format describes the format for the response.

Table 118 — EVENT_ACK response message format

Byte Offset Field Size (bytes) Description
Shall be the
) SPDMVersion as
0 SPDMVersion 1

described in SPDM
version.

Ox71 = EVENT ACK
1 RequestResponseCode 1 -

Response
2 Param1 1 Reserved.
3 Param2 1 Reserved.

The Event Notifier shall only send unacknowledged event instance IDs.

The size of SEND EVENT data can exceed the DataTransferSize of the Event Recipient, especially if multiple events
happen concurrently. While it is possible to use the Large SPDM message transfer mechanism, the Event Notifier
should try to divide the events into multiple SEND EVENT requests to ensure efficient delivery of the events instead
of combining all events into a single SEND_EVENT request.

An Event Notifier shall send a SEND EVENT request with only the Event Lost event (EventTypeId =EventLost) as an
indication that the original event was too big in size under any of these conditions:

» The Event Notifier does not support the Large SPDM message transfer mechanism and the SEND EVENT request
with only one event exceeds the DataTransferSize of the Event Recipient.

» The size of a SEND_EVENT request with only one event is greater than the MaxSPDMmsgSize of the Event
Recipient.

The Event Notifier shall follow the requirements in Timing requirements as a Requester for SEND_EVENT . Likewise, the
Event Recipient shall follow the timing requirements as a Responder when receiving a SEND_EVENT request.

Version 1.3.0 Published 209

897

898

899

900

901

902
903
904

Security Protocol and Data Model (SPDM) Specification DSP0274

10.28.4 Event Instance ID

Event Instance ID typically reflects the order of events in the Event Notifier from a chronological perspective. The
event instance ID shall start at zero for each secure session and sequentially increase with each occurrence of an
event. This method also allows the Event Recipient to determine if an event was lost.

When the event instance ID reaches the maximum value, the Event Notifier shall terminate the session after sending a
SEND _EVENT request containing an event with the maximum value and receiving the corresponding response. An
Event Recipient can also terminate the session.

10.29 GET_ENDPOINT_INFO request and ENDPOINT_INFO response
messages

The GET_ENDPOINT INFO request message shall retrieve general information from an endpoint. The SubCode
parameter is used to differentiate between operations, and a request message shall specify only one SubCode . If the
Responder does not support the specified SubCode , the responder shall return an ERROR message of
ErrorCode=UnsupportedRequest .

Table 119 — GET_ENDPOINT_INFO request format shows the format of the GET_ENDPOINT INFO request message.
Table 122 — ENDPOINT_INFO response format shows the format of the ENDPOINT INFO response message.

Table 119 — GET_ENDPOINT_INFO request format

Byte offset Field Size (bytes) Description

Shall be the SPDMVersion as described in SPDM

0 SPDMVersion 1 .
version.

0x87 = GET_ENDPOINT INFO . See Table 4 —

1 RequestResponseCode 1
SPDM request codes.

Shall be the GET ENDPOINT INFO SubCode. See
2 Param1 1 GET_ENDPOINT_INFO SubCodes for the list of
valid values.

Bit [7:4]. Reserved.

Bit [3:0]. SlotID that identifies the certificate
chain whose leaf certificate is used to sign the
response. If a signature is not requested (Bit[0] of
the RequestAttributes fieldis 0), this field
shall be ignored. If the Responder’s public key was

3 Param?2 1

provisioned to the Requester previously, this field
shall be OxF .

Request attributes.

4 RequestAttributes 1)
See GET_ENDPOINT_INFO request attributes.

5 Reserved 3 Reserved.

210 Published Version 1.3.0

DSP0274

Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description
The Requester should choose a random value. This
8 Nonce NL =320r0 field shall only be present if a signature is
requested (SignatureRequested=1b).
905 Table 120 — GET_ENDPOINT _INFO SubCodes
SubCode Value Description
Reserved 0x00 Reserved.
The DeviceClassIdentifier response returns information that can
. = be used to identify the class of device for the Responder in question.
DeviceClassldentifier 0x01 . . P
See ENDPOINT_INFO device class identifier list format for the
definition of the response data.
SPDM implementations compatible with this version shall not use

Reserved All other values

the reserved SubCode s.
906 Table 121 — GET_ENDPOINT_INFO request attributes

Bit offset Field Description
If the Responder can generate a signature (EP_INFO_CAP=10b
inits CAPABILITIES response and either BaseAsymSel or

ExtAsymSelCount is non-zero), a value of 1 indicates that a
signature on the response is required. When this bit is set to
1, the Requester shall include the Nonce field in the request,
and the Responder shall generate a signature and send the
signature in the response.

0 SignatureRequested Avalue of 0 indicates that the Requester does not require a
signature. The Responder shall not generate a signature in the
response. The Nonce field shall be absent in the request and
response.

For Responders that cannot generate a signature
(EP_INFO_CAP=01b in their CAPABILITIES response or both
BaseAsymSel and ExtAsymSelCount are zero), the Requester
shall always set this bitto 0 .
[7:1] Reserved Reserved.
907 Table 122 — ENDPOINT_INFO response format
Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM
0 SPDMVersion 1 .
version.
0x07 = ENDPOINT INFO . See Table 5— SPDM
1 RequestResponseCode 1 -
response codes.
Version 1.3.0 Published 211

Security Protocol and Data Model (SPDM) Specification DSP0274

Byte offset Field Size (bytes) Description
2 Param1l 1 Reserved.

Bit [7:4]. Reserved.
Bit [3:0]. SlotID that identifies the certificate
chain whose leaf certificate is used to sign the

3 Param2 1 response. If a signature is not requested
(SignatureRequested=0b), this field shall be 0 .
If the Responder’s public key was provisioned to
the Requester previously, this field shall be 0xF .

4 Reserved 4 Reserved.

The Responder should choose a random value.
8 Nonce NL =320r0 This field shall only be present if Bit[0] of the
RequestAttributes fieldis 1.

8+ NL EPInfoLen 4 Shall contain the length of the EPInfo field.

Shall contain endpoint information, as described
in the endpoint information format for the
specified SubCode . The size of this field shall be
the size of the returned endpoint information.

12 + NL EPInfo EPInfolLen

Signature of the endpoint information,
excluding the Signature field and signed using
the private key associated with the leaf certificate.
The Responder shall use the asymmetric signing
algorithm it selected during the last ALGORITHMS
response message to the Requester, and SigLen

12+ NL + . . is the output size for that asymmetric signing

Signature Siglen . e .

EPInfolLen algorithm. This field is conditional and only
present in the ENDPOINT INFO response
corresponding to a GET_ENDPOINT_INFO request
with the SignatureRequested bit setto 1 in the
RequestAttributes field. See ENDPOINT_INFO
signature generation and ENDPOINT_INFO
signature verification for more details.

908 The Device Class Identifier format is an extended form of the standards body or vendor-defined header. For a Device
Class Identifier list response, EPInfoLen shall have a size of 4 + IDElemSize . The IDElemSize shall be the sum of
the sizes of the NumIdentifiers of the Device Class Identifier elements. Each Device Class Identifier shall have a size
of 4 + VendorIDLen + the sum of the sizes of the subordinate Device Class Identifiers. Each of the subordinate
Device Class Identifiers shall have a size of 1 + SubIDLen , where SubIDLen may be different for each element.

909 Table 123 — ENDPOINT_INFO device class identifier list format

212 Published Version 1.3.0

910

911

912

DSP0274

Byte offset

Field

Numldentifiers

Reserved

IdentifierElements

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

IDElemSize

Table 124 — ENDPOINT _INFO device class identifier element format

Byte offset

3 + VendorIDLen

4 + VendorIDLen

Field

IDElemLength

SVH

NumSubIDs

SubordinatelD

Size (bytes)

2 + VendorIDLen

NumSubIDs entries of 1
+ SubIDLen fora given
entry

Description

Shall be the number of Device Class Identifier
elements in this response message. Each identifier
shall be unique.

Reserved.

Shall contain Device Class Identifier elements, as
defined in ENDPOINT_INFO device class identifier
element format.

Description

Shall be the size of this ID element. The value of
IDElemLength shall be the number of bytes from
the SVH . ID field through the last
SubordinatelD , inclusive.

Shall be a standards body or vendor-defined
header, as described in Table 64 — Standards
body or vendor-defined header (SVH).

Shall be the number of subordinate Device Class
Identifiers.

Shall contain NumSubIDs of subordinate Device
Class Identifiers, of the format described in Device
class identifier subordinate identifier format. If
NumSubIDs is O, this field shall be absent.

If present, one or more subordinate identifier fields contain identifiers that further identify the device. These
identifiers shall be valid in the namespace defined by the standards body specified in the ID field and by the vendor
ID specified in the VendorID field.

Table 125 — Device class identifier subordinate identifier format

Byte offset Field Size (bytes) Description
Shall contain the length in bytes of this

0 SubIDLen 1 . . -
subordinate identifier.
Shall contain one subordinate device identifier

1 subldentifier STEIT that is valid in the namespace of the vendor
upiEen identified in the VendorID field. This field shall be

size SubIDLen .

Version 1.3.0 Published 213

Security Protocol and Data Model (SPDM) Specification DSP0274

913 10.29.1 ENDPOINT_INFO signature generation

914 The signature for an ENDPOINT INFO response is generated per request and response pair. To complete the
ENDPOINT INFO signature generation process, the Responder shall complete these steps:

915 1. The Responder shall construct an information log IL1, and the Requester shall construct an information
log IL2 over their observed messages:

IL1/IL2 = Concatenate(VCA, GET_ENDPOINT_INFO, ENDPOINT INFO)

916 where:

o Concatenate is the standard concatenation function.

o GET_ENDPOINT INFO is the entire GET ENDPOINT INFO request message under consideration
where the Requester has set the SignatureRequested bitin the RequestAttributes field.

o ENDPOINT_INFO isthe entire ENDPOINT INFO response message under consideration, except for
the signature field.

917 2. The Responder shall generate:

Signature = SPDMsign(PrivKey, IL1, "endpoint info signing")

918 where:

o SPDMsign is described in Signature generation.

o PrivKey shall be the private key of the Responder associated with the leaf certificate stored in
SlotID of Param2 in GET ENDPOINT INFO .If the public key of the Responder was provisioned
to the Requester, then PrivKey shall be the associated private key.

919 10.29.2 ENDPOINT_INFO signature verification
920 To complete the ENDPOINT INFO signature verification process, the Requester shall complete this step:

921 1. The Requester shall perform:

result = SPDMsignatureVerify(PubKey, Signature, IL2, "endpoint info signing")

922 where:

o SPDMsignatureVerify is described in Signature verification. A successful verification is when
result is success .

214 Published Version 1.3.0

923

924

925

926

927

928

929

DSP0274 Security Protocol and Data Model (SPDM) Specification

o PubKey shall be the public key associated with the leaf certificate stored in SlotID of Param2
in GET_ENDPOINT INFO, and itis extracted from the CERTIFICATE response. If the public key of
the Responder was provisioned to the Requester, then PubKey shall be the provisioned public
key.

10.30 Measurement extension log mechanism

A Responder device may create and maintain a Measurement Extension Log (MEL) to record device information such
as measurements of firmware and/or software modules loaded during the boot, firmware and/or software updates,
configurations, status of the system, and so on. To construct the MEL, when certain events occur, the Responder
appends data associated with the events to the end of the MEL. The events that cause the MEL update are specific to
and are determined by individual Responder implementations. For example, the Responder may append the digest
and version number of a firmware module to the end of the MEL when the firmware module is loaded. The MEL
grows as entries are added. At reset, the Responder may reset the MEL or preserve the MEL. If the Responder
preserves the MEL across resets, the reset events themselves may be added as new entries to the MEL. Accordingly,
the corresponding HEM should also be preserved across resets. The Responder should ensure that the MEL will not
overrun memory or wrap under normal uses.

If the MEL_CAP bitin CAPABILITIES is set, the Requester may acquire the MEL of the Responder by issuing a
GET_MEASUREMENT EXTENSION LOG request message. The Responder shall respond with the

MEASUREMENT _EXTENSION LOG response message. If a Requester acquires the hash-extend measurements outside of
a secure session, the Requester should set SignatureRequested=1 inthe GET MEASUREMENTS request or secure the
response using other means outside of this specification.

The Hash-extend measurements clause introduces a method of constructing a hash value (type 0x8 of
DMTFSpecMeasurementValueType[6:0]) by extending measurements. The resulting hash guarantees the integrity of
the data participating in the extend operations. Leveraging this mechanism can ensure the integrity of the MEL. To do
this, an entry of the MEL serves as the DataToExtend in calculating HEM . After all entries of the MEL are processed,

the resulting HEM is the hash-extend measurement.

To avoid circular dependencies and race conditions, the DataToExtend for calculating HEM shall not include the
GET_MEASUREMENTS request, MEASUREMENTS response, GET_MEASUREMENT EXTENSION LOG request, or
MEASUREMENT_EXTENSION LOG response messages.

Figure 27 — Flow for acquiring Hash-Extend Measurement and Measurement Extension Log demonstrates an
example flow for the Requester to obtain hash-extend measurement and the MEL from the Responder.

Figure 27 — Flow for acquiring Hash-Extend Measurement and Measurement Extension Log

Version 1.3.0 Published 215

930

931

932

933

934

935

Security Protocol and Data Model (SPDM) Specification DSP0274

Requester Responder

Construct MEL during boot and
runtime.

extended measurement as

I
|
|
|
|
|
|
: entries are added to MEL.

I
|
|
|
|
: Extend MEL entries to hash-
|
|
|
|

GET_MEASUREMENTS
I (Param2=an index of type 08h; »
I SignatureRequested) Sign hash-extended
! MEASUREMENTS measurement with
Verify signature of (hash-extended measurement) private key

the Responder

GET_MEASUREMENT_EXTENSION_LOG—»

Replicate extend <«——MEASUREMENT_EXTENSION_LOG
operations and verify
MEL against hash-
extended measurement

As the example flow shows, a Responder that supports MEL would construct the MEL at runtime independently of the
Requester. The Requester would first issue GET_MEASUREMENTS to obtain the hash-extend measurement and verify
the signature of the Responder, and then it would issue GET_MEASUREMENT EXTENSION LOG to obtain the MEL from
the Responder. With both hash-extend measurement and MEL, the Requester replicates the extend operations with
entries of the MEL in ascending MEL index order for the corresponding HEM received in the

MEASUREMENT EXTENSION LOG . If the result of extend operations does not match the hash-extend measurement, then
it indicates that the verification of HEM has failed.

10.30.1 GET_MEASUREMENT_EXTENSION_LOG request and
MEASUREMENT_EXTENSION_LOG response messages

Table 126 — GET_MEASUREMENT_EXTENSION_LOG message format shows the GET MEASUREMENT EXTENSION LOG
request message format.

Table 127 — Successful MEASUREMENT_EXTENSION_LOG message format shows the MEASUREMENT EXTENSION LOG
response message format.

Table 126 — GET_MEASUREMENT_EXTENSION_LOG message format

216 Published Version 1.3.0

936

937

DSP0274
Byte offset Field
0 SPDMVersion
1 RequestResponseCode
2 Param1
3 Param2
4 Offset
8 Length

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

Description

Shall be the SPDMvVersion as described in SPDM
version.

OXEF = GET_MEASUREMENT EXTENSION_LOG . See Table
4 — SPDM request codes.

Reserved.
Reserved.

Shall be the offset in bytes from the start of the MEL
to where the read request message begins. The
Responder shall send the MEL starting from this
offset. Offset 0 shall be the first byte of the MEL.

Shall be the length of the MEL, in bytes, to be
returned in the corresponding response.

Note that the large SPDM message transfer mechanism can be used for the MEASUREMENT_EXTENSION_LOG

message.

Table 127 — Successful MEASUREMENT_EXTENSION_LOG response message format

Byte offset Field Size (bytes) Description
. Shall be the SPDMVersion as described in SPDM

0 SPDMVersion 1)
version.
Ox6F = MEASUREMENT EXTENSION LOG . See Table 5

1 RequestResponseCode 1
— SPDM response codes.

2 Paraml 1 Reserved.

3 Param?2 1 Reserved.
Shall be the number of bytes of this portion of the
MEL. This shall be less than or equal to the Length

. received as part of the request. For example, the

4 PortionLength 4) L
Responder might set this field to a value less than the
Length received as part of the request due to
limitations on the transmit buffer of the Responder.
Shall be the number of bytes remaining in the MEL

. from the requested offset + PortionLength . A value

8 RemainderLength 4 L
of 0 shall indicate there are no more bytes beyond
the requested offset + PortionLength .
Requested contents of the MEL. This field shall follow

12 MEL PortionLength the format negotiated in the most recent
ALGORITHMS message.

Version 1.3.0 Published 217

Security Protocol and Data Model (SPDM) Specification DSP0274

938 10.30.2 DMTF Measurement Extension Log Format

939 This clause specifies the format of MEL in the MEASUREMENT EXTENSION LOG response when the MEL specification
(MELspecificationSel)is “DMTFmelSpec” and the measurement specification (MeasurementSpecificationSel) is
“DMTFmeasSpec” in the most recent ALGORITHMS message (see Table 21 — Successful ALGORITHMS response
message format). The MEL format shown in Table 128 — DMTF Measurement Extension Log format leverages the
DMTF measurement specification format for its entries.

940 Table 128 — DMTF Measurement Extension Log Format

Byte offset Field Size (bytes) Description
0 NumberOfEntries 4 Shall be the number of entries in the MEL.
) Shall be the total number of bytes in all entries of the
4 MELEntriesLength 4
MEL.
8 Reserved 8 Reserved.
Shall be the concatenation of all entries of the MEL.
16 MELEntries MELEntriesLength The size of this field shall be equal to

MELEntriesLength .

941 The MELEntries field of the DMTF Measurement Extension Log consists of all entries of the MEL. Each MEL entry shall
follow the format that Table 129 — DMTF Measurement Extension Log Entry Format defines. In the calculation of
hash-extend measurement, DataToExtend shall be one MEL entry at a time.

942 Table 129 — DMTF Measurement Extension Log Entry Format

Byte offset Field Size (bytes) Description

Shall be the index of this entry in the MEL. This
0 MELIndex 4 field shall be a non-negative integer. The
MELIndex shall be in increasing order.

218 Published Version 1.3.0

943

944

945

DSP0274 Security Protocol and Data Model (SPDM) Specification

Byte offset Field Size (bytes) Description

Shall be the index of the hash-extend
measurement which this entry extends, that is,
the Index of Table 53 — Measurement block
format for this hash-extend measurement
(DMTFSpecMeasurementValueType[6:0] = 0x8)
in the MEASUREMENTS response. MeasIndex
values of MEL entries can interleave. For example,
it is legitimate that a MELIndex of 2 has a
MeasIndex of 0x04, but a MELIndex of 1 and a

4 MeasIndex 1 MELIndex of 3 both have a MeasIndex of 0x05.

If this entry does not extend to any index, then
the Responder shall set this field to 0x00 . In this
case, the entry shall not be used in the extend
operation for calculating HEM.

Some indices are reserved for specific purpose
(see Table 51 — Measurement index assigned
range).

5 Reserved 3 Reserved.

DMTFSpecMeasurementValueSize Shall be the entry data of the DMTF

8 Entr
y +3 measurement specification format.

10.30.3 Example: Verifying Measurement Extension Log Against Hash-Extend
Measurement

Figure 28 — Example for Measurement Extension Log illustrates an example of an MEL with 11 entries and two
corresponding hash-extend measurements at MEASUREMENTS response indices 1 and 2 to which the log entries
extend. The MEL in this example is constructed by the Responder during boot. The Responder implements a simple
ROM-firmware secure boot architecture.

Figure 28 — Measurement Extension Log Example

Version 1.3.0 Published 219

946

947

948

949

950

951

Security Protocol and Data Model (SPDM) Specification DSP0274

DMTF Measurement Extension Log MELEntries Field

“Entry” following Table“DMTF Measurement SpecificationFormat”

MEL | Meas | rese DMTFMeasurement DMTFMeasure | DMTFMeasurement
SPDM MEASUREMENTS Index | Index | rved | ValueType mentValueSize | Value
1 0 0 89h: bits; inf tional 3 “ROM”
response ra.lw its; informationa .
DMTFMeas | DMTFMeasure 2 1 0 00h: digest; ROM 48 <digest of ROM>
urementVal | mentValue 3 1 0 82h: raw bits; hardware config 128 <hardware config data
ueType Value of ROM>
1 08h (HEM) <digest-1> 4 0 0 89h: raw bits; informational 7 “Boot FW”
2 08h (HEM) <digest-2> — 5 2 0 87h: raw bits; security version 8 0x0000000000000002
§ 6 2 0 86h: raw bits; version 4 0x0100030A
7 2 0 01h: digest; firmware 48 <digest of boot
firmware>
8 0 0 89h: raw bits; informational 9 “ROM patch”
9 1 0 00h: digest; ROM 48 <digest of ROM patch>
10 0 0 89h: raw bits; informational 14 “Application FW”
11 2 0 01h: digest; firmware 48 <digest of application
firmware>

The MEL entries of indices 1, 4, 8, and 10 have a value type of 0x9 (informational). Since these are informational and
do not apply to any measurement index, they are ignored in calculating HEM.

The hash-extend measurement at MEASUREMENTS index 1 is used for recording digests of ROM, patch, and hardware
configuration. The MEL entries with MEL indices 2, 3, and 9 fit in this category and they extend to MEASUREMENTS
index 1. Note that an extend operation shall consume the entire entry, including MELIndex , MeasIndex , Reserved ,
and Entry .

The hash-extend measurement at MEASUREMENTS index 2 is used for recording the digest of the firmware, firmware
configuration, and version information. The MEL entries with MEL indices 5, 6, 7, and 11 fit in this category, and they
extend to MEASUREMENTS index 2.

The Requester verifies the MEL entries by performing the checks illustrated in Figure 29 — Example for Verifying
Measurement Extension Log Entries.

Figure 29 — Example for Verifying Measurement Extension Log Entries

220 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

952
| HEM=hash(Concatenation(00...00, MEL index 2 entry)) | | HEM=hash(Concatenation(00...00, MEL index 5 entry)) |
Il
| HEM=hash(Concatenation[HEM, |MEL index 3 entry)) | | HEM=hash(Concatenation(HEM,] MEL index 6 entry)) |

1 1
| HEM=hash(Concatenation(MEL index 9 entry))| | HEM=hash(Concatenation(EL index 7 entry)) |

compare| HEM | and| <digest-1> | |HEM=hash(Concatenation(MEL index 11 entry)) |
If not equal, do not trust MEL indices 2,
3,and 9

compare| HEM | and| <digest-2> |

If not equal, do not trust MEL indices 5,
6,7,and 11

Version 1.3.0 Published 221

953

954

955

956
957

958

959

960

Security Protocol and Data Model (SPDM) Specification DSP0274

11 Session

Sessions enable a Requester and Responder to have multiple channels of communication. More importantly, it
enables a Requester and Responder to build a secure communication channel with cryptographic information that is
bound ephemerally. Specifically, an SPDM session provides either encryption or message authentication or both.

A session has three phases, as Figure 30 — Session phases shows:

+ The handshake
* The application

* Termination

Figure 30 — Session phases

Requester Responder

Session-Secrets-Exchange

Secure Legend

: Session

| Sessiodlerminated! !

Session Handshake Phase

. Application Phase

11.1 Session handshake phase

The session handshake phase begins with either KEY EXCHANGE or PSK_EXCHANGE . This phase also allows for the
authentication of the Requester if the Responder indicated this earlier in its ALGORITHMS response. Furthermore, this
phase of the session uses the handshake secrets to secure the communication as described in the Key schedule
clause.

The purpose of this phase is to first build trust between the Responder and Requester before either side sends

222 Published Version 1.3.0

961

962

963

964

965

966

967

968

969

970

971

972

973

DSP0274 Security Protocol and Data Model (SPDM) Specification

application data. Additionally, it also ensures the integrity of the handshake and, to a certain degree, synchronicity
with the derived handshake secrets.

. During this phase, the Responder shall not asynchronously send requests to the
Requester. The only requests allowed to be encapsulated shall be GET DIGESTS and GET_CERTIFICATE .The
Requester shall provide a signature in the FINISH request, as the FINISH request and FINISH_RSP response
messages clause describes.

11.2 Application phase

Once the handshake completes and all validation passes, the session reaches the application phase where either the
Responder or the Requester can send application data.

The application phase ends when the HEARTBEAT requirements fail, or with an END SESSION message, or with an
ERRORMessage of "Errorcode=DecryptErrar . The next phase is the session termination phase.

11.3 Session termination phase

This phase signals the end of the application phase and the enactment of internal clean-up procedures by the
endpoints. Requesters and Responders can have various reasons for terminating a session, which are outside the
scope of this specification.

SPDM provides the END SESSION / END SESSION ACK message pair to explicitly trigger the session termination phase
if needed but, depending on the transport, it might simply be an internal phase with no explicit SPDM messages sent
or received.

When a session terminates, both Requester and Responder shall destroy or clean up all session secrets such as
derived major secrets, DHE secrets and encryption keys. Endpoints might have other internal data associated with a
session that they should also clean up.

11.4 Simultaneous active sessions

If a Responder supports key exchanges, the maximum number of simultaneous active sessions shall be at least 1. If a

Version 1.3.0 Published 223

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Security Protocol and Data Model (SPDM) Specification DSP0274

KEY EXCHANGE or PSK EXCHANGE request would cause the Responder’s number of simultaneous active sessions to
exceed this maximum, the Responder shall respond with an ERROR message of ErrorCode=SessionLimitExceeded .

974 This specification does not prohibit concurrent sessions in which the same Requester and Responder reverse roles.
For example, SPDM endpoint ABC, acting as a Requester, can establish a session to SPDM endpoint XYZ, which is
acting as a Responder. At the same time, SPDM endpoint XYZ, now acting as a Requester, can establish a session to
SPDM endpoint ABC, now acting as a Responder. Because these two sessions are distinct and separate, the two
endpoints would ensure they do not mix sessions. To ensure proper session handling, each endpoint would ensure
that their portion of the session IDs are unique at the time of Session-Secrets-Exchange. This would form a final
unique session ID for that new session. Additionally, the endpoints can use information at the transport layer to
further ensure proper handling of sessions.

975 11.5 Records and session ID

976 When the session starts, the communication of secured data is done using records. A record represents a chunk or
unit of data that is either encrypted or authenticated or both. This data can be either an SPDM message or
application data. Usually, the record contains the session ID resulting from one of the Session-Secrets-Exchange
messages to aid both the Responder and Requester in binding the record to the respective derived session secrets.

977 The actual format and other details of a record are outside the scope of this specification. It is generally assumed that
the transport protocol will define the format and other details of the record.

224 Published Version 1.3.0

978

979

980

981

982
983
984

985

986

DSP0274 Security Protocol and Data Model (SPDM) Specification

12 Key schedule

A key schedule describes how the various keys such as encryption keys used by a session are derived and when each
key is used. The default SPDM key schedule makes heavy use of HKDF-Extract and HKDF-Expand , which RFC 5869

describes. SPDM defines this additional function:

BinConcat(Length, Version, Label, Context)

where

« BinConcat shall be the concatenation of binary data in the order that Table 130 — BinConcat details shows:

Table 130 — BinConcat details

Order Data Type Endianness Size

1 Length Binary Little 16 bits

2 Version Text Text 8 bytes

3 Label Text Text Variable

4 Context Binary Little Hash . Length

If Context is null, BinConcat is the concatenation of the first three components only.
Table 131 — Version details describes the version details.

Table 131 — Version details

SPDM version Version text
SPDM 1.1 “spdm1.1”
SPDM 1.2 “spdm1.2”
SPDM 1.3 “spdm1.3”

The HKDF-Expand function prototype as used by the default SPDM key schedule is as follows:

HKDF-Expand(secret, context, Hash.Length)

The HKDF-Extract function prototype is described as follows:

HKDF-Extract(salt, IKM);

Version 1.3.0 Published

225

https://tools.ietf.org/html/rfc5869

Security Protocol and Data Model (SPDM) Specification DSP0274

987 where

+ IKM is the Input Keying Material.

988 For HKDF-Expand and HKDF-Extract , the hash function shall be the selected hash function in the ALGORITHMS
response. Hash . Length shall be the length of the output of the hash function selected by the ALGORITHMS
response.

989 Both Responder and Requester shall use the key schedule that Figure 31 — Key schedule shows.
990 Figure 31 — Key schedule

991
DHE Secret or Pre-shared Key —‘
| — |
HKDF-Extract (Salt_0,)
v
Handshake-Secret
|
v . N
HKDF-Expand (Handshake-Secret, bin_strl, Hash.Length) — :::::;;zf:;z:
HKDF-Expand (Handshake-Secret, bin_str2, Hash.Length) {— Response D"esc:g:(Ha"dShake
v
salt_1 v—{ HKDF-Expand (Handshake-Secret, bin_str0, Hash.Length)
‘ HKDF-Extract (Salt_1, 0_filled) }—> Master-Secret

" HKDF-Expand (Master-Secret, bin_str3, Hash.Length) ~— Redquester Direction Data Secret

—» HKDF-Expand (Master-Secret, bin_str4, Hash.Length) [~ Responder Direction Data Secret

—» HKDF-Expand (Master-Secret, bin_str8, Hash.Length) [Export Master Secret
992 In the figure, arrows going out of the box are outputs of that box. Arrows going into the box are inputs into the box

and point to the specific input parameter they are used in. All boxes represent a single function producing a single
output and are given names for clarity.

993 Table 132 — Key schedule accompanies the figure to complete the key schedule. The Responder and Requester shall

also adhere to the definition of this table.

994 Table 132 — Key schedule

226 Published Version 1.3.0

995

996

997

998

999

1000

1001

DSP0274 Security Protocol and Data Model (SPDM) Specification

Variable Definition Value is secret?

Salt 0 A zero-filled array of Hash . Length length for KEY EXCHANGE session. N
a . . o
- A OxFF-filled array of Hash . Length length for PSK EXCHANGE session.

Salt_1 Used to generate the Master-Secret. Yes
0_filled A zero-filled array of length Hash . Length . No
bin_str0 BinConcat(Hash.Length, Version, "derived", NULL) No
bin_strl BinConcat(Hash.Length, Version, "req hs data", TH1) No
bin_str2 BinConcat (Hash.Length, Version, "rsp hs data", TH1) No
bin_str3 BinConcat(Hash.Length, Version, "req app data", TH2) No
bin_str4 BinConcat(Hash.Length, Version, "rsp app data", TH2) No

This shall be the secret derived from KEY EXCHANGE/
DHE Secret Yes
KEY_EXCHANGE_RSP .

Pre-Shared Key PSK Yes

Note: With common hash functions, any label longer than 12 characters requires an additional iteration of the
hash function to compute. As in RFC 8446, the previously defined labels have all been chosen to fit within this
limit.

12.1 DHE secret computation

The DHE secret is a shared secret, and its computation is different per algorithm or algorithm class. These clauses
define the format and computation for DHE algorithms.

For ffdhe2048 , ffdhe3072, ffdhe4096 , secp256rl, secp384rl,and secp521rl, the format and computation
of the DHE secret shall be the shared secret, which section 7.4 of RFC 8446 defines.

For SM2_P256 , the parameters of this curve are defined in the TCG Algorithm Registry. The DHE secret shall be Ka
and Kg as defined in GB/T 32918.3-2016. The Requester shall compute Ka, and the Responder shall compute Kg to
arrive at the same secret value. Ka and Kg are the results of a KDF. This specification shall use the KDF as defined by
GB/T 32918.3-2016. The size of the DHE secret, referred to as klen in the KDF of GB/T 32918.3 specification, shall be
the key size of the selected AEAD algorithm in RespAlgStruct . Lastly, GB/T 32918.3 allows for a flexible hash
algorithm. The hash algorithm shall be the selected hash algorithm in BaseHashSel or ExtHashSel .

12.2 Transcript hash in key derivation

The key schedule uses two transcript hashes:

« TH1
+ TH2

Version 1.3.0 Published 227

Security Protocol and Data Model (SPDM) Specification DSP0274

1002 712.3 TH1 definition

1003 If the Requester and Responder used KEY_EXCHANGE / KEY_EXCHANGE_RSP to exchange initial keying information,
TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:
1. VCA
2. [DIGESTS].* (if issued and if MULTI KEY CONN RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

4. [KEY_EXCHANGE] . *
5. [KEY_EXCHANGE RSP] . * except for the ResponderVerifyData field
1004 If the Requester and Responder used PSK_EXCHANGE / PSK_EXCHANGE RSP to exchange initial keying information,
TH1 shall be the output of applying the negotiated hash function to the concatenation of the following:
1. VCA
2. [PSK _EXCHANGE] . *
3. [PSK_EXCHANGE RSP] . * except for the ResponderVerifyData field

1005 12.4 TH2 definition

1006 If the Requester and Responder used KEY EXCHANGE / KEY EXCHANGE RSP to exchange initial keying information,
TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:

1. VCA
2. [DIGESTS].* (if issued and if MULTI_KEY CONN_RSP is true).

3. Hash of the specified certificate chain in DER format (that is, Param2 of KEY EXCHANGE) or hash of the
public key in its provisioned format, if a certificate is not used.

4. [KEY EXCHANGE] . *

5. [KEY_EXCHANGE RSP] . *

6. [DIGESTS].* (if encapsulated DIGEST is issued and if MULTI_KEY CONN_REQ is true).

7. Hash of the specified certificate chain in DER format (that is, Param2 of FINISH) or hash of the public
key in its provisioned format, if a certificate is not used. (Valid only in mutual authentication)

8. [FINISH] . *

9. [FINISH RSP] . *

1007 If the Requester and Responder used PSK EXCHANGE / PSK_EXCHANGE RSP to exchange initial keying information,
TH2 shall be the output of applying the negotiated hash function to the concatenation of the following:
1. VCA
2. [PSK _EXCHANGE] . *
3. [PSK_EXCHANGE RSP] . *

228 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

4. [PSK FINISH] . * (if issued)
5. [PSK FINISH RSP] . * (if issued)

1008 125 Key schedule major secrets

1009 The key schedule produces four major secrets:

» Request-direction handshake secret (So)
* Response-direction handshake secret (S1)
* Request-direction data secret (S2)

* Response-direction data secret (S3)

1010 Each secret applies in a certain direction of transmission and is only valid during a certain time frame. Each of these
four major secrets will be used to derive their respective encryption keys and IV values to be used in the AEAD
function as selected in the ALGORITHMS response.

1011 12.5.1 Request-direction handshake secret

1012 This secret shall only be used during the session handshake phase and shall be applied to all requests after
KEY_EXCHANGE or PSK EXCHANGE up to and including FINISH or PSK FINISH .

1013 12.5.2 Response-direction handshake secret

1014 This secret shall only be used during the session handshake phase and shall be applied to all responses after
KEY_EXCHANGE_ RSP or PSK_EXCHANGE RSP up to and including FINISH RSP or PSK FINISH RSP .

1015 12.5.3 Requester-direction data secret

1016 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only
be applied for all data traveling from the Requester to the Responder.

1017 12.5.4 Responder-direction data secret

1018 This secret shall be used for any data transmitted during the application phase of the session. This secret shall only
be applied for all data traveling from the Responder to the Requester.

1019 Figure 32 — Secrets usage illustrates where each of the major secrets are used, as described previously.

1020 Figure 32 — Secrets usage

1021

Version 1.3.0 Published 229

Security Protocol and Data Model (SPDM) Specification DSP0274

Requester Responder

|
~ Session-Secrets-Exchange Request
|‘Session-Secrets-Exchange Response

/ééss/pééﬁc/;éfn(%}é{p&né e e

= = -~ |4 | : =
:Secure ‘@END;ESSJQNW,J, -
:Session . L :
| Session Terminated! | Legend

Session Handshake Phase

Application Phase

1022 12.6 Encryption key and IV derivation

1023 For each key schedule major secret, the following function shall be applied to obtain the encryption key and IV value.

EncryptionKey = HDKF-Expand(major-secret, bin str5, key length);
IV = HKDF-Expand(major-secret, bin str6, iv_length);
bin str5 = BinConcat(key length, Version, "key", NULL);

bin str6 = BinConcat(iv_length, Version, "iv", NULL);

1024 Both key length and iv length shall be the lengths associated with the selected AEAD algorithm in the
ALGORITHMS message.

1025 12.7 finished_key derivation

1026 This key shall be used to compute the RequesterVerifyData and ResponderVerifyData fields used in various
SPDM messages. The key, finished key , is defined as follows:

230 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

finished key = HKDF-Expand(handshake-secret, bin str7, Hash.Length);
bin str7 = BinConcat(Hash.Length, Version, "finished", NULL);

1027 The handshake-secret shall be either a request-direction handshake secret or a response-direction handshake secret.

1028 12.8 Deriving additional keys from the Export Master Secret

1029 After a successful SPDM key exchange, additional keys can be derived from the Export Master Secret. How keys are
derived from this secret is outside the scope of this specification. The Export Master Secret is not a major secret and
is not updated through a major secrets update. How the Export Master Secret is updated, if required, is outside the
scope of this specification.

Export Master Secret = HKDF-Expand(Master-Secret, bin str8, Hash.Length);
bin str8 = BinConcat(Hash.Length, Version, "exp master", TH2);

1030 12.9 Major secrets update

1031 The major secrets can be updated during an active session to avoid the overhead of closing down a session and
recreating the session. This is achieved by issuing the KEY UPDATE request.

1032 The major secrets shall be re-keyed as a result of this request. To compute the new secret for each new major data

secret, the following algorithm shall be applied.

new secret = HKDF-Expand(current secret, bin str9, Hash.Length);
bin str9 = BinConcat(Hash.Length, Version, "traffic upd", NULL);

1033 In computing the new secret, current secret shall be either the current Requester-Direction Data Secret or the
Responder-Direction Data Secret. As a consequence of updating these secrets, new encryption keys and salts shall be
derived from the new secrets and used immediately.

Version 1.3.0 Published 231

1034

1035

1036

1037

1038

1039

Security Protocol and Data Model (SPDM) Specification DSP0274

13 Application data

SPDM utilizes authenticated encryption with associated data (AEAD) cipher algorithms in much the same way that
TLS 1.3 does to protect the confidentiality and integrity of data that shall remain secret as well as to protect the
integrity of data that needs to be transmitted in the clear but shall still be protected from manipulation, as is the case
for protocol headers. AEAD algorithms provide both encryption and message authentication. Each algorithm specifies
details such as the size of the nonce, the position and length of the MAC, and many other factors to ensure a strong
cryptographic algorithm.

AEAD functions shall provide the following functions and comply with the requirements defined in RFC 5116:

AEAD Encrypt(encryption key, nonce, associated data, plaintext);
AEAD Decrypt(encryption key, nonce, associated data, ciphertext);

where

e AEAD Encrypt is the function that fully encrypts the plaintext , computes the MAC across both the
associated data and plaintext, and produces the ciphertext , which includes the MAC.

* AEAD Decrypt is the function that verifies the MAC and, if validation is successful, fully decrypts the
ciphertext and produces the original plaintext .

* encryption key is the derived encryption key for the respective direction. See the Key schedule clause.
* nonce is the nonce computation. See the Nonce derivation clause.

e associated data is the associated data.

* plaintext isthe datato encrypt.

+ ciphertext is the data to decrypt.

13.1 Nonce derivation

Certain AEAD ciphers have specific requirements for nonce construction because their security properties can be
compromised by the accidental reuse of a nonce value. Implementations should follow the requirements, such as
those provided in RFC 5116 for nonce derivation.

232 Published Version 1.3.0

https://tools.ietf.org/html/rfc5116
https://tools.ietf.org/html/rfc5116

1040

1041

1042

1043

1044
1045

DSP0274 Security Protocol and Data Model (SPDM) Specification

14 General opaque data format

The general opaque data format allows for a variety of data defined by an assortment of vendors, standards bodies,
and transport mechanisms to accompany an SPDM message without namespace collisions.

If the OpaqueDataFmtl bitis selected in OtherParamsSelection of ALGORITHMS , then all opaque data fields in
SPDM messages shall use the format that Table 133 — General opaque data format defines.

Table 133 — General opaque data format

Byte offset Field Size (bytes) Description
Shall be the total number of elements in
0 TotalElements 1 .
Opaquelist .
1 Reserved 3 Reserved.
. . Shall be a list of opaque elements. See Table 134 —
4 Opaquelist Variable

Opaque element.

Table 134 — Opaque element defines the format for each element in OpaqueList .

Table 134 — Opaque element

Byte offset Field Size (bytes) Description

Shall be one of the values in the ID
0 ID 1 column of Table 60 — Registry or
standards body ID.

Shall be the length in bytes of the
VendorID field.

If the data in OpaqueElementData
belongs to a standards body, this field
shall be 0.

! LGB ! Otherwise, the data in
OpaqueElementData belongs to the
vendor and therefore, this field shall
be the length indicated in the “Vendor
ID length” column of Table 60 —
Registry or standards body ID for the
respective 1D .

If VendorIDLen is greater than zero,
this field shall be the ID of the vendor
corresponding to the ID field.
Otherwise, this field shall be absent.

2 VendorID VendorIDLen

Version 1.3.0 Published 233

Security Protocol and Data Model (SPDM) Specification

Byte offset

2 + VendorIDLen

4 + VendorIDLen

4 + VendorIDLen + OpaqueElementDatalen

Field

Size (bytes)

OpaqueElementDatalen 2

OpaqueElementData OpaqueElementDatalen

AlignPadding

AlignPaddingSize =0,

DSP0274

Description

Shall be the length of
OpaqueElementData .

Shall be the data defined by the
vendor or standards body.

If4 + VendorIDLen +
OpaqueElementDatalLen does not fall
on a 4-byte boundary, this field shall
be present and of the correct length
to ensure that 4 + VendorIDLen +

1,2 0r3 OpaqueElementDatalen +
AlignPaddingSize is a multiple of 4.
The value of this field shall be all
zeros, and the size of this field shall be
0,1, 2 o0r3.
234 Published Version 1.3.0

1046

1047

1048

1049

1050
1051

1052
1053

1054

1055

1056

DSP0274 Security Protocol and Data Model (SPDM) Specification

15 Signature generation

The SPDMsign function used in various part of this specification defines the signature generation algorithm while
accounting for the differences in the various supported cryptographic signing algorithms in the ALGORITHMS
message.

The signature generation function takes this form:

signature = SPDMsign(PrivKey, data to be signed, context);

The SPDMsign function shall take these input parameters:

* PrivKey :a secret key
* data to be signed :a bit stream of the data that will be signed

* context :astring
The function shall output a signature using PrivKey and a selected cryptographic signing algorithm.

The signing function shall follow these steps to create spdm prefix and spdm context (See Text or string
encoding for encoding rules):

1. Create spdm prefix .The spdm prefix shall be the repetition, four times, of the concatenation of
“dmtf-spdm-v”, SPDMversionString and “.*”. This will form a 64-character string.

2. Create spdm_context . If the Requester is generating the signature, spdm context shall be the
concatenation of “requester-” and context . If the Responder is generating the signature, the
spdm_context shall be the concatenation of “responder-" and context .

Now follows an example, designated Example 1, of creating a combined spdm prefix .

The version of this specification for this example is 1.4.3, the Responder is generating a signature, and the context
is “my example context”. Thus, the spdm prefix is “dmtf-spdm-v1.4.*dmtf-spdm-v1.4.*dmtf-spdm-v1.4.*dmtf-spdm-
v1.4.*". The spdm context is “responder-my example context”.

Next, the combined spdm prefix is formed. The combined spdm prefix shall be the concatenation of four
elements: spdm prefix , a byte with a value of zero, zero pad, and spdm context . The size of zero pad shall be
the number of bytes needed to ensure that the length of combined spdm prefix is 100 bytes. The size of zero pad
can be zero. The value of zero pad shall be zero.

Continuing Example 1, Table 135 — Combined SPDM prefix shows the combined spdm_prefix with offsets. Offsets
increase from left to right and top to bottom. As shown, the length of combined spdm prefix is 100 bytes.
Furthermore, a number surrounded by double quotation marks indicates that the ASCII value of that number is used.
See Text or string encoding for encoding rules. Table 94 concludes Example 1.

Table 135 — Combined SPDM prefix

Version 1.3.0 Published 235

Security Protocol and Data Model (SPDM) Specification DSP0274

Offset 0x0 Ox1 Ox2 O0x3 Ox4 0x5 Ox6 O0x7 O0x8 Ox9 OxA OxB OxC 0xD OxE OxF
0 d m t f - s p d m - v “1” . “4” . *
0x10 d m t f = s p d m - v “1” . “4” . *
0x20 d m t f - s p d m - v “1” . “4” . *
0x30 d m t f = s p d m - v “1” . “4” . *
0x40 Ox0 Ox0 0x0O Ox0O OxO 0x0 O0x0 Ox0 r e s p o n d e
0x50 r = m y space (0x20) e X a m p | e space (0x20) ¢ o n
0x60 't e X t

1057 The next step is to form the message hash . The message hash shall be the hash of data to be signed using the
selected hash function in either BaseHashSel or ExtHashSel . Many hash algorithms allow implementations to
compute an intermediate hash, sometimes called a running hash. An intermediate hash allows for the updating of the
hash as each byte of the ordered data of the message becomes known. Consequently, the ability to compute an
intermediate hash allows for memory utilization optimizations where an SPDM endpoint can discard bytes of the
message that are already covered by the intermediate hash while waiting for more bytes of the message to be
received.

1058 If the Responder is generating the signature, the selected cryptographic signing algorithm is indicated in either
BaseAsymSel or ExtAsymSel (but not both)inthe ALGORITHMS message. If the Requester is generating the
signature, the selected cryptographic signing algorithm is indicated in ReqBaseAsymAlg of RespAlgStruct in the
ALGORITHMS message.

1059 Because each cryptographic signing algorithm is vastly different, these clauses define the binding of SPDMsign to
those algorithms.

1060 15.1 Signing algorithms in extensions

1061 If an algorithm is selected in either the ExtAsymSel or AlgExternal of RegBaseAsymAlg of RespAlgStruct in
the ALGORITHMS response, its binding is outside the scope of this specification.

1062 15.2 RSA and ECDSA signing algorithms

1063 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the
hash function selected by the Responder in BaseHashSel or ExtHashSel .

1064 The private key, defined by the specification for these algorithms, shall be Privkey .

1065 In the specification for these algorithms, the letter M denotes the message to be signed. M shall be the
concatenation of combined spdm prefix and message hash .

1066 RSA and ECDSA algorithms are described in Signature algorithm references.

236 Published Version 1.3.0

1067

1068

1069
1070
1071

1072

1073
1074

1075

1076
1077
1078

1079

1080
1081
1082

1083

1084

1085

1086

DSP0274 Security Protocol and Data Model (SPDM) Specification

The FIPS PUB 186-5 supports deterministic ECDSA as a variant of ECDSA. RFC 6979 describes this deterministic
digital signature generation procedure. This variant does not impact the signature verification process. How an
implementation chooses to support ECDSA or deterministic ECDSA is outside the scope of this specification.

15.3 EdDSA signing algorithms

These algorithms are described in RFC 8032.
The private key, defined by RFC 8032, shall be PrivKey .

In the specification for these algorithms, the letter M denotes the message to be signed.

15.3.1 Ed25519 sign

This specification only defines Ed25519 usage and not its variants.

M shall be the concatenation of combined spdm prefix and message hash .

15.3.2 Ed448 sign

This specification only defines Ed448 usage and not its variants.
M shall be the concatenation of combined spdm prefix and message hash .

Ed448 defines a context string, C. C shall be the spdm context .

15.4 SM2 signing algorithm

This algorithm is described in GB/T 32918.2-2016. GB/T 32918.2-2016 also defines the variable M and IDa,
The private key defined by GB/T 32918.2-2016 shall be PrivKey .

In the specification for SM2, the letter M denotes the message to be signed. M shall be the concatenation of

combined spdm prefix and message hash .

The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash
function selected by the Responder in BaseHashSel or ExtHashSel .

Lastly, SM2 expects a distinguishing identifier, which identifies the signer and is indicated by the variable IDa. If this
algorithm is selected, the ID shall be an empty string of size 0.

15.5 Signature algorithm references

These clauses provide basic information about each asymmetric algorithms SPDM supports, as Table 136 — SPDM
Asymmetric Signature Reference Information shows. SPDM endpoints shall use the references in the References

Version 1.3.0 Published 237

Security Protocol and Data Model (SPDM) Specification DSP0274

column for signature-related operations and the key size as indicated in the Key Size columns for the respective
algorithm. The byte order for a signature when placing it into an SPDM signature field shall be signature byte order.

1087 Table 136 — SPDM Asymmetric Signature Reference Information

Algorithm Name Key Size (bits) References

TPM_ALG_RSASSA 2048 2048 Section 8.2 of IETF RFC 8017
TPM_ALG_RSASSA 3072 3072 Section 8.2 of IETF RFC 8017
TPM_ALG_RSASSA 4096 4096 Section 8.2 of IETF RFC 8017
TPM_ALG_RSAPSS_2048 2048 Section 8.1 of IETF RFC 8017
TPM_ALG_RSAPSS_3072 3072 Section 8.1 of IETF RFC 8017
TPM_ALG_RSAPSS_4096 4096 Section 8.1 of IETF RFC 8017

Section 6 of FIPS PUB 186-5 using

TPM_ECC_NIST P256 curve

TPM_ALG_ECDSA_ECC_NIST_P256 256 .
parameters as TCG Algorithm

Registry defines.

Section 6 of FIPS PUB 186-5 using

TPM_ECC_NIST P384 curve

TPM_ALG_ECDSA_ECC_NIST_P384 384 .
parameters as TCG Algorithm

Registry defines.

Section 6 of FIPS PUB 186-5 using
TPM_ECC_NIST P521 curve
parameters as TCG Algorithm
Registry defines.

TPM_ALG_ECDSA_ECC_NIST_P521 521

Section 6 of GB/T 32918.2-2016
using TPM ECC SM2 P256 curve

TPM_ALG_SM2_ECC_SM2_P256 256 .
parameters as TCG Algorithm

Registry defines.
EdDSA ed25519 256 IETF RFC 8032

EdDSA ed448 456 IETF RFC 8032

238 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

9% 16 Signature verification

1089 The SPDMsignatureVerify function, used in various part of this specification, defines the signature verification
algorithm while accounting for the differences in the various supported cryptographic signing algorithms in the
ALGORITHMS message.

1090 The signature verification function takes this form:

SPDMsignatureVerify(PubKey, signature, unverified data, context);

1091 The SPDMsignatureVerify function shall take these input parameters:

* PubKey :the public key
* signature : a digital signature
* unverified data :a bit stream of data that needs to be verified
* context :astring
1092 The function shall verify the unverified data using signature, PubKey , and a selected cryptographic signing

algorithm. SPDMsignatureVerify shall return success if the signature verifies correctly and failure otherwise. Each
cryptographic signing algorithm states the verification steps or criteria for successful verification.

1093 The verifier of the signature shall create spdm prefix, spdm context ,and combined spdm context as described
in Signature generation.

1094 The next step is to form the unverified message hash .The unverified message hash shall be the hash of
unverified data using the selected hash function in either BaseHashSel or ExtHashSel .

1095 If the Responder generated the signature, the selected cryptographic signature verification algorithm is indicated in
either BaseAsymSel or ExtAsymSel (butnot both)inthe ALGORITHMS message. If the Requester generated the
signature, the selected cryptographic signature verification algorithm is indicated in ReqBaseAsymAlg of
RespAlgStruct inthe ALGORITHMS message.

1096 Because each cryptographic signature verification algorithm is vastly different, these clauses define the binding of
SPDMsignatureVerify to those algorithms.

1097 16.1 Signature verification algorithms in extensions

1098 If an algorithm is selected in either the ExtAsymSel or AlgExternal of ReqBaseAsymAlg of RespAlgStruct in
the ALGORITHMS response, its binding is outside the scope of this specification.

Version 1.3.0 Published 239

Security Protocol and Data Model (SPDM) Specification DSP0274

1099 16.2 RSA and ECDSA signature verification algorithms

1100 All RSA and ECDSA specifications do not define a specific hash function. Thus, the hash function to use shall be the
hash function selected by the Responder in BaseHashSel or ExtHashSel .

1101 The public key, defined in the specification for these algorithms, shall be PubKey .

1102 In the specification for these algorithms, the letter M denotes the message that is signed. M shall be concatenation

of the combined spdm prefix and unverified message hash .

1103 For RSA algorithms, SPDMsignatureVerify shall return success when the output of the signature verification
operation, as defined in the RSA specification, is “valid signature”. Otherwise, SPDMsignatureVerify shall return a
failure.

1104 For ECDSA algorithms, SPDMsignatureVerify shall return success when the output of “ECDSA Signature Verification
Algorithm” as defined in FIPS PUB 186-5is "accept" . Otherwise, SPDMsignatureVerify shall return failure.

1105 RSA and ECDSA algorithms are described in Signature algorithm references.

1106 16.3 EADSA signature verification algorithms

1107 RFC 8032 describes these algorithms. RFC 8032, also, defines the M, PH,and C variables.
1108 The public key, also defined in RFC 8032, shall be PubKey .

1109 In the specification for these algorithms, the letter M denotes the message to be signed.

1110 16.3.1 Ed25519 verify

1111 M shall be the concatenation of combined spdm prefix and unverified message hash .

1112 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and when the
constraints of the group equation in step 3 are met as described in RFC 8032 section 5.1.7. Otherwise,
SPDMsignatureVerify shall return failure.

1113 16.3.2 Ed448 verify

1114 M shall be the concatenation of combined spdm prefix and unverified message hash .
1115 Ed448 defines a context string, C. C shall be the spdm context .

1116 SPDMsignatureVerify shall return success when step 1 does not result in an invalid signature and when the
constraints of the group equation in step 3 are met as described in RFC 8032 section 5.2.7. Otherwise,
SPDMsignatureVerify shall return failure.

240 Published Version 1.3.0

1117

1118
1119
1120

1121

1122

1123

DSP0274 Security Protocol and Data Model (SPDM) Specification

16.4 SM2 signature verification algorithm

This algorithm is described in GB/T 32918.2-2016, which also defines the variable M and IDa.
The public key, also defined in GB/T 32918.2-2016, shall be PubKey .

In the specification for SM2, the variable M' is used to denote the message that is signed. M' shall be the
concatenation of combined spdm prefix and unverified message hash .

The SM2 specification does not define a specific hash function. Thus, the hash function to use shall be the hash
function selected by the Responder in BaseHashSel or ExtHashSel .

Lastly, SM2 expects a distinguishing identifier, which identifies the signer, and is indicated by the variable IDa. See
SM2 signing algorithm to create the value for IDa.

SPDMsignatureVerify shall return success when the Digital signature verification algorithm, as described in GB/T
32918.2-2016, outputs an “accept”. Otherwise, SPDMsignatureVerify shall return failure.

Version 1.3.0 Published 241

Security Protocol and Data Model (SPDM) Specification DSP0274

12417 General ordering rules

1125 These general ordering rules apply to SPDM messages that form a transcript that eventually gets signed.

1126 When requests are received out of order, the Responder can either silently discard all requests (with the exception of
GET_VERSION) or return an ERROR message of ErrorCode=RequestResynch until the Requester issues a
GET_VERSION . Out-of-order requests shall nullify the transcript.

1127 A Requester can retry messages. The retries shall be identical to the first message, excluding transport variances. If
the Responder sees two or more non-identical NEGOTIATE ALGORITHMS , the Responder shall either return an ERROR
message of ErrorCode=UnexpectedRequest or silently discard non-identical messages. Because a retried message is
identical to the first, a retried message shall not be used in transcript hash calculations.

1128 If a Requester wants to retrieve a CAPABILITIES response with the Supported Algorithms included, the Requester
should first issue GET CAPABILITIES with Bit1in Paraml set to 1. If the Responder does not support the
Supported Algorithms block in its CAPABILITIES response, it responds with an ERROR response. At this point, the
Requester can issue a second GET_CAPABILITIES with Bit 1in Paraml cleared to O.In this case, the second request
is not considered a retry, and both requests and their corresponding responses are used in transcript hash
calculations. After a successful CAPABILITIES response, if the Responder sees two or more non-identical
GET_CAPABILITIES requests, the Responder shall either return an ERROR message of

ErrorCode=UnexpectedRequest or silently discard non-identical messages.

1129 For CHALLENGE and Session-Secrets-Exchange, the Responder should ensure it can distinguish between the
respective retry and the respective original message. Failure to distinguish correctly might lead to an authentication
failure, session handshake failures, and other failures. The response to a retried request should be identical to the

original response.

242 Published Version 1.3.0

1130

1131
1132

1133

1134

1135

1136

1137

1138

DSP0274 Security Protocol and Data Model (SPDM) Specification

18 DMTF event types

The DMTF-defined event types are sent using the Event mechanism.

The DMTF event types table shows the supported DMTF event types for the DMTF event group. The values in the
Event Type ID column shall be the same values for EventTypelId field in Event data table for the DMTF event group
for the corresponding event in the Event Name column. The version (EventGroupVer) of the DMTF Event Group
shall be 1.

Table 137 — DMTF event types table

Event Type ID Event Name Requirement Description
0 Reserved Reserved Reserved.
1 EventLost Mandatory Events were lost.

One or more measurements

2 MeasurementChanged Optional
9 P changed.

A pending update will change

one or more measurements.

3 MeasurementPreUpdate Optional
However, the update has not yet

taken effect.

Information in one or more

certificate slots has changed.

4 CertificateCh d Optional
ertficatet-hange ptiona This could be the certificate or

the associated key.

All others Reserved Reserved Reserved.

18.1 Event type details

Each DMTF event type has its own event-specific information, referred to as EventDetail , to describe the event.
These clauses describe the format for each DMTF event type. The event types are listed in the DMTF event types
table.

18.1.1 Event Lost

This event (EventTypeId=EventLost) shall notify the Event Recipient that one or more events were lost. The reasons
for event loss are varied and numerous, but one example is loss due to insufficient resources. This event should be
retried until the Event Recipient acknowledges it. Retrying this event means that this event was not acknowledged

previously.

The Event lost format table describes the format for EventDetail .

Version 1.3.0 Published 243

1139

1140
1141

1142

1143

1144

1145

1146

Security Protocol and Data Model (SPDM) Specification DSP0274

Table 138 — Event lost format

Offset Field Size (bytes) Description

Shall be the last
event instance ID
0 LastAckedEventInstID 4 acknowledged by
the Event
Recipient.

Shall be the last
4 LastLostEventInstID 4 lost event instance
ID.

The range of lost events shall be the range from (LastAckedEventInstID + 1)to LastLostEventInstID inclusive.

If the Event Notifier cannot or can no longer track the information in Event lost format, then LastAckedEventInstID
and LastLostEventInstID shall both be OxFFFF_FFFF.

When resending an “event lost” event, the Event Notifier can update fields in Event lost format if new events are lost
since the last time the “event lost” event was sent.

18.1.2 Measurement changed event

The measurement changed event (EventTypeId=MeasurementChanged) shall notify the Event Recipient when one or
more measurement blocks have changed. The MeasurementChanged event is applicable only when
TerminationPolicy = 1 in KEY_EXCHANGE or PSK EXCHANGE .If TerminationPolicy = 0, the session will be
terminated upon measurement update. The EventDetail format for this event type shall be as Measurement
changed event details format defines.

Table 139 — Measurement changed event details format describes the format for EventDetail for the

MeasurementChanged event.

Table 139 — Measurement changed event details format

244 Published Version 1.3.0

1147

1148

1149

1150

1151

DSP0274

Offset

The Event Recipient can issue GET_MEASUREMENTS to obtain further details on the change.

18.1.3 Measurement pre-update event

Field

ChangedMeasurements

Security Protocol and Data Model (SPDM) Specification

Size (bytes)

32

Description

This field is a bit
mask where each
bit indicates
changes to its
corresponding
measurement
index. Specifically,
the bit at bit offset
X shall be set to
indicate a change
to the
Measurement
block at
measurement
index X. At least
one bit in this field
shall be set. Bits 0
and 255 shall be
reserved.

The measurement pre-update event (EventTypeId=MeasurementPreUpdate) notifies the Event Recipient when one

or more Measurement blocks will change due to a pending update. The EventDetail format for this event type

shall be as Measurement pre-update event details format defines.

Table 140 — Measurement pre-update event details format describes the format for EventDetail for the

MeasurementPreUpdate event.

Table 140 — Measurement pre-update event details format

Version 1.3.0

Published

245

Security Protocol and Data Model (SPDM) Specification DSP0274

Offset Field Size (bytes) Description

This field is a bit
mask where each
bit indicates
pending changes
to the
corresponding
measurement
index in an update
scenario such as a
firmware update
or pending
configuration
change.

0 PreUpdateMeasurementChanges 32 Specifically, the bit
at bit offset X shall
be set to indicate
a potential change
to the
Measurement
block at
measurement
index X as a result
of an update. At
least one bit in this
field shall be set.
Bits 0 and 255
shall be reserved.

1152 Upon receiving the MeasurementPreUpdate event, the Event Recipient may send GET_MEASUREMENTS with the
NewMeasurementRequested option (see Table 50 — GET_MEASUREMENTS request attributes) to acquire and
evaluate the Event Notifier's pending new measurements. If the Event Recipient deems the Event Notifier's new
measurements unacceptable, the Event Recipient may terminate the session.

1153 The pre-update notification mechanism does not allow the Event Recipient to stop the Event Notifier from applying
the update. However, an Event Notifier that has sent MeasurementPreUpdate to the Event Recipient should not
apply the update until one of the following events happens:

 Arrival of EVENT_ACK from the Event Recipient
 Arrival of END_SESSION from the Event Recipient

» Event Recipient timeout (per Timing requirements)

1154 18.1.4 Certificate changed event

1155 The certificate changed event (EventTypeId=CertificateChanged) shall notify the Event Recipient when data
associated with one or more fields in the DIGESTS response have changed. The EventDetail format for this event
type shall be the Certificate changed event details format.

246 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

1156 Table 141 — Certificate changed event details format table describes the format for EventDetail for the
CertificateChanged event.

1157 Table 141 — Certificate changed event details format

Offset Field Size (bytes) Description

This field is a bit
mask where each
bit indicates
certificate related
changes to the
corresponding
certificate slot.
Specifically, the bit
0 CertificateChanged 1 at bit offs.et X shall
be set to indicate
a change to data
associated with
one or more fields
in DIGESTS for
certificate slot X.
At least one bit in
this field shall be
set.

1158 The Event Recipient can issue GET DIGESTS or GET CERTIFICATE to obtain further details on the change.

Version 1.3.0 Published 247

Security Protocol and Data Model (SPDM) Specification DSP0274

1% 19 ANNEX A (informative) TLS 1.3

This specification heavily models TLS 1.3. TLS 1.3, and consequently this specification, assumes the transport layers

1160
provide the following capabilities or attributes:
* Reliability in transmission and reception of data.
+ Transmission of data is either in order or the order of data can be reconstructed at reception.
1161 While not all transports are created equal, if a transport cannot meet these capabilities, adoption of SPDM is still

possible. In these transports, this specification recommends The Datagram Transport Layer Security (DTLS) Protocol

Version 1.3.

248 Published Version 1.3.0

DSP0274

1162

1163

1164 Device certificate example

Certificate:
Data:

Version: 3 (0x2)
Serial Number: 8 (0x8)
Signature Algorithm: ecdsa-with-SHA256

Issuer: C = CA, ST = NC, L = city, 0 = ACME, OU = ACME Devices, CN = CA

Validity
Not Before:
Not After :

Unit, CN = w0123456789

Subject Public Key Info:

Jan

Security Protocol and Data Model (SPDM) Specification

1 00:00:00 1970 GMT
Dec 31 23:59:59 9999 GMT
Subject: C = US, ST = NC, 0 = ACME Widget

Public Key Algorithm:
RSA Public-Key:
Modulus:

00:
el:
5f:
ff:
23:
52:
a0:
1c:
ef:
98:
a’:
95:
70:
as:
2f:
66:
01:
e8:

ba:
10:
78:
3e:
el:
6b:
30:
28:
80:
23:
20:
62:
ab:
ea:
e8:
35:
1c:

67

Exponent:

X509v3 extensions:

67:
ad:
fc:
e0:
1d:
e6:
4a:
Te:
88:
84:
Oe:
f5:
az2:
9d:
5e:
el:
dc:

47:
91:
ae:
bf:
a2:
a5:
03:
9c:
00:
38:
f3:
37:
bc:
60:
3d:
74:
as:

65537

rsakEncryption

(2048

72:
b8:
4a:
95:
7a:
3f:
21:
e8:
5f:
88:
74:
4b:
6:
e8:
b7:
10:
5f:

(0x10001)

X509v3 Basic Constraints:
CA:FALSE

X509v3 Key Usage:
Digital Signature, Non Repudiation, Key Encipherment

78:
48:
dl:
5c:
a5:
of:
le:
€33
25:
47:
27:
ba:
2f:
f8:
35:
as:
9e:

bit)

da:
ed:
1c:
4a:
fO:
3b:
ee:
54:
db:
5d:
82:
20:
ed:
85:
ab6:
97:
30:

28:
6b:
63:
b4:
22:
60:
60:
db:
cf:
51:
70:
de:
2f:
7d:
1d:
3b:
97:

X509v3 Subject Alternative Name:

othername:

1.3.6.1.4.1.412.274.1: :ACME:WIDGET:0123456789

Signature Algorithm: ecdsa-with-SHA256

81:
70:
76:
6f:
ds:
b8:
ad:
63:
43:
8e:
a7:
3c:
48:
cO:
d2:
49:
as:

d9:
3c:
54:
11:
b2:
74:
e4:
fd:
46:
11:
96:
c9:
92:
0d:
ab:
05:
18:

Device certificate example shows an example device certificate:

Manufacturing, OU = ACME Widget Manufacturing

81:
ec:
as8:
56:
fb:
db:
00:
1f:
c6:
62:
5b:
18:
be:
2f:
04:
51:
6¢C:

9b:
az2:
40:
ca:
43:
56:
7a:
dl:
1f:
6f:
1b:
b2:
5a:
6a:
99:
61:
f9:

db:
68:
31:
c8:
da:
08:
6e:
46:
50:
of:
bb:
cd:
cc:
08:
d3:
07:
bl:

88:
ag:
26:
11:
dd:
d9:
6b:
20:
19:
28:
10:
4b:
5c:
74:
90:
c6:
2cC:

03:
3b:
7f:
53:
bd:
ee:
32:
9e:
7f:
77:
e7:
58:
5e:
dl:
43:
08:
56:

20 ANNEX B (informative) Device certificate example

Version 1.3.0

Published

249

Security Protocol and Data Model (SPDM) Specification DSP0274

Signature Value:
30:45:02:20:1e:5a:a6:ed:5c:b6:2b:f5:9e:22:28:9c:ef:c7:
aa:db:1c:87:83:48:c1:50:cb:25:04:ab:c9:6e:7c:f5:6b:01:
02:21:00:da:48:d4:49:a5:65:5c:2c:83:fc:05:00:66:48:98:
f8:f0:cb:63:b7:2e:87:db:c8:63:58:6¢:21:91:7a:68:95

MIIC4jCCAoigAwIBAgIBCDAKBggqghkjOPQQDAjBcMQswCQYDVQQGEwIDQTELMAKG
A1UECAwWCTKkMXDTALBgNVBAcMBGNpdHkxDTALBgNVBAOMBEFDTUUXFTATBgNVBASM
DEFDTUUgRGV2aWN1czELMAKGALUEAWwWCQOEwWIBCNNzAWMTAXMDAWMDAWWhgPOTKS
OTEyMzEyMzU5SNT LaMHOXxCzAJBgNVBAYTALVTMQswCQYDVQQIDAJ0QzEiMCAGAL1UE
CgwZQUNNRSBXaWRnZXQgTWFudWZhY3R1cmluZzEnMCUGAIUECwweQUNNRSBXaWRn
ZXQgTWFudwWZhY3R1cmluZyBVbmlOMRQWEgYDVQQDDAt3MDEYMzQ1Njc40TCCASIw
DQYJKoZIhvcNAQEBBQADGGEPADCCAQOCGgEBALPNR3J4211B2YGh24gD4RCkkbhI
7WtwPOyiakk7X3j8rk rRHGN2VKhAMSZ//z7gv5VcSrRVEVbKYBFTI+Edongl8CLY
svtD2t29UmvmpT8P02C4dNtWCNnuoDBKAyEe7mCt5AB6bmsyHCh+n0jDVNtj/R/R
RiCe74CIAF81289DRsYfUB1/mCOEOIhHXVGOEWIvDyh3pyA083QngnCnllsbuxDn
TWLINOU6IE48yRiyzUtYcKuivPYv7S9Ikr5azFxeq0qdY0j4hX3ADS9qCHTRL+he
Pbc1ph3SpgSZ05BDZjXhdBColztIBVFhB8YIARzcqF+eMIeoGGz55SxW6GCCAWEA
AaNNMEswCQYDVROTBAIwADALBgNVHQ8EBAMCBeAwMQYDVRORBCowKKAmMBgo rBgEE
AYMcghIBoBgMFKFDTUU6VOTEROVUOjAXMjMONTY30DkwCgYIKoZIzjOEAWIDSAAW
RQIgHlgm7Vy2K/WeIiic78eq2xyHg0jBUMs1BKvIbnzlawECIQDaSNRIpWVcLIP8
BQBmSJj48Mtjty6H28hjWGwhkXpolQ==

----- END CERTIFICATE-----

250 Published Version 1.3.0

1165

1166
1167

DSP0274

Security Protocol and Data Model (SPDM) Specification

21 ANNEX C (informative) OID reference

Table 142 — Object identifiers (OIDs) lists all object identifiers (OIDs) that this specification defines:

Table 142 — Object identifiers (OIDs)

OoID
{136141412}

{id-DMTF 274 }

{id-DMTF-spdm 1}

{id-DMTF-spdm 2 }

{id-DMTF-spdm 3 }

{id-DMTF-spdm 4 }

{id-DMTF-spdm 5}

{id-DMTF-spdm 6 }

Identifier
id-DMTF

id-DMTF-spdm

id-DMTF-device-info

id-DMTF-hardware-identity

id-DMTF-eku-responder-auth

id-DMTF-eku-requester-auth

id-DMTF-mutable-certificate

id-DMTF-SPDM-extension

Definition
DMTF OID
SPDM OID

SPDM certificate
requirements and
recommendations

Identity provisioning

Extended Key Usage
authentication OIDs

Extended Key Usage
authentication OIDs

Identity provisioning

SPDM Non-Critical
Certificate OID

Use
Enterprise ID for DMTF

Base OID for all SPDM OIDs

Certificate device information.

Hardware certificate identifier.

Certificate Extended Key Usage - SPDM Responder

Authentication.

Certificate Extended Key Usage - SPDM Requester

Authentication.

Mutable certificate identifier.

To contain other OIDs in a certificate extension.

Version 1.3.0

Published

251

1168

1169

1170

Security Protocol and Data Model (SPDM) Specification

DSP0274

22 ANNEX D (informative) variable name reference

Throughout this document, various sizes and offsets are referred to by a variable. Table 143 — Variables lists variables
used in this document, the definition of the variable, and the location in this document that shows how the variable

is set.

Table 143 — Variables

Symbol

Lx where x is a number

HEM

MS

MSHLength

NL

Definition

Number of Requester-supported extended
asymmetric key signature algorithms.

Number of extended asymmetric key signature
algorithms selected by the Requester.

The size of D (and C for ECDHE) that is derived
from the selected DHE group.

Number of Requester-supported extended
hashing algorithms.

The number of Requester-supported extended
hashing algorithms selected by the Responder.

A generic variable used to indicate the sizes of a
field. The x is a number starting with zero. An
example of Lx is LO, L1 and so forth. The
scope of this variable is always local to the table
that uses it. For example, L0 often appears in
more than one table but there is no relationship
between an L0 in one table and an L0 in
another table.

The output size, in bytes, of the hash algorithm
agreed upon in NEGOTIATE ALGORITHMS .

Hash-extend measurement.

The length of the cryptographic hash or raw bit
stream, as indicated in
DMTFSpecMeasurementValueType[7] .

The length of the MeasurementSummaryHash
field in the CHALLENGE_AUTH ,
KEY_EXCHANGE_RSP , and PSK_EXCHANGE_RSP
messages.

The length of the Nonce field in the
GET_MEASUREMENTS request and the
MEASUREMENTS response.

Set location

Table 15 — NEGOTIATE_ALGORITHMS request message
format

Table 21 — Successful ALGORITHMS response message
format

See the KEY EXCHANGE request message format in
Table 69 — KEY_EXCHANGE request message format.

Table 15 — NEGOTIATE_ALGORITHMS request message
format

Table 21 — Successful ALGORITHMS response message
format

Numerous tables

Table 21 — Successful ALGORITHMS response message
format

Hash-extend measurements clause.

Table 45 — DMTF measurement specification format

Table 45 — Successful CHALLENGE_AUTH response
message format

GET_MEASUREMENTS request attributes

252

Published

Version 1.3.0

DSP0274

Symbol

SiglLen

Security Protocol and Data Model (SPDM) Specification

Definition

Number of version entries in the VERSION
response message.

Length of the ResponderContext.

Length of the PSKHint .
Length of the RequesterContext .
The size of the asymmetric-signing algorithm

output, in bytes, that the Responder selected in
the last ALGORITHMS response message.

Set location

Table 9 — Successful VERSION response message
format

Table 75 — PSK_EXCHANGE_RSP response message
format

Table 74 — PSK_EXCHANGE request message format

Table 74 — PSK_EXCHANGE request message format

Table 21 — Successful ALGORITHMS response message
format

Version 1.3.0

Published

253

Security Protocol and Data Model (SPDM) Specification DSP0274

""" 23 ANNEX E (informative) change log

1172 23.1 Version 1.0.0 (2019-10-16)

* Initial Release

1173 23.2 Version 1.1.0 (2020-07-15)

* Minor typographical fixes

« USB Authentication Specification 1.0 link updated

+ Tables are no longer numbered. They are now named.

+ Fix internal document links in SPDM response codes table.

» Added sentence to paragraph 97 to clarify on the potential to skip messages after a reset.

* Removed text at paragraph 181.

* Subject Alternative Name otherName field in Optional fields references DMTF OID section.
* DMTFOtherName definition changed to properly meet ASN.1 syntax.

+ Text in figures is now searchable.

+ Corrected example of a leaf certificate in Annex A.

* Minor edits to figures for clarity.

+ Clarified that transcript hash could include hash of the raw public key if a certificate is not used.

* New:
o Added Session support.
Added SPDM request and response messages to support initiating, maintaining and terminating a
secure session.

Added Key schedule for session secrets derivation.
= Added Application Data to provide overview of how data is encrypted and authenticated in a session.
o Introduce new terms and definitions.
o Added Measurement Manifest to DMTFSpecMeasurementValueType .
o Added mutual authentication.

o Added Encapsulated request flow to support master-slave types of transports.

1174 23 3 Version 1.2.0 (2021-11-01)

+ Clarified SPDM version selection after receiving VERSION Response with error handling for certain scenarios.

+ Fix improper reference in DMTFSpecMeasurementValue field in “Measurement field format when
MeasurementSpecification field is Bit 0 = DMTF” table.

254 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

* Certificate digests in DIGESTS calculation clarified.

+ Format of certificate in CertChain parameter of CERTIFICATE message clarified.

* Validity period of X.509 v3 certificate clarified in Required Fields

* Remove InvalidSession error code.

+ Clarified transport responsibilities in PSK_EXCHANGE and PSK EXCHANGE RSP .

 Clarified the usage of MutAuthRequested field in KEY EXCHANGE RSP .

» Added recommendation of PSK usage when an SPDM endpoint can be a Requester and Responder.

* Added recommendation for usage of RequesterContext in PSK scenarios.

+ Clarified capabilities for Requester and Responder in GET_CAPABILITIES and CAPABILITIES messages.
« Clarified timing requirements for encapsulated requests.

+ Clarified out of order and retries

+ Clarified error handling actions when unexpected requests occur during various mutual authentication flows.
+ Refer to slot number fields as SlotID and normalize SlotID fields to 4 bits where possible.

* Changed PSK FINISH and FINISH changes in Table 6 — SPDM request and response messages validity.
+ Clarified HANDSHAKE IN THE CLEAR CAP usage in PSK EXCHANGE .

» Change SPDMVersion field in every request and response message, except GET VERSION / VERSION messages,
to point to a central location in this specification where it explains the appropriate value to populate for this field.

 Clarified use case for Token field in ResponseNotReady .

+ Clarified the format of the certificate chain used in the Transcript hash calculation in Transcript hash calculation
rules.

e Renamed Measurement field format when MeasurementSpecification field is Bit @ = DMTF table to
Table 45 — DMTF measurement specification format.

+ Clarified the ENCAP_CAP field in the capabilities of the Requester and Responder.

* Renamed Mutual Authentication in KEY_EXCHANGE to Session-based mutual authentication.
* ERROR responses are no longer required in most error scenarios.

+ Clarify the definition of backward-compatible changes in Version encoding.

« Enhanced requirements for when a firmware update occurred on a Responder in GET_VERSION request and
VERSION response messages.

 Clarified error code ResponseNotReady for M1/M2 and L1/L2 computation.
+ Clarified byte order for ASN.1 encoded data, hashes and digests.

* Requester should not use PSK_EXCHANGE if CHALLENGE_AUTH and/or MEASUREMENTS with signature was
received from Responder.

* Required GET VERSION, VERSION, GET CAPABILITIES, CAPABILITIES, NEGOTIATE ALGORITHMS , and
ALGORITHMS in transcript even if negotiated state is supported.

» Enhanced signature generation and verification with a prefix to mitigate signature misuse attacks.

+ Clarified behavior of END_SESSION with respect to Negotiated State when there are multiple active sessions.
* Added new defined term Reset to mean device reset. Updated use of the word reset for M1/M2, L1/L2.

+ Clarified that a Measurement Manifest should support both hash and raw bit stream formats.

+ Clarified Measurement Summary Hash construction rules.

Version 1.3.0 Published 255

Security Protocol and Data Model (SPDM) Specification DSP0274

+ Clarified minimum timing for HEARTBEAT request and HEARTBEAT_ACK response messages to be sufficiently
greater than T1.Removed command-specific guidance on retry timing.

+ Table codification changed to be consistent with DMTF template.

* New:
o Added support for AliasCert s.
= Compliant Requesters must support a Responder that uses either DeviceCert s or AliasCert s.

o Added Certain error handling in encapsulated flows

o Added Slot 0 certificate-provisioning methodology.

o Added Allowance for encapsulated requests.

o Allowed GET CERTIFICATE followed by CHALLENGE flow after a resetin M1 and M2 message transcript.

o Added new features for GET_MEASUREMENTS and MEASUREMENTS :
= More measurement value types.

= Allow Requester to request hash or raw bit stream for measurement from the Responder.
o Added Advice.
o Added structured representation of device mode Device mode field of a measurement block.
o Added Text or string encoding.

o Signature Clarification:
= Added Signature generation and Signature verification for clarity and interoperability.

= Change Sign and Verify abstract function to SPDMsign and SPDMsignatureVerify respectively.

o Added General ordering rules and references to it, to describe additional requirements for the various
transcript and message transcripts.

o Added additional clause for checking FINISH . Param2 if handshake is in the clear.

o Added OIDs to represent:
= Hardware certificate identifier (Identity provisioning)

= Certificate Extended Key Usage - SPDM Responder Authentication (Extended Key Usage authentication
OIDs)

= Certificate Extended Key Usage - SPDM Requester Authentication (Extended Key Usage authentication
OIDs)

= Mutable certificate identifier (Identity provisioning)
o Added SM2 to Base Asymmetric Algorithms and Key Exchange Protocols.
o Added SM3 to Base Hash Algorithms and Measurement Hash Algorithms.
o Added SM4 to AEAD Algorithms.
o Changed symbol “S” denoting signature size to “SigLen” throughout document.
o Removed potentially confusing mention of “mutual authentication” in PSK_EXCHANGE section.
o Add method to transfer large SPDM messages. See Large SPDM message transfer mechanism.
o Changed Measurement Summary Hash concatenation function inputs.
o Clarified requirements for compliant certificate chains.

o Tables and figures are now numbered. Though these numbers might change in future versions of
specification, the titles will remain the same.

256 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

o Allowed Requester to specify session termination policy when Responder completes firmware or
configuration update.

1175 23.4 Version 1.3.0 (2023-04-05)

+ Change attribution for this standard from the Platform Management Communications Infrastructure (PMCI)
Working Group to the Security Protocols and Data Models Working Group.

 Fix minor typographical errors.
+ Clarified CSRdata requirements.

+ Correct indication that Identity Provisioning OIDs are in the certificate Extended Key Usage, and add SPDM Non-
Critical Certificate Extension OID to Table 43 — Optional fields.

» Added Signature Algorithm References clauses to clarify basic information about asymmetric algorithms.
+ Clarified 0ffset and Length fieldsin GET CERTIFICATE message.

 Clarified measurement specification related fields in NEGOTIATE ALGORITHMS , ALGORITHMS and Table 53 —
Measurement block format.

* Added recommended ErrorCode for the case when the Responder detects overlapping SET CERTIFICATE
commands.

+ Clarified DataTransferSize and MaxSPDMmsgSize in GET CAPABILITIES and CAPABILITIES messages.

* Updated General ordering rules to include discussion of the CAPABILITIES response with the Support
Algorithms block.

+ Allow the sender to utilize the Large SPDM message transfer mechanism when the transmit buffer size of the
sender is less than the DataTransferSize of the receiving SPDM endpoint.

+ Clarified that ENCRYPT CAP and MAC_CAP apply to all phases of a secure session.

+ Clarified the relationship between MAC CAP and ResponderVerifyData or RequesterVerifyData in Session-
Secret-Exchange and Session-Secret-Finish messages.

» Provide more description for HANDSHAKE IN THE CLEAR CAP in GET CAPABILITIES and CAPABILITIES
messages.

» Added VERSION to the chunking forbidden list.

+ Added definition of opaque data.

* Make the layout of tables 62 and 63 consistent with other tables.

« Clarified DER encoding for ‘Requesterlnfo’

* Added more guidance to RawBitStreamRequested in GET MEASUREMENTS request.

+ Changed ANNEX B from “normative” to “informative”.

+ Corrected Requester to Responder in Table 71 Successful KEY_EXCHANGE_RSP response message format.
+ Correct values in Field and Size columns of Table 61

* Changed the message validity of VENDOR_DEFINED_REQUEST and VENDOR_DEFINED_RESPONSE to “Vendor-
defined”.

 Clarified measurement method for various timing parameters in Timing specification table.

+ Corrected the signing algorithm in the FINISH request’s Signature field.

Version 1.3.0 Published 257

https://www.dmtf.org/standards/pmci
https://www.dmtf.org/standards/spdm

Security Protocol and Data Model (SPDM) Specification DSP0274

» Correct Figure 1 — SPDM certificate chain models to show AliasCert model.
 Clarify how retried messages affect transcript hash in General ordering rules.

» Update Table 7 — Timing specification for SPDM messages to clarify that Responders can exceed ST1 and CT
using ErrorCode=ResponseNotReady .

+ Clarified rules around when the old key can be discarded during KEY_ UPDATE .

» Updated link and information for IETF DTLS 1.3.

+ Clarified that AlgCount field in Algorithm request and response structures shall be a value of 2.

+ Edit Figure 22 so that a Secure Session does not encompass Session-Secrets-Exchange.

+ Clarified measurement signing capabilities in SignatureRequested field of GET_MEASUREMENTS .
+ Clarified retries from the perspective Responder and Requester in Timing requirements.

» Changed “or” to “and” in Large SPDM message transfer mechanism section.

* Clarified that MeasurementHashAlgo should be zero if MeasurementSpecificationSel is zero.

* Remove “in general” from normative text.

 Clarified that the use of BaseAsymAlgo inthe NEGOTIATE ALGORITHMS request is dependent on the capabilities
of the Responder.

» Removed directive to save the public key of the leaf certificate retrieved through the GET CERTIFICATE request.
* Added trusted environment to glossary.

 Clarified how the value of MinDataTransferSize is calculated.

» Added LargeResponse error to description of chunking certificates.

+ Clarified that if endpoint does not support chunking then it must set MaxSPDMmsgSize equal to
DataTransferSize .

+ Clarified effects on out-of-order message on the transcript and other clarifications in General ordering rules.
+ Clarified the definition of Session-Secret-Exchange and removed the duplicate definition of it.

+ Replaced wording of “internal buffer” in GET CERTIFICATE with DataTransferSize and “transmit buffer”.
+ Specify the hashing algorithm for MeasurementSummaryHash in multiple tables.

* Added normative statement that VERSION entries should be unique.

 Clarified conditions for LargeResponse error.

 Clarified CERTIFICATE response when the Length field of GET CERTIFICATE is zero.

+ Clarified the assumption that version entries are not duplicated when calculating MinDataTransferSize .
* Introduced Context field in CHALLENGE and GET MEASUREMENTS requests.

+ Clarified restrictions on Bit 0 through 2 of the MutAuthRequested field of KEY EXCHANGE RSP .

+ Separated nonce and non-repeating counter in PSK_EXCHANGE and PSK_EXCHANGE RSP .

+ Added definitions for sequentially decreasing, sequentially increasing, and monotonically increasing.

+ Clarified updating keys in KEY_UPDATE .

» Added size of the transmit buffer as a condition for CHUNK SEND .

+ Clarified measurement support in the MeasurementHashAlgo field of the ALGORITHMS response.
 Clarified conditions under which CERT CAP must be 0b .

* Allowed GET DIGESTS and GET_CERTIFICATE in session.

258 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

 Clarified that extended algorithms are external to this specification.

* Changed “should” to “shall” in the LargeMessageSize field of CHUNK_ SEND .
« Clarified (A1, B4, C1) message flow is permitted.

* Required root certificate to always be included in SET_CERTIFICATE .

+ Changed “cancel” to “invalidate state and data associated with” in GET_VERSION and VERSION response
messages.

* Removed non-normative text from the Length field of GET CERTIFICATE .

+ Changed link to VCA from acronym to definition in the “transcript computation rules for M1/M2” table.
 Clarified Session-Secrets-Exchange in Optimized encapsulated request flow

+ Clarified the Request ID for the first message in an optimized encapsulated request flow.

+ Clarified the presence of the SlotIDParam field in GET MEASUREMENTS .

* Removed informative statement that chunks are equal in size.

+ Clarified that SPDM messages sent outside of a session do not contribute to in-session transcripts.
+ Fixed typo in table 88.

» Deprecated the CHAL CAP capability of the Requester.

 Clarified value of HANDSHAKE IN THE CLEAR CAP when using Pre-Shared Keys.

* Removed “after Reset” from M1/M2 ordering.

 Clarify that Integers are unsigned.

+ Clarified requirements for chunking the CERTIFICATE response.

+ Clarified relevant capabilities in BaseAsymAlgo, BaseHashAlgo.

 Clarified that Export Master Secret does not get updated with KEY_UPDATE .

« Removed the “full” modifier in front of MeasurementRecord inthe MEASUREMENTS response table.
* Fixed typos and removed redundant grammar in Table 50.

* Fixed OID value for id-DMTF-device-info to match earlier releases.

+ Clarified definition of DecryptError.

+ Clarified that endpoints must ensure proper ordering and existence of messages when calculating transcripts
hashes.

+ Fixed typo in table 90.

* Move DMTFSpecMeasurementValueType[6:0] to its own table to improve readability.

* Changed instances of Concatenation() to the defined Concatenate() operator.

+ Clarified slots 1-7 certificate provisioning.

* Removed normative text that prohibited reuse of session IDs.

+ Clarified that non-encapsulated requests are prohibited during the session handshake phase.
» Removed potentially confusing statements on Slot provisioning for GET CSR .

* Removed normative error statement from the BasicMutAuthReq field of CHALLENGE AUTH .
+ Clarified exclusion of signature in CHALLENGE_AUTH and usage of concatenation in Table 47
+ Clarified that the Negotiated State Preservation Indicator applies to the cached Negotiated State.
« Clarified CSR signing.

Version 1.3.0 Published 259

Security Protocol and Data Model (SPDM) Specification DSP0274

» Removed encapsulation requirements from MUT_AUTH_CAP definition.
* Removed deprecation status from ENCAP_CAP.
+ Clarified that a provisioned public key can be used to generate the Transcript for KEY_EXCHANGE_RSP HMAC.

+ Clarified use of DataTransferSize and MaxSPDMmsgSize in GET_CAPABILITIES request and CAPABILITIES
response messages.

+ Fixed typo in table 52.
* Replaced links to ITU-T X.509 with RFC5280 and removed ITU-T X.509 from the Normative references section.

+ Moved general text for transcript calculations from “Transcript and transcript hash calculation rules” to the “SPDM
messaging protocol” section.

+ Clarified that KEY_EX CAP only applies to Requester’s request message and Responder’s response message.

+ Clarified that if either Requester or Responder do not support Heartbeat then the value of HeartbeatPeriod
would be 0.

* Renamed “VendorlLen” to “VendorIDLen”.

+ Used different Salt_0 value for PSK session in key schedule.

+ Corrected PK to PubKey in CHALLENGE_AUTH signature verification.

* Removed quotation mark of VCA in L1/L2 definition.

+ Clarified which portions of a certificate chain in the Alias certificate model is immutable.

» Updated link and version to ISO/IEC Directives, Part 2.

* Fixed size of MeasurementSummaryHash field to include 0 as a possible size value when the field is absent.
* Renamed the HMAC-Hash to HKDF-Extract .

+ Moved message and field notation to Notations.

+ Clarified VCA for the case where capabilities and algorithms are provisioned alongside PSK.

+ Clarified that ProvisionedSlotMask inthe CHALLENGE AUTH response is dependent on the negotiated
algorithms.

+ Clarified runtime measurement change detection.
+ Removed “between devices” in the introduction of SPDM.
+ Used different Salt 0 value for PSK session in key schedule.

* Removed the restriction to set Length to be OxFFFF in GET_CERTIFICATE if both endpoints support the large
SPDM message transfer mechanism.

» Clarified RequesterContext in PSK_EXCHANGE.

* The Responder now always returns error ResponseToolarge and no longer silently discards the request that
caused this error.

+ Clarified certificate chain validation in Figure 8.

 Clarified that a GET VERSION request can also cancel a pending request at the responder in section about
Requirement for Requesters.

+ Restructure the Identity provisioning clause. Split the existing content into multiple clauses to help organization
and incorporate the Generic certificate model. Make the use of Device Certificate and Alias Certificate consistent
rather than using the terms DeviceCert and AliasCert to refer to specific certificates.

* Add missing ffdhe3072 in DHE secret computation section.

260 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

+ Clarified that the Requester should not use PSK_EXCHANGE after receiving any Responder-signed response

messages.

+ Clarified that SPDM certificates are still compliant to the requirements of RFC 5280.

+ Clarified field requirements for SPDM certificates and clarified that RFC 5280 defines the certificate format.

+ Clarify allowed session phases for GET_CSR, SET_CERTIFICATE, GET_DIGESTS, and GET_CERTIFICATE in Table 6 —
SPDM request and response messages validity.

 Clarified RESPOND_IF_READY request validity.

* New:

o

o

Added Signature byte order and Octet string byte order clauses.

Add the Manifest format for a measurement block to define a measurement manifest header format that
leverages the SVH format.

Added SET CERT CAP, CSR CAP and CERT INSTALL RESET CAP capabilities bits.
Add a section to discuss differences in cryptographic and non-cryptographic Timing parameters.
Added option in SET CERTIFICATE to delete existing certificate chain from slot.

Add a SlotSizeRequested request attribute to the GET_CERTIFICATE request and CERTIFICATE response
messages.

Added the IANA CBOR registry and VESA standards body to Registry or standards body ID.

Added a tracking tag in GET_CSR request and CSR response messages for use after a reset.

Added missing MaxSPDMmsgSize to GET CAPABILITIES requestand CAPABILITIES response messages.
Add an Overwrite bittothe GET CSR request.

Added requirements on population of Slot 0 in Certificates and certificate chains.

Added GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages.

Added the InvalidPolicy error code.

Added Supported algorithms block to Successful CAPABILITIES response message format.

Added column to table 132 that specifies whether values are secret or not.

Added new request GET_MEASUREMENT EXTENSION LOG and response MEASUREMENT EXTENSION LOG ,
measurement extension log formats, and examples.

Added new “hash-extended” measurement type.

Added Multiple asymmetric key support.

Added Generic certificate model.

Added Notification overview and Event Mechanism

Added DMTF event types

Added Custom environments clauses.

Added NewMeasurementRequested in GET_MEASUREMENTS.
Add missing ffdhe3072 in DHE secret computation section.
Change FIPS PUB 186-4 reference to FIPS PUB 186-5.

Defined the data models for the first four bytes of VendorDefinedRegPayload and
VendorDefinedRespPayload when standards body is DMTF.

Added normative information in Table 13 — Flag fields definitions for the Requester and Table 14 — Flag

Version 1.3.0 Published 261

Security Protocol and Data Model (SPDM) Specification DSP0274

fields definitions for the Responder.

1176 23.5 Version 1.3.0 (Updated 2023-06-28)

+ Fixed wrong RequestResponseCode field value in Table 113 — SUBSCRIBE_EVENT_TYPES request message
format, Table 114 — SUBSCRIBE_EVENT_TYPES_ACK response message format, Table 116 — SEND_EVENT
request message format, and Table 118 — EVENT_ACK response message format.

262 Published Version 1.3.0

DSP0274 Security Protocol and Data Model (SPDM) Specification

1177

24 Bibliography

1178 DMTF DSP4014, DMTF Process for Working Bodies 2.6.

Version 1.3.0 Published 263

https://www.dmtf.org/sites/default/files/standards/documents/DSP4014_2.6.1.pdf

	Security Protocol and Data Model (SPDM) Specification
	1 Foreword
	1.1 Acknowledgments
	2 Introduction
	2.1 Advice
	2.2 Conventions
	2.2.1 Document conventions
	2.2.2 Reserved and unassigned values
	2.2.3 Byte ordering
	2.2.3.1 Hash byte order
	2.2.3.2 Encoded ASN.1 byte order
	2.2.3.3 Octet string byte order
	2.2.3.4 Signature byte order
	2.2.3.4.1 ECDSA signatures byte order
	2.2.3.4.2 SM2 signatures byte order

	2.2.4 SPDM data type conventions
	2.2.4.1 SPDM data types
	2.2.4.2 Integers

	2.2.5 Version encoding
	2.2.6 Notations
	2.2.7 Text or string encoding
	2.2.8 Deprecated material

	3 Scope
	4 Normative references
	5 Terms and definitions
	6 Symbols and abbreviated terms
	7 SPDM message exchanges
	7.1 Security capability discovery and negotiation
	7.2 Identity authentication
	7.2.1 Identity provisioning
	7.2.1.1 Certificate models
	7.2.1.1.1 Device certificate model
	7.2.1.1.2 Alias certificate model
	7.2.1.1.3 Generic certificate model

	7.2.2 Raw public keys
	7.2.3 Runtime authentication

	7.3 Firmware and configuration measurement
	7.4 Secure sessions
	7.5 Mutual authentication overview
	7.6 Multiple asymmetric key support
	7.7 Custom environments
	7.8 Notification overview
	8 SPDM messaging protocol
	8.1 SPDM connection model
	8.2 SPDM bits-to-bytes mapping
	8.3 Generic SPDM message format
	8.3.1 SPDM version

	8.4 SPDM request codes
	8.5 SPDM response codes
	8.6 SPDM request and response code issuance allowance
	8.7 Concurrent SPDM message processing
	8.8 Requirements for Requesters
	8.9 Requirements for Responders
	8.10 Transcript and transcript hash calculation rules
	9 Timing requirements
	9.1 Timing measurements
	9.2 Timing parameters
	9.3 Timing specification table
	10 SPDM messages
	10.1 Capability discovery and negotiation
	10.1.1 Negotiated state preamble

	10.2 GET_VERSION request and VERSION response messages
	10.3 GET_CAPABILITIES request and CAPABILITIES response messages
	10.3.1 Supported algorithms block

	10.4 NEGOTIATE_ALGORITHMS request and ALGORITHMS response messages
	10.4.1 Connection behavior after VCA
	10.4.2 Multiple asymmetric key negotiation
	10.4.3 Multiple asymmetric key use for Responder authentication
	10.4.4 Multiple asymmetric key use for Requester authentication
	10.4.5 Multiple asymmetric key connection

	10.5 Responder identity authentication
	10.6 Requester identity authentication
	10.6.1 Certificates and certificate chains

	10.7 GET_DIGESTS request and DIGESTS response messages
	10.8 GET_CERTIFICATE request and CERTIFICATE response messages
	10.8.1 Mutual authentication requirements for GET_CERTIFICATE and CERTIFICATE messages
	10.8.2 SPDM certificate requirements and recommendations
	10.8.2.1 Extended Key Usage authentication OIDs
	10.8.2.2 SPDM Non-Critical Certificate Extension OID
	10.8.2.2.1 Hardware identity OID
	10.8.2.2.2 Mutable certificate OID

	10.9 CHALLENGE request and CHALLENGE_AUTH response messages
	10.9.1 CHALLENGE_AUTH signature generation
	10.9.2 CHALLENGE_AUTH signature verification
	10.9.2.1 Request ordering and message transcript computation rules for M1 and M2

	10.9.3 Basic mutual authentication
	10.9.3.1 Mutual authentication message transcript

	10.10 Firmware and other measurements
	10.11 GET_MEASUREMENTS request and MEASUREMENTS response messages
	10.11.1 Measurement block
	10.11.1.1 DMTF specification for the Measurement field of a measurement block
	10.11.1.1.1 Measurement manifest
	10.11.1.1.2 Hash-extend measurements

	10.11.1.2 Device mode field of a measurement block
	10.11.1.3 Manifest format for a measurement block

	10.11.2 MEASUREMENTS signature generation
	10.11.3 MEASUREMENTS signature verification

	10.12 ERROR response message
	10.12.1 Standards body or vendor-defined header

	10.13 RESPOND_IF_READY request message format
	10.14 VENDOR_DEFINED_REQUEST request message
	10.15 VENDOR_DEFINED_RESPONSE response message
	10.15.1 VendorDefinedReqPayload and VendorDefinedRespPayload defined by DMTF specifications

	10.16 KEY_EXCHANGE request and KEY_EXCHANGE_RSP response messages
	10.16.1 Session-based mutual authentication
	10.16.1.1 Specify Requester certificate for session-based mutual authentication

	10.17 FINISH request and FINISH_RSP response messages
	10.17.1 Transcript and transcript hash calculation rules for KEY_EXCHANGE

	10.18 PSK_EXCHANGE request and PSK_EXCHANGE_RSP response messages
	10.19 PSK_FINISH request and PSK_FINISH_RSP response messages
	10.20 HEARTBEAT request and HEARTBEAT_ACK response messages
	10.20.1 Heartbeat additional information

	10.21 KEY_UPDATE request and KEY_UPDATE_ACK response messages
	10.21.1 Session key update synchronization
	10.21.2 KEY_UPDATE transport allowances

	10.22 GET_ENCAPSULATED_REQUEST request and ENCAPSULATED_REQUEST response messages
	10.22.1 Encapsulated request flow
	10.22.2 Optimized encapsulated request flow
	10.22.3 Triggering GET_ENCAPSULATED_REQUEST
	10.22.4 Additional constraints

	10.23 DELIVER_ENCAPSULATED_RESPONSE request and ENCAPSULATED_RESPONSE_ACK response messages
	10.23.1 Additional information
	10.23.2 Allowance for encapsulated requests
	10.23.3 Certain error handling in encapsulated flows
	10.23.3.1 Response not ready
	10.23.3.2 Timeouts

	10.24 END_SESSION request and END_SESSION_ACK response messages
	10.25 Certificate provisioning
	10.25.1 GET_CSR request and CSR response messages
	10.25.2 SET_CERTIFICATE request and SET_CERTIFICATE_RSP response messages

	10.26 Large SPDM message transfer mechanism
	10.26.1 CHUNK_SEND request and CHUNK_SEND_ACK response message
	10.26.2 CHUNK_GET request and CHUNK_RESPONSE response message
	10.26.3 Additional chunk transfer requirements

	10.27 Key configuration
	10.27.1 GET_KEY_PAIR_INFO request and KEY_PAIR_INFO response
	10.27.2 SET_KEY_PAIR_INFO request and SET_KEY_PAIR_INFO_ACK response
	10.27.3 Key pair ID modification error handling

	10.28 Event mechanism
	10.28.1 GET_SUPPORTED_EVENT_TYPES request and SUPPORTED_EVENT_TYPES response message
	10.28.1.1 Event group format additional information

	10.28.2 SUBSCRIBE_EVENT_TYPES request and SUBSCRIBE_EVENT_TYPES_ACK response message
	10.28.2.1 Additional subscription list information

	10.28.3 SEND_EVENT request and EVENT_ACK response message
	10.28.4 Event Instance ID

	10.29 GET_ENDPOINT_INFO request and ENDPOINT_INFO response messages
	10.29.1 ENDPOINT_INFO signature generation
	10.29.2 ENDPOINT_INFO signature verification

	10.30 Measurement extension log mechanism
	10.30.1 GET_MEASUREMENT_EXTENSION_LOG request and MEASUREMENT_EXTENSION_LOG response messages
	10.30.2 DMTF Measurement Extension Log Format
	10.30.3 Example: Verifying Measurement Extension Log Against Hash-Extend Measurement

	11 Session
	11.1 Session handshake phase
	11.2 Application phase
	11.3 Session termination phase
	11.4 Simultaneous active sessions
	11.5 Records and session ID
	12 Key schedule
	12.1 DHE secret computation
	12.2 Transcript hash in key derivation
	12.3 TH1 definition
	12.4 TH2 definition
	12.5 Key schedule major secrets
	12.5.1 Request-direction handshake secret
	12.5.2 Response-direction handshake secret
	12.5.3 Requester-direction data secret
	12.5.4 Responder-direction data secret

	12.6 Encryption key and IV derivation
	12.7 finished_key derivation
	12.8 Deriving additional keys from the Export Master Secret
	12.9 Major secrets update
	13 Application data
	13.1 Nonce derivation
	14 General opaque data format
	15 Signature generation
	15.1 Signing algorithms in extensions
	15.2 RSA and ECDSA signing algorithms
	15.3 EdDSA signing algorithms
	15.3.1 Ed25519 sign
	15.3.2 Ed448 sign

	15.4 SM2 signing algorithm
	15.5 Signature algorithm references
	16 Signature verification
	16.1 Signature verification algorithms in extensions
	16.2 RSA and ECDSA signature verification algorithms
	16.3 EdDSA signature verification algorithms
	16.3.1 Ed25519 verify
	16.3.2 Ed448 verify

	16.4 SM2 signature verification algorithm
	17 General ordering rules
	18 DMTF event types
	18.1 Event type details
	18.1.1 Event Lost
	18.1.2 Measurement changed event
	18.1.3 Measurement pre-update event
	18.1.4 Certificate changed event

	19 ANNEX A (informative) TLS 1.3
	20 ANNEX B (informative) Device certificate example
	21 ANNEX C (informative) OID reference
	22 ANNEX D (informative) variable name reference
	23 ANNEX E (informative) change log
	23.1 Version 1.0.0 (2019-10-16)
	23.2 Version 1.1.0 (2020-07-15)
	23.3 Version 1.2.0 (2021-11-01)
	23.4 Version 1.3.0 (2023-04-05)
	23.5 Version 1.3.0 (Updated 2023-06-28)
	24 Bibliography

