1920

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021

A Coprocessor-Based Introspection Framework
Via Intel Management Engine

Lei Zhou, Fengwei Zhang
Xuhua Ding

, Jidong Xiao™, Kevin Leach
, and Guojun Wang

, Westley Weimer,

Abstract—During the past decade, virtualization-based (e.g., virtual machine introspection) and hardware-assisted approaches

(e.g., x86 SMM and ARM TrustZone) have been used to defend against low-level malware such as rootkits. However, these approaches
either require a large Trusted Computing Base (TCB) or they must share CPU time with the operating system, disrupting normal
execution. In this article, we propose an introspection framework called NicHTHAWK that transparently checks system integrity and
monitor the runtime state of target system. NicHTHAWK leverages the Intel Management Engine (IME), a co-processor that runs in
isolation from the main CPU. By using the IME, our approach has a minimal TCB and incurs negligible overhead on the host system on
a suite of indicative benchmarks. We use NigHTHAWK to introspect the system software and firmware of a host system at runtime.

The experimental results show that NichTHAwk can detect real-world attacks against the OS, hypervisors, and System Management
Mode while mitigating several classes of evasive attacks. Additionally, NichTHAWK can monitor the runtime state of host system against

the suspicious applications running in target machine.

Index Terms—Intel ME, system management mode, introspection, integrity, transparency

1 INTRODUCTION

SECURITY vulnerabilities [1] that enable unauthorized
access to computer systems are discovered and reported
on a regular basis. Upon gaining access, attackers frequently
install various low-level malware or rootkits [2] on the sys-
tem to retain control and hide malicious activities. While
many solutions target different specific threats, the key
ideas are similar: the defensive technique or analysis gains
an advantage over the attacker by executing in a more privi-
leged context. More specifically, to detect low-level mal-
ware, virtualization-based defensive approaches [3], [4] and
hardware-assisted defensive approaches [5], [6], [7] have
been proposed. However, both approaches come with
inherent limitations.

LimitationswwinmVirtualization. — Virtualization-based
approaches require an additional software layer (i.e., the
hypervisor) to be introduced into the system, resulting in
two problems. First, virtualization can incur sighificantiper=
formancenoverhead. While CPU vendors and hypervisor

o Lei Zhou and Fengwei Zhang are with the Department of Computer Sci-
ence and Engineering, and Research Institute of Trustworthy Autonomous
Systems, Southern University of Science and Technology, Shenzhen
518055, China. E-mail: {zhoul6, zhangfw)@sustech.edu.cn.

o Jidong Xiao is with the Boise State University, Boise, ID 83725 USA.
E-mail: jidongxiao@boisestate.edu.

o Kevin Leach and Westley Weimer are with the University of Michigan,
Ann Arbor, MI 48109 USA. E-mail: {kjleach, weimerw|@umich.edu.

e Xuhua Ding is with the Singapore Management University, Singapore
188065. E-mail: xhding@smu.edu.sg.

o Guojun Wang is with the Guangzhou University, Guangzhou 510405,
China. E-mail: csgjwang@gzhu.edu.cn.

Manuscript received 30 Dec. 2019; accepted 24 Feb. 2021. Date of publication
6 Apr. 2021; date of current version 9 July 2021.

(Corresponding author: Fengwei Zhang.)

Digital Object Identifier no. 10.1109/TDSC.2021.3071092

developers have worked to improve the performance of
CPU and memory virtualization, the cost of 1/O virtualiza-
tion remains high [8]. Second, and more importantly, main-
stream hypervisors generally have a large trusted
computing base (TCB). Hypervisors such as Xen or KVM
contain many thousands of lines of code in addition to the
millions of lines present in the control domain. Thus, while
virtualization has facilitated significant defensive advances
in monitoring the integrity of a target operating system,
attackers in such systems can target the hypervisor itself. By
exploiting vulnerabilities in the large TCB of the hypervisor,
attackers can escape the virtualized environment and wreak
havoc on the underlying system.

LimitationsvimHardware. Hardware-assisted approaches are
not burdened by large TCBs. However, to provide a trustwor-
thy execution environment, hardware-assisted approaches
typically require either (1) an external monitoring device or (2)
specialized CPU support for examining state such as Intel Sys-
tem Management Mode (SMM). The former, seen in Copi-
lot [6], Vigilare [5], and LO-PHI [9], typically use a co-
processor (on a PCI card or an SoC) that runs outside of the
main CPU. Such a requirement increases costs and precludes
large=scalerdeployment. The latter, seen in HyperSentry [10],
HyperCheck [11] runs code in SMM and monitors the target
host system. While it does not require any external devices,
code running in SMM can disrupt the flow of execution in the
system. Running code in SMM requires the CPU to perform
an expensive context switch from the OS environment to
SMM. This switch suspends the OS execution until the SMM
code completes, that is benefit for static analyzing the current
host running state. But this suspension of execution results in
abnormalities (e.g., lost clock cycles) that are detectable from
the OS context. Attackers can measure and exploit such abnor-
malities so as to escape detection or hide malicious activities.

This work is licensed under a Creative Commons Attribution-NonCommercial-NoDerivatives 4.0 License. For more information, see https://creativecommons.org/licenses/by-nc-nd/4.0/

https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0003-3365-2526
https://orcid.org/0000-0001-6807-9999
https://orcid.org/0000-0001-6807-9999
https://orcid.org/0000-0001-6807-9999
https://orcid.org/0000-0001-6807-9999
https://orcid.org/0000-0001-6807-9999
https://orcid.org/0000-0002-4001-3442
https://orcid.org/0000-0002-4001-3442
https://orcid.org/0000-0002-4001-3442
https://orcid.org/0000-0002-4001-3442
https://orcid.org/0000-0002-4001-3442
https://orcid.org/0000-0003-3974-590X
https://orcid.org/0000-0003-3974-590X
https://orcid.org/0000-0003-3974-590X
https://orcid.org/0000-0003-3974-590X
https://orcid.org/0000-0003-3974-590X
https://orcid.org/0000-0002-9815-749X
https://orcid.org/0000-0002-9815-749X
https://orcid.org/0000-0002-9815-749X
https://orcid.org/0000-0002-9815-749X
https://orcid.org/0000-0002-9815-749X
mailto:zhoul6@sustech.edu.cn
mailto:zhangfw@sustech.edu.cn
mailto:jidongxiao@boisestate.edu
mailto:kjleach@umich.edu
mailto:weimerw@umich.edu
mailto:xhding@smu.edu.sg
mailto:csgjwang@gzhu.edu.cn
Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

ZHOU ETAL.: COPROCESSOR-BASED INTROSPECTION FRAMEWORK VIA INTEL MANAGEMENT ENGINE

To address these limitations in current approaches, we
present NIGHTHAWK, a framework leveraging the Intel Man-
agement Engine (IME). While the IME is intended as an
advanced system management feature (e.g., for remote sys-
tem administration of power and state), in this work, we
use the IME to construct a system introspection framework
capable of efficiently (1) checkingtheintegrityof kernelrand
hypervisor structures and system firmware, and (2) moni-
toring the system state by quickly analyzing critical target
memoryidata. To the best of our knowledge, this is the first
paper to consider using the IME for system introspection.
Our proposed framework offers the following advantages
in comparison to previous work:

o Novextrahardware required: The IME has been inte-
grated into most current commercially-available
Intel chipsets, which ensures that our proposed
framework can be deployed without external periph-
eral support.

o High privilege. As a co-processor running indepen-
dently from the main CPU, the IME has a high privi-
lege level in a computer system." The IME has
unrestricted access to the host system’s resources,
making it suitable for analyzing the integrity of the
underlying operating system, hypervisor, or
firmware.

e Siall'TCB. The IME runs a small independent Minix
3 OS distribution. As Minix 3 uses a microkernel
architecture, it contains only thousands of lines of
kernel code (cf. millions of lines of code in modern
hybrid architecture systems like Linux or Windows).
The reduced size of code results in a decreased
trusted code base.

o Low overhead. Since the IME runs in an isolated co-
processor, executing code in the IME does not dis-
rupt the normally-executing tasks on the main CPU
and does not compete for resources with the under-
lying OS. Thus, code executing in the IME incurs
very little overhead on the target system.”

o [ransparercy. In addition to low overhead, the isola-
tion of the IME means that the host OS is not aware
of code executing in the IME. This allows transparent
analysis of the host system from the IME.

We apply our prototype to several indicative experi-
ments entailing critical code integrity checking and host
state monitoring. This paper is an extended version of our
published conference work.” The existing work focuses on
host integrity checking and experimental results show that
NicHTHAWK can detect real-world rootkits, including kernel-
level rootkits and SMM rootkits. Following that work, we
design a new system state monitoring mechanism. We ana-
lyze the target system to extract the representative features
in a running OS, including runtime processes, physical
memory usage, and information in procfs. We evaluated the
added system monitoring modules, the additional results
show that we can effectively introspect the host’s state

1. Expanding on Intel’s privilege rings, userspace applications are
said to have ring 3 privilege, while the kernel has ring 0 privilege. The
IME is said to have ring -3 privilege [12], [13].

2. Cache contention and bus bandwidth limits may incur overhead.

3. NIGHTHAWK [14] has been published in ESORICS 2019.

1921

information without interrupting its execution environ-
ment. Our main contributions are:

e We present NIGHTHAWK, a novel introspection frame-
work that transparently checks the integrity of the
host system and monitors the host state at runtime.
We leverage the IME, an extant co-processor that
runs alongside the main CPU, enabling a minimal
TCB and detection of low-level system software
attacks while incurring negligible overhead.

e We demonstrate a prototype of NiGHTHAWK that an
detect real-world attacks against operating system
kernels, Xen and KVM hypervisors, and System
ManagementWRAM. In addition, NIGHTHAWK can
monitor target system state with forensics analyzing
criticalidata in target OS. Furthermore, NIGHTHAWK is
robust against page table manipulation attacks and
transient attacks.

e NIGHTHAWK causes low latency to introspect the criti-
cal data structures. Our results show that NIGHTHAWK
takes 0.502 seconds to verify the integrity of the sys-
tem call table (4 KB) of the host operating system.
This low latency results in a small system overhead
on the host.

2 BACKGROUND

Intel Management Engine. The Intel Management Engine is a
subsystem which includes a separate microprocessor, its
own memory, and an isolated operating system [15]. The
IME has been integrated into Intel x86 motherboards since
2008 and was frequently used for remote system adminis-
tration. Once the system is powered on, the IME runs in iso-
lation, and its execution is not influenced by the host system
on the same physical machine. To contact with isolated IME
from host system, Intel designed the Host Embedded Con-
troller Interface (HECI, also called Management Engine
Interface) to secure exchange data between host memory
and IME. Note that some other chipsets integrated co-pro-
cessors, like the Intel Innovation Engine (IE) [16], also have
the similar features, but are designed for special platforms
(e.g., Data Center Servers) rather than for ordinary com-
puters. Thus, in this paper, we build our introspection
framework based on the IME rather than the Intel IE.

System Management Mode. System Management Mode
(SMM) is a highly privileged execution mode included in
all current x86 devices since the 386. It is used to handle sys-
tem-wide functions such as power management or vendor-
specific system control. SMM is used by the system firm-
ware, but not by applications or normal system software.
The code and data used in SMM are stored in a hardware-
protected memory region named SMRAM. Under normal
operation, SMRAM is inaccessible from outside of SMM
unless configured otherwise (i.e., if SMRAM is unlocked).
SMM code is executed by the CPU upon receiving a system
management interrupt (SMI), causing the CPU to switch
modes to SMM (e.g., from protected mode). The hardware
automatically saves the CPU state, including control regis-
ters like CR3, in a dedicated region in SMRAM. After exe-
cuting SMM code, the CPU state is restored and it resumes
execution as normal. We use SMM in tandem with the IME

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

1922 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021
IME Application-level -
Tty Application
i 13
Monitoring Memory
M SMM
~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~~ 2 =
i IME OS-level
Forensics NICS L 4DMA Driver / HECI St
Request/Response rver HECT Driver
IME Target Host

Remote Machine

Target Machine

Fig. 1. High level overview of the NicHTHAWK. The user operates a Remote Machine to interact with the Target Machine. We place custom IME code on
the Target Machine, consisting of an Introspection server, Integrity Checking and Host State Monitoring Modules. When the user invokes an intro-
spection command, the server dispatches the corresponding service module, which in turn creates a communication channel with the Target Host’s
physical memory using either xDMA or HECI. We place custom SMM “Agent” code on the Target Host. The SMM Agent is capable of basic intro-
spection to recover critical data structures, which can be transmitted to the IME using the same «DMA/HECI channel. The Introspection Server can
transmit the resulting data back to the Remote Machine for analysis or forensics.

to transparently gather accurate data from a system, even
when it is compromised.

3 THREAT MODEL AND ASSUMPTIONS

In this work, we assume the operating system, the hypervi-
sor, and even SMM are not trusted. In contrast, due to its
isolation and small TCB, we favor deploying security-criti-
cal software in the IME. We use this environment to run our
code and introspect activities occurring in the operating sys-
tem, the hypervisor, and SMM. Additionally, we assume an
attacker does not have physical access to the machine. We
assume that we start with a trustworthy firmware image
(i.e., BIOS) so that we can reliably insert our IME introspec-
tion code. We assume the booting process of the Intel
TXT [17] is trusted. We assume SMM could be compro-
mised via a software vulnerability at runtime. However,
attacks against SMM due to architectural bugs like cache
poisoning [18] are out of scope because such attacks can be
mitigated with official patch [19]. We assume the hardware
can be trusted to function normally (e.g., hardware trojans
are out of scope).

4 SYSTEM OVERVIEW

Fig. 1 illustrates the architecture of NIGHTHAWK, where the
Remote Machine and IME run in an trusted environment,
and the Target Host runs in an untrusted environment.
With the IME, NiGHTHAWK transparently accesses the physi-
cal memory from the Target Host, and aims to reach two
goals: First, we aim to transparently monitor the integrity of
target system’s memory (i.e., code and data) belonging to
the application, kernel, any hypervisor present, and
SMRAM. When an integrity violation is detected, our IME
code asserts that an attack has occurred. Second, we aim to
reconstruct the state of the runtime Target system. This can
be effectively used to analyzemthewstatemofwprocesses)
resource usage (e.g., memory, cache, imports, interrupts) of
funtimerapplications: With the Remote Sever, NIGHTHAWK
can remotely introspect and implement more powerful
memory forensics module for application-level checking.
We describe further details of each component below.

Target Machine. The Target Machine represents the poten-
tially vulnerable system we want to analyze and protect.

The Target Machine contains both the IME and an underly-
ing Target Host (e.g., operating system or hypervisor). We
use the IME as the key component in NIGHTHAWK to trans-
parently introspect the Target Machine’s physical memory.
An Introspection Client, which is deployed on the Remote
Machine, allows the user to send introspection commands
to the Target Machine’s IME. An Introspection Server on
the Target Machine’s IME then processes these commands.
The Introspection Server invokes an analysis module on
behalf of the Remote Machine.

In this paper, we implemented two types of modules:
integrity checking and state monitoring. The former focuses
on verifying the objects of the kernel, hypervisor, and SMM;
each object corresponds to a particular class of attack that
may occur against the Target Machine. The latter is
designed to monitor the behavior of the runtime system,
from which abnormal state can be detected by analyzing the
physical memory data.

When the Introspection Server processes a command
from the Client, we initialize the corresponding module and
acquire the Target Host’s memory. We use uDMA to access
the host’s memory. By design, #DMA only understands
physical addresses, so we bridge the semantic gap to under-
stand the Host’s high-level abstractions (i.e., virtual mem-
ory addresses). We perform some initial reconnaissance on
the Target Host's memory—we collect virtual memory
addresses of some critical kernel/hypervisor data structures
to derive a mapping to physical addresses. In SMM, we first
build a SMRAM static configuration map for comparison at
runtime. This map allows us to retrieve virtual memory
addresses from the physical memory regions we acquire via
uDMA. Next, we create a communication channel between
the Target Machine’s physical memory space and the IME’s
external memory space by using uDMA and HECI. This
channel enables transferring critical data structures (e.g.,
the system call table, a hypervisor’s kernel text, and saved
architectural state) to the IME. Afterwards, each checking
and monitoring module is able to locate relevant data struc-
tures in the IME’s external memory space and perform fur-
ther introspection.

Remote Machine. The Remote Machine serves as a way for
a user to remotely access the Target Machine and assess its
integrity transparently. More specifically, the Remote
Machine implements a simple Introspection Client that


Léon GALL


ZHOU ETAL.:

COPROCESSOR-BASED INTROSPECTION FRAMEWORK VIA INTEL MANAGEMENT ENGINE

1923

@ Memory Reconnaissance.

|

! @ Trigger. 1

| (r N )
p ‘ ! Application
Message ‘ Target Host

| .
l% ®b analyze
Verify Result
( Verify Result ] Data Trans | [ compariony SMRAM
®a Resplonse mission Reconstruction

DRAM

®b mem dump

Memory Forensics

(@ Report

|

ME RAM

O J

Management Engine

@ Inject custom ME code.

Target Host

Remote Machine

Target Machine

Fig. 2. High-level overview of the implementation. Following the numbered arrows, we (1) inject custom code into the IME on the Target Machine, and
(2) acquire physical addresses of critical data structures. Next, the user (3) issues commands to the Introspection Server, which (4) triggers the corre-
sponding command. (5) the IME uses «DMA and a modified HECI channel to fetch the target data from the Target Host and SMM memory. Depend-
ing on the command, the resulting memory is either (6a) dumped to the Remote Machine or (6b) analyzed locally for integrity checking or state
monitoring. If applicable, (7) the memory Comparison/Reconstruction handler produced the report of data analysis, and finally (8) transmitted back

to the Remote Machine.

allows access to the Target Machine’s IME remotely. Users
can issue commands using the Introspection Client, and
receive results from the Target Machine’s IME. We imple-
ment several commands that are usable by the Introspection
Client, including fetching segments of kernel memory for
verification. We also implement a Memory Forensics Helper
for dumping memory images to the Remote Machine for
offline analysis. Duentortherresotirce=constrained maturenof
the IME processor, it is more efficient to dump memory
from the Target Machine and use the Remote Machine to
perform more computationally-expensive analyses. Users
can develop more complex memory forensic analysis helper
based on their needs.

Both the Introspection Client and the Memory Forensics
Helper work in tandem to communicate with the IME on
the Target Machine. Rather than developing a custom com-
munication protocol, we rely on the existing IME remote
management protocol [20], which is a RESTful HTTPS pro-
tocol for remote management tasks. We reverse-engineered
the protocol to augment it with custom commands used by
our introspection code.

Summary. To summarize, we seek to check the integrity
of target host using the IME, and further introspect the tar-
get runtime system. We use custom IME code to implement
integrity checking for the Target Machine’s kernel, hypervi-
sor, and SMM code and data. Based on trusted code and
data, we further implement host state monitoring for the
Target Host’s runtime system state. A user can interact with
an Introspection Client to perform various introspection
tasks. Because the IME enables transparent and low-over-
head access to the Target Machine’s physical memory, we
can detect the presence of advanced attacks by leveraging a
combination of integrity checks and introspection.

5 IMPLEMENTATION

We implemented a prototype of NiGutHawk based on the
Intel x86 architecture. Fig. 2 describes implementation
details pertinent to our prototype. We embedded custom
IME firmware on the Target Machine to transparently

acquire the Target Host memory with low overhead.
Loosely, there are two main parts of the implementation: (1)
preparing the Target Machine with custom IME firmware,
and (2) interacting with the Target Machine’s IME at
runtime.

5.1 Preparing the Target Machine

The Intel Management Engine is a system developed by
Intel whose functions require significant engineering effort
to expand. With several previous IME related research
works [12], [13], we adopt the mMmemory=remapping
approachtaken by Tereshkinrand Wojtczuk [13]: essentially,
the external IME RAM is made accessible by the Target
Host by configuring several system registers that influence
memoryrmapping: The workflow is shown in left parts of
the Fig. 3. In practice, developers can work with vendors to
deploy custom IME code that does not require such a work-
around. SMM can be protected in a similar way.

Since we directly get the runtime IME memory data but
not source code, we first reverse engineer the IME code—
our prototype uses ARCompact [21]). Next, we can trigger
remote commands to run related threads in the Target
Machine’s IME.

We can then acquire low-level runtime information (e.g.,
memory dumps) of running programs, which we can ana-
lyze (e.g., by seaching for branch instructions) to find
addresses of suitable functions and positions for introspec-
tion. Finally, we insert introspection code while maintaining
the original functionality (e.g., with trampolines).

However, with kernel-level access, it is possible to reuse
those memory control registers to remap and subsequently
alter the IME-reserved memory region and SMRAM. This
could potentially allow attackers to compromise NIGHT-
HAWK: To close the injection vector after we insert the intro-
spection code into the IME and SMRAM, we implement a
lock mechanism on those memory control register by
leveraginglntelTXT [17], shown in the right side of Fig. 3.

1)  We pre-install Trusted Boot [22] (TBoot)ranbooting

module based on Intel TXT Technology to perform a


Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL


1924

IME External

@ Modify registers:
Memory

TOUUD,
REMAP_BASE,
REMAP_LIMIT

@ restore configuration

[TOUUD default

registers

Tremap memory @ Lock resisters with

Intel TXT

Available
A Memory

(mmap2)

@ write custom code
to memory

Entry
func_cmd_identity ()
func_dma_fetch()

Boot Sector [« --- @ Reboot with
Nighthawk

s '
func_data transmit() |’

System DRAM

Fig. 3. Custom IME code injection and reusing blocked. First, we config-
ure system registers (TOUUD, top of upper usable memory, REMAP_-
BASE, and REMAP_LIMIT in step 1) to map the IME external memory to
a userspace-accessible region of memory (step 2). We write custom
instructions to that region (step 3), then restore the configuration regis-
ters (step 4). Last, we lock the registers at booting stage (step 5), and
reboot the system with NigHTHAWK (Step 6).

measured and verified launch of an OS kernel/
VMM. We can configure TBoot to lock the memory
control registers.

2)  We configure the bootloader to use TBoot to boot the
Linux kernel, then restart the Target Machine from
the Remote Server with an IME-based remote reboot
command.

After rebooting, the custom IME and SMM code remains
intact because booting into TXT mode prevents the memory
control registers from being modified.

5.2 Modules Designed in IME

In this subsection, we describe the design and implementa-
tion details of modules that we use as part of our prototype
built on the Intel Management Engine.

IME is a tiny system in x86 chipsets with an independent
CPU, memory, and other computing resources [23]. Func-
tion modules in NIGHTHAWK are the extension of the original
IME system. Through reverse engineering the runtime IME
memory data (as discussed in Section 5.1), we locate each
IME kernel function (e.g., memcpy, memset), network com-
munication drivers (e.g., TCP/UDP packet processing func-
tions) and other specific system modules. In the IME
system, each device can be initialized directly by configur-
ing auxiliary registers. Similarly, we can locate some key
auxiliary registers in the IME core through some reverse
engineering work (e.g., The physical address 025010 to
0x5013 for DMA channel registers, 026011] to 026016 for
timer registers). We configure the related auxiliary register
to implement driver-like functions, which are used as a
foundation for NIGHTHAWK's capabilities.

Since the IME processor cannot address the host memory
directly, two extended transfer engines — Direct Memory
Access (DMA) and Host Embedded Controller Interface
(HECI) — are used for data transmission between the IME
memoryrandrthenTargetrHostrmemory. The DMA engine
moves bulky data blocks between the IME memory and the
Target Host memory. In our prototype environment, the
IME adopts a tightly-coupled DMA engine called ©DMA to
achieve low latency and cycle-efficient DMA transfers. By
configuring DMA-related registers (e.g., setting bits 2—4 of
register [5010] with 010) to fetch physical memory data
from the Target Host to the IME memory space, we

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021

construct an effective DMA channel between the two. Fur-
thermore, to securely access the Target Host’s registers, we
configure a HECI-like channel in SMM. Similar to the HECI
driver, we configure related registers like H_CRS in SMM
to implement byte-level data transferring.

In addition to the data transfer engine, modules for data
encryption/decryption and analysis are designed as normal
IME applications like AMT [15]. Such modules are inserted
by hooking existing IME functions, like memcpy or
net_package_send. The insertion operations change one
instruction in the original function, and are resumed after
the added module is executed to keep correct IME state.
Since the IME system has limited resources (e.g., less than
3MB memory available for data processing), we add small
functions and leverage existing functions to implement host
introspection. For a complex introspection task, we divide
them into pieces and migrate most of the work to the remote
machine.

5.3 Target Host Reconnaissance

We describe challenges associated with: (1) verifying the
integrity of its memory dumps about kernel, hypervisor,
and SMM code and data; and (2) reconstructing the key
data structures in host system. In addition, we consider the
solutions we chose, and how these solutions mitigate certain
attacks.

Static Kernel Integrity Checking. In a normal OS and hyper-
visor, the kernel code and data are in static memory seg-
ments, initialized during system boot. Typically, kernel
code and several key data structures such as the system call
table and the interrupt descriptor table do not change dur-
ing runtime. However, attackers might modify these struc-
tures, violating the kernel’s integrity. In general, its physical
address can be found in the system symbol table (System.
map) with a fixed offset change.4System.map is a map
from kernel symbols to virtual addresses. To monitor kernel
integrity, we similarly obtain that symbol’s address from
the system symbol table. We use this approach to find phys-
ical addresses of several critical structures, including the
system call table, the interrupt descriptor table, the kernel
code and data segments, and (when applicable) hypervisor
modules.

SMM Integrity Checking. Unlike the kernel or the hypervi-
sor, accessing SMM memory is less straightforward. SMM
code is stored in and executes from the System Management
RAM (SMRAM), which is an isolated address space. This
isolation feature can be locked or unlocked through config-
uring special registers in the BIOS to protect access after
booting. If SMRAM is unlocked, we can measure the integ-
rity directly via the uDMA channel. However, even if
SMRAM is locked, we implement a secure communication
channel between the IME and SMM. Since HECI is an
unique interface designed to communicate between the
IME and Target Host, we reuse the related HECI registers to
create a channel between the IME and SMM. Atop this
channel, we add code to check the integrity of both SMM-
related code and register values. We can communicate this

4. While this offset can be system-dependent, in most Linux setups,
kernel virtual addresses are 0xc0000000 bytes from the correspond-
ing physical address.


Léon GALL

Léon GALL

Léon GALL


CMD structure

Command | Feature

F Object
C Offset
T Size

header parse()

get_cmd()

Transmission

HTTP digest
command ke
size

payload offset

Runtime workflow
in NIGHTHAWK

msg-parse ()
data_fetch()

puDMA Structure

ZHOU ET AL.: COPROCESSOR-BASED INTROSPECTION FRAMEWORK VIA INTEL MANAGEMENT ENGINE 1925

srcdata
dst_addr
dma_size
dma_ctlreg
dma_state_reg

start DMA()

finish DMA()

[dat a_analyze ()]

DataProcess

data_transmit ()|

Original signature
Newly-fetched data

key_data_structures

hash_verify()

men_copy ()

payload replace()

signature match()

data_reconstruct ()

UDMA channel Target Host
S memory
HECI structure
write buf HECT
request_type channel

” read_buf SMRAM
event_listen()
data_analysis() DRAM

0x1182000[ st bIink, sp Introspection

f:it 0 in the IME
ilter

match()

report ()

mov rl r18

mov r2 r13 < Hooked

j1 0x14E4F8C

0x14E4F84 function entry

mov ri ri8
mov r2 ri3

<« -+ jl 0x1182000

Fig. 4. The introspection workflow in the IME. We reverse-engineered the locations of several network-related functions in the existing IME code on
our Target Machine. We added code to include custom commands to support our main goal of checking the integrity of the Target Host.

information from SMM over the HECI channel, at which
point we can verify results within the IME. This approach
enables transparent and rapid evaluation of SMM code and
data even when the target machine is compromised.

Kernel Data Reconstruction. To introspect the state of the
target system, NIGHTHAWK searches for critical system run-
time information, similar to Virtual Machine Introspec-
tion [24]. Those information data is stored in instances of
specific kernel objects, containing the state of processes,
information of CPU interrupts, and statistical data from
procfs, among other data. Since NIGHTHAWK must extract use-
ful data from raw binary data, it generally relies on kernel
data reconstruction to bridge the semantic gap. Kernel data
reconstruction proceeds in two phases. First, we identify
the symbols of each data structure and its storing address
on physical memory. Second, we traverse all items in data
structures to acquire valid data.

In the first phase, NIGHTHAWK relies on knowledge of the
Target System’s kernel version, compilation parameters,
etc. With the same kernel source code and compiling condi-
tions, NicHTHAWK builds an analysis environment for the
Target Host, then analyzes the source code to get the root
address of data structure instances (and related pointers).
For example, in Linux, each process has an associated
task_struct object, and of whose instances are organized in a
doubly- and circularly-linked list. The root element of this
linked list is represented by the instance init_task, which
we can find in the kernel symbol table. In some cases, the
instances may be organized with different data structures
(e.g., proc_dir_entry allocated with a Red-Black tree), which
we support as needed.

In the second phase, with the root address and layout of
data structure instances, NIGHTHAWK traverses each item lin-
early or following the data structure’s pointers. Generally,
the traversal starts at the symbol address, but for some spe-
cial cases, the symbol address indirectly relates to the data
structure. For example, the data structure pglist_data does
not have the root address from the symbol table, but its sub-
field node_mem_map corresponds to the kernel symbol
mem_map. The redirection is executed at the function
alloc_node_mem_map, which is a fixed offset from the first
address of the pglist_data structures. Thus, NIGHTHAWK

needs to analyze the path of data redirection before tra-
versal. After searching each data structure instance, NIGHT-
HAWK fetches the effective data stored in fields of structures.
NIGHTHAWK monitors the system data to introspect the state
of the target system.

Mitigating Attacks. NIGHTHAWK is co-processor based
approach that suffers from the addressitranslationiredirec
tionvattack (ATRA) [25] and transientattacks [5], [11]. How-
ever, NIGHTHAWK is able to detect these attacks. For ATRA
attacks, first, we store a clean copy of kernel page table by
accessing the symbol swapper_pg_dir at the kernel ini-
tialization stage. Second, we obtain the CR3 register value
using SMM (SMRAM is protected by SMM integrity check-
ing). Thus, the binding between the virtual and physical
memory addresses can be verified in the IME subsystem.
For transient attacks, NicHTHAWK works in an independently
environment with little introspection overhead. Compared
to the SMM-based monitoring approaches like Hyper-
Check [11] and HyperSentry [10], the introspection interval
of NicHTHAWKbecomes much harder to be gleaned by attack-
ers. Moreover, the code in the IME can run continuously
without halting the Target Host, and thus attackers cannot
predict when a memory page will be checked.

5.4 Measuring Integrity Via Custom IME

Next, we discuss the introspection workflow in NIGHT-
HAWK. As the IME is intended for remote administration,
it contains basic networking code. We reverse-engineered
our IME firmware to find these networking functions
that could be reused by our injected IME code. The
injected code is composed with a list of introspected
object structures and checking functions. Essentially, we
modified the IME code to perform introspection activities
in response to requests sent from the Introspection Client
on the Remote Machine. The workflow consists of four
steps, shown in Fig. 4.

1) When the target machine receives a network com-
mand, it is received by the Remote Machine in the
recv_cmd () function. Then, msg_parse () deter-
mines which integrity checking operation it needs to
perform.


Léon GALL

Léon GALL

Léon GALL

Léon GALL


1926

2) Next, we fetch the specified target data. We use a
uDMA channel between the Target Host and the
IME to fetch the specified data from memory. If the
target data is from locked SMRAM, data_fetch()
creates the HECI channel between the IME and
SMM.

3) After fetching, NIGHTHAWK first compares the hash
value of the fetched memory with the original ver-
sion established during boot in the IME system. Dur-
ing a reconstruction command, NiGHTHAWKanalyzes
the binary data and extracts the valid messages from
the corresponding data structure.

4) After analysis, data_transmit () transfers the
results to the Remote Machine to continue analysis.

Next, we discuss key aspects of the introspection workflow.

uDMA Based Memory Fetching. NIGHTHAWK uses the
uDMA engine to access the Target Host’s physical memory
from the IME. Our prototype’s chipset [26] supports config-
uration of four uDMA channels (i.e., we can have four
memory requests in-flight simultaneously). We use a num-
ber of auxiliary registers to control the size, direction, and
other properties of the uDMA request. First, we write cer-
tain structures (e.g., the source and destination addresses)
to auxiliary registers so as to engage the uDMA engine to
automatically retrieve portions of the Target Host’s physical
memory. Then, the WDMAengine atutomatically stores the
requested memory content in an IME-designated location.
Once the function has acquired the specified amount of
data, the xDMA request stops. Note that, in a special case
like ATRA attacks, we get the CR3 value first by leveraging
SMM, and then fetch the corresponding memory page.

Checking Runtime SMRAM. For unlocked SMRAM, we
directly access the memory through ©DMA and check the
integrity in the IME. For locked SMRAM, NIGHTHAWK intro-
spects the SMRAM through the cooperative HECI channel.
In the IME, we add a static SMRAM configuration during
the initialization stage, which includes the SMM code and
the original value for each SMM register (e.g.,, SMBASE —
0xa0000). In SMM, we add two main functions: First, we
use the SDBM hash algorithm [27] to calculate the integrity
of SMRAM code, and we check the values of SMM-related
registers at runtime. This helps us defend against attacks
that attempt to change the SMM configuration or otherwise
alter SMRAM. Second, we establish a communication chan-
nel between the IME and SMM by configuring a number of
HECI Host registers: H_CBRW (Host Circular Buffer Read
Window), H_IG (Host Interrupt Generate), and H_CSR
(Host Control Status). In particular, writing to H_IG gener-
ates an interrupt to the IME. This HECI-based communica-
tion channel can pass data from SMM to the IME to check
SMM code and data.

5.5 Monitoring Host State Via Custom IME

After we verify the integrity of kernel on both OS and
Hypervisor, we can further monitor the critical information
on the Target System, including process information, physi-
cal memory usage, CPU interrupts, and Procfs information,
which directly reflects the runtime state of the Target Sys-
tem [28], [29], [30], [31]. This serves as an effective basis for
runtime monitoring of the Target Host.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021

Process monitoring is a key function for host introspec-
tion. In the user-space level, the processes running in the
Target System are the main interface for users’ services.
However, malicious software or rootkits [2], [32] residing
in the Target System will occupy computing resources.
Additionally, they hide themselves by manipulating the
kernel objects. To detect such malicious processes, we
develop a cross-view comparison approach. Since the ker-
nel object of each process is represented by a task_struct,
and root data located in init_task, we traverse the doubly-
linked list of tasks, then reconstruct a pid table of new
processes. In addition, because Procfs can manage kernel
modules, we can reconstruct another pid table with the
data structure proc_dir_entry and root instance proc_root,
similar to the ps command. Comparing these two tables,
we can track the trace of process hiding rootkits or other
malicious software. In addition, through continually mon-
itoring processes, we can detect the behaviors of runtime
process for study.

Physical memory page usage can explain how busy the
CPU is as well as memory overhead. When processes run in
a system, we calculate the memory overhead of the specific
application based on runtime state. On one hand, we can
estimate the memory requirement of process through
source code analysis or emulation [24]. On the other hand,
by continually monitoring physical page usages, we obtain
an effective memory usage view, which can be used to
detect the malicious behavior of memory operations like
“malicious memory occupied or overflow” [33]. To monitor
the physical memory page usage, we first address the global
value mem_map from the IME side-the first address of an
array of pglist_data structures. Through analyzing the value
in the flag field in data structure instance, we read out the
current state of the page. After collecting entire page items,
and comparison with a previous state, we can deduce the
memory usage of the current process.

Monitoring the record of CPU interrupts will show the
number of interrupts per IRQ (Interrupt ReQuest). This can
also reflect the behaviors of the processes. For instance, we
detect the network interrupts with accessing the root
address of irq_desc_tree and data structure irq_data, which
can be used to find networking statistics. For a comparison,
we can configure the performance monitoring register and
detect interrupts from the SMM side. With the cross view of
interrupts on network device, we can introspect such net-
work service in the target system.

Procfs is a virtual file system designed in Linux kernel,
which provides a crucial interface for users to access system
core information (e.g., users set kernel variables or retrieve
kernel information at the runtime system). Unlike typical
durable filesystems, Procfs is an in-memory interface to vari-
ous system statistics and runtime information. In addition,
Procfs is a common target for various viruses and rootkits
(e.g., Dynamic Kernel Object Manipulation (DKOM) [34]
attacks modify the data transferring function executing
once accessing the /proc/iomem data). Fortunately, recon-
structing ‘omem data from resources data structure will
directly get the raw data which cannot be hided by attacks.
Similarly, monitoring on other /proc nodes like
/ioports, slabin fo can also provide effective introspection
for the Target OS.


Léon GALL


ZHOU ETAL.: COPROCESSOR-BASED INTROSPECTION FRAMEWORK VIA INTEL MANAGEMENT ENGINE

TABLE 1
Communication Commands in NigHTHAWK, Each Consisting of an
Operation and Corresponding Object

Command  Description Object ~ Description

F Fetch the physical ~SCT The information
memory from about System
Target Host to the Call Table.

IME.

C Compare the LK The information
Target Host about Linux
memory in the IME Kernel.
system.

T Transmit the HYP The information
introspection about
results from the Hypervisor.
IME to Remote
Machine.

D Dump the Target SMM The information
Host memory from about SMRAM.
the IME to Remote
Machine.

R Reconstruct the PT The running
special data in host processes in
system. target system

Any command can be combined with any object.

5.6 Remote Machine

We discuss how the Introspection Client interacts with the
Target Host. There are two main functions implemented on
the remote machine: information collection and transparent
introspection of Target Host. The remote machine initiates a
request over the network to begin introspecting the Target
Host. Once the Target Host is initialized, a communication
channel is established to collect memory address informa-
tion, including symbol names, addresses, and sizes from the
target machine. The collected information is transmitted to
the Remote Machine for later use. After this initiation, the
introspection session can begin. The Remote Machine inter-
acts with the Target Machine in three scenarios:

e First, system administrators set the IME username
and password for secure login. The remote machine
supplies credentials for user authentication to create
a secure channel with target machine.

e Second, remote machine sends the introspection
command following the developed small custom
protocol, shown in Table 1. Moreover, the communi-
cation is encrypted via a session key established at
runtime.

e Third, the Remote Machine receives responses to
commands from the Target Machine. There are
two types of response: integrity verification and
forensic analyses. Integrity verification is proc-
essed in the IME system, thus the response would
be a Boolean result indicating whether the integ-
rity was violated. Data reconstruction is also proc-
essed in the IME system because memory fetching
follow the definite data structure and physical
address layout. For the large memory dump, the
memory forensic analyses are offloaded to the
Remote Machine.

1927
TABLE 2
The Effectiveness of NicHTHAWK Introspection
Type Attacked Object  Attacks [2], Detected
[32], [36]
OSkernel  gystem call table benign x
kernel _text pusezk v
kernel _data Diamorphine v
IDT table kbeast v
page directory  amark Vv
entry adore-ng v
page table entry manual v
modification
Hypervisor  kvm.ko benign X
kvm_intel.ko pusezk v
Xen kernel _text Diamorphine v
_stext_etext kbeast v
hypercall page amark v
IDT _table adore-ng v
page directory  manual v
entry modification
page table entry
SMM SMRAM benign X
SMM reloaded v
manual v
modification

6 EVALUATION

Our experimental environment consists of two physical
machines: the Target Machine, with a 3.0 GHz Intel
E8400 CPU, ICH9D0 I1/0O Controller Hub, and 2 GB
RAM. An Intel e1000e Gigabit network card is integrated
in the Intel DQ35JO motherboard. The BIOS version is
JOQ3510].86A.0933. For kernel integrity testing, the Tar-
get Machine runs Ubuntu with Linux kernel versions 2.6.
x to 4.x. For hypervisor integrity testing, both Xen 4.4
and KVM 2.0 are used. The Remote Machine runs Micro-
soft Windows 10 with WireShark [35] installed for net-
work packet monitoring. In this section, we evaluate
NiGHTHAWK from two aspects: effectiveness (i.e., does our
system detect the presence of real-world threats?) and
efficiency (i.e., does our system incur a low overhead?).

6.1 Effectiveness
6.1.1 Effectiveness of Lower Layer Introspection

We measure effectiveness by introspecting the Linux kernel,
hypervisor, and SMM, as well as detecting ATRA and tran-
sient attacks.

Kernel Integrity Verification. We consider 5 real-world ker-
nel rootkits, shown in Table 2, which fall into two
categories:

e System call table modification. Rootkits with kernel-
level privilege can write to this table by manipulat-
ing the control register CRO. 4 of our 5 rootkits
belong to this category: Pusezk, Diamorphine, amark,
and Kbeast [2].



1928

e Function pointer modification. For this category, we
choose adore-ng [32]. adore-ng hooks the virtual file
system interface to subvert normal detection. For
example, to hide a malicious process, it redirects the
iterate pointer in a kernel data structure proc_roo-
t_operationsso that the malicious process will
not be displayed in the /proc file system.

In addition to these real-world kernel rootkits, we also
manually and randomly modify kernel memory pages in
the kernel text and data segments.

Hypervisor Integrity Verification. In addition to installing
our 5 rootkits in a Xen system, we also emulate hypervisor
attacks in two ways. First, we modify the IDT, hypercall, and
exception tables in a Xen system to represent a compromised
Xen hypervisor. Second, we manually modify bytes in sys-
tem memory of a KVM guest. In particular, we identify base
addresses of KVM modules (kvm.ko and kvm-intel.ko),
then randomly modify 5 bytes in in these regions. These two
approaches allow us to simulate an attacker that compro-
mises the integrity of a Xen or KVM hypervisor.

SMM Integrity Verification. To demonstrate SMM integ-
rity verification, we employ existing SMM attacks (e.g., the
SMM Reload program [36]) to maliciously modify the SMI
handler. We statically identify the RSM instruction that ends
the SMI handler, and insert malicious instructions (e.g., mov
$x, %addr) to simulate an attack that can modify arbitrary
memory addresses. To detect these attacks, we verify mem-
ory pages in SMRAM (see Section 5.3 for details on acquir-
ing this memory). We then compare their runtime states
with their clean states, and we consider any discrepancy as
an integrity violation. We can thus detect the existing and
simulated SMM attacks described above.

6.1.2 Effectiveness of Host State Monitoring

We measure effectiveness of host state monitoring. Through
physical memory analysis, we can reconstruct the process
task_struct, physical memory page management, and Procfs
structure, which effectively introspect the runtime state of
each application running in the host. The additional experi-
ment focuses on implementing kernel object monitoring appli-
cations, including the following three tasks: process listing,
physical memory page usage, and system related functions.
First, we create a process status view by traversing all
tasks running in the Target Host using the init_task sym-
bol.” We fetch each task_struct from memory through one
DMA access. For comparison, we then build a new process
view by printing the /proc file system nodes within the Tar-
get Host. The process state in those two views should be
consistent if the system running in a normal state. In this
experiment, we preset the processes running in the Target
Host, and execute Diamorphine [2], a rootkit designed to
hide itself from kernel-based anti-virus detection tools. We
search the processes with our approach. The cross-view
result shows that we can identify the rootkit from our con-
structed task_struct, but that cannot be found in /proc nodes.
Other attacks may hide itself from task_struct but exploit in
/proc node, or hide from both approaches. However, those

5.0n our system, the address 0xc1938a00 contains the symbol
init_task; each task_struct object is 0XD8C bytes.

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021

base M10Mbech W100Mbech M1Gbech M400Mapp M 240M app

300000
250000
£ 200000

]
2 150000
)

& 100000
&
. m I
2 Q S e Y e r &
I S S Y
© < 2 L7 S & &

&
$ s ¢
o < K © \>°
< ey

2
@ K

Fig. 5. Physical memory page usages monitoring under different runtime
stages.

rootkits still leave the trace in physical memory and can be
found by NicHTHAWK (e.g., we can check the run_list of the
scheduler for detection [37]).

Second, we develop a physical memory page monitoring
module to check the state of physical memory pages (i.e.,
page update, active, dirty, etc.). Then, we can traverse all
physical pages through this single node structure. In Linux,
there is a initial data contig_page_data used by Page array.
Each item in Puge array represents a 4K size physical page.
By accessing these items, we get the state of the correspond-
ing pages. With this page traversal, we get the dynamic
physical memory utilization from host. Different processes
running in the Target System will cause different changes to
page usage. For example, we use the memtester memory
benchmark tool [38] to simulate memory utilization pat-
terns. Fig. 5 shows the physical memory page state under
different situations. The “base” means a basic system with-
out any other software, “10M-1G bech” represents running
the 10M to 1G memory benchmark test, the left instance
“400M, 240M app” represents the manual designed process
which required such size of memory space. The result
shows that the changing page number for each page states
follow the size of memory requirement. Note that, for an
extreme case like the 1G benchmark memory test, the num-
ber of dirty page or active page is less than prediction. This
is because the benchmark test is repeated on the same page.
In a real situation, we also need to consider the specific
memory operating in the workflow of process.

Third, we analyzed the binary code from physical mem-
ory dump to reconstruct the Procfs information. We selected
part of functions in Procfs node, including /iomem,
/ioports, /slabinfo, and /interrupts, which can
reveal the memory allocations, ports, memory switching,
and CPU interruption events on the Target Host. As men-
tioned at Section 5, most of Procfs nodes have their own
data structure. By traversing these structures, we can fetch a
complete view of /proc information. We experimented
above functions by reconstruct the key data. Fig. 6 lists parts
of the result of memory forensics by NiGHTHAWK. With this
function, we can monitor system state.

6.1.3 Effectiveness of Other Special Attack
Introspection

ATRA Detection. We keep a clean copy of the kernel page
table at system initialization stage through searching the
swapper_pg_dirsymbol. We use the CR3 value (acquired rely-
ing on SMM) to search for the corresponding physical page
directory entry and page table entry via physical memory.
In addition, we test the experiment when Page Global



ZHOU ET AL.: COPROCESSOR-BASED INTROSPECTION FRAMEWORK VIA INTEL MANAGEMENT ENGINE

Fig. 6. Result about proc nodes reconstruction from NigHTHAWK side.

Directory and CR3 changed under Kernel Page Table Isola-
tion (KPTI) mechanism and IDT based attack [25]. Finally,
we compare the search data to determine if a change has
been made. Our comparison results show that NIGHTHAWK
can detect the trace of ATRA.

Transient Attack Detection. To detect transient attacks, we
continuously scan kernel pages in the IME system. We
install a rootkit based on toorkit [38], the rootkit is able to
timing change the pointer address of the system call table
which leads to attacker-controller system calls. The rootkit
emulates a transient attack by quickly invoking insmodand
rmmod in the Linux OS. We also modify the code to parame-
terize the attack time (i.e., the time elapsed between insmod
and rmmod). We sweep the attack time from 3 ms to 700 ms,
and run each configuration 20 times. Our results show that
NIGHTHAWK can detect transient attacks if the attacking time
is more than 700 ms. However, if the attacking time is less
than 400 ms, the detection rate decreases linearly because
NIGHTHAWK requires a certain amount of execution time,
more details in previous work [14].

6.2 Efficiency

The efficiency of NIGHTHAWK is mainly determined by the
time cost of three logical operations: (1) datasfetching, (2)
IME=innerichecking, and (3) datartransmission. We measure
the time consumed by each operation. For data fetching, we
also measure its memory overhead, so that we can ascertain
that NicuTHAWK does not have noticeable impact on the tar-
get system.

6.2.1 DMA Fetching Overhead

We first measure the DMA data fetching operation. Regard-
less of whether introspection is performed on the IME or on
the remote machine, each Target Host memory segment
must first be fetched into the IME space via uDMA. When
the size of DMA-transmitted memory is smaller than 64 KB,
the time consumed is approximately 0.26s. This is due to
the DMA channel using 16 lines to access the DRAM in par-
allel, allowing 2'° bytes of data each time. When the size is
larger than 64 KB, the time consumed is linear to the
amount of DMA operations. To improve the DMA effective-
ness, we enable 4 uDMA channels to parallelly fetch at
most 256 KB target physical memory one time. More details
about uDMA performance are in previous work [14].

Since the DMA operations from the IME and the Target
Host share the same RAM, concurrent RAM accesses are
inevitable in our system. DufifigiDMAutransfer;therCPWnis
idle and has no control of the memory buses. We use the
STREAM benchmark [39] to measure the performance deg-
radation imposed on the target machine. We run each host
system functions (processes list, physical page usage and

1929

miStart [Process List [Phy Page Usages CIProcfs mEnd

2000

copy SCALE ADD TRIAD

Fig. 7. Memory throughput degradation due to introspection.

Procfs-similar) in IME to keep the host memory accessing.
Fig. 7 shows there are minimum differences in memory
bandwidth with and without NiGHTHAWK host system intro-
spection : most of the time, the performance degradation is
less than 0.3 percent, and even in the worst case (i.e., in the
Add function test), the degradation is only 0.98 percent.

6.2.2 IME-Inner Checking Overhead

The second operation we measure is integrity checking and
key data reconstruction. First, for the lower-layer memory
segment in question, we compute a hash value, and com-
pare it with a pre-computed value supplied by the Remote
Machine representing the clean state. Therefore, the time
cost depends on the hash algorithm we choose. Recall for
simplicity we chose to implement SDBM hashing [27]. Our
test result shows that, to compute a hash value for a 4 KB
memory page, the algorithm takes 7.3ms. To verify the page
table address, we simply compare each entry item in the
table by value. We only check the kernel page table, and at
most 257 4 KB-size pages we need to compare—however, in
practice about 10 pages suffice. Thus, compared to the fetch-
ing stage, the overhead for comparison is much lower—less
than 2ms each time. Second, for data reconstruction, the
main overhead made at stage of iterative searching physical
memory by multiple DMA accesses. The time spent on
checking stages is to read the fixed offset in the memory
dump, which takes less than 1ms each time.

6.2.3 Transmission Overhead

The third operation we measure is data transmission. In
general, we send an introspection command from the
remote machine and receive the verification result. We use
one small message to pass the data (< 1KB), taking 228 ms
on average. When considering a memory dump Q.e,
> 64 KB) to the Remote Machine, we divide the data into
multiple packets and transmit them into multiple messages.
We find that transmitting 64 KB data takes 4.9s and that this
duration grows linearly with the transmit size.

6.2.4 Efficiency Evaluation Summary

Overall, a typical introspection cycle contains the above
three logical operations. Table 3 summarizes the time spent
in each operation and in total. For instance, the system call
table or the SMRAM (unlocked®), the introspection takes
less than 1.5 seconds to acquire the integrity status. For
application level monitoring (e.g., searching the iomem

6. Even when SMRAM is locked, using our HECI-based communi-
cation channel, we incur roughly 17 ms to perform end-to-end integrity
checking.


Léon GALL

Léon GALL

Léon GALL

Léon GALL


1930 IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021
TABLE 3
The Performance of the Complete Introspection About NIGHTHAWK
Object Size (KB) Data Fetching Time (s) Comparison Time (s)  Data Transmission Time (s)  Total Time (s)
System call table 4 0.2640.010 0.007+0.001 0.224+0.030 0.50+0.030
kvm_intel.ko 336 1.31+0.130 0.601£0.010 0.231+0.030 2.1440.150
PDE 4 0.5240.010 0.007+0.001 0.230+0.030 0.76+0.040
SMRAM (unlocked) 128 0.39+0.150 0.320+0.005 0.228+0.030 0.9440.200
iomem data 2.80 20.6+0.80 0.571+0.080 0.231£0.030 21.440.90

data), we incur more time overhead due to multiple physi-
cal memory traversals totaling about 20s. Fortunately, this
performance can be substantially improved since the IME
chip was updated in new x86 chipsets.

6.2.5 Performance of the IME Core

We run experiments to investigate the computational capa-
bilities of the IME. In particular, we develop a CPU speed
testing benchmark, which we inject into the memcpy func-
tion in the IME. That is, this benchmark executes every time
memcpy is invoked. The testing program is a nested-loop
(inner loop: n, outer loop: m) function with 15 instructions
in the inner loop such that n x m = 10°. We read the time
stamp counter at the beginning and the end of the bench-
mark — denoted as 77 and 75, and thus approximate the
average speed of the IME CPU using the formula v =

) We sweep 1= 100,200,...,10000 and m =

100,200, 1000; the experimental result shows that the IME
CPU executes approximately 15 million instructions each
second. Compared to the target system’s main CPU (which
can execute billions of instructions per second), the IME
CPU has a significantly lower performance. However, in lat-
est system, Intel has switched ARC chip to using their own
x86 Quark microcontroller. The new CPU speed can reach
at 412 DMIPS (generally 412 million instructions each sec-
ond), this should be much more higher than our testbed
and it keeps as a further work.

7 RELATED WORK

TrustedvExecutionnEnvironmernt. Trusted execution environ-
ments (TEEs) are intended to provide a safe haven for pro-
grams to execute sensitive tasks. Typically, software-based
approaches leverage virtualization. Terra [40] runs applica-
tions with diverse security requirements in different virtual
machines managed by a trusted Virtual Machine Monitor
so that compromised applications do not interfere with
others. Some hypervisor-based introspection approaches
like SecVisor [41] can also provide a small TCB, but still
incurs significant overhead, whereas NIGHTHAWK does not.
In contrast, hardware-based approaches rely on different
hardware features. such as external hardware-based periph-
erals [5], ARM TrustZone [42], Intel SMM [43], Intel
SGX [44], [45], and AMD memory encryption technol-
ogy [46]. ZERO-KERNEI [47] designed secure GPU based
mechanism to defense against the kernel privileged attacker
with minor overhead. vIZ [48] is the representative work to
use ARM TrustZone to virtualize TEE for multi-guest OS
protection. HyperCheck [11] employs Intel SMM to build a
TEE and monitor hypervisor integrity. Chevalier et al. [49]
proposed using a co-processor to monitor SMM code

behavior, but it requires modifying the SMM code for
instrumentation which is implemented with QEMU and
simulation. In this paper, we build our TEE using the IME,
and use it to monitor the host system.

WorksomlitelIMIE. By design [23], the IME has full access to
the system’s memory, peripheral devices, and networks.
Because of this high privilege, the IME has attracted attention
from security researchers [50], [51], [52]. For example, to ana-
lyze the code in the IME, Sklyarov [50] proposed an SPI-based
approach to fetch the IME firmware from the storage flash
chip. In other work, Sklyarov [51] presented a static analysis
approach in which he was able to distinguish the different
functions in the IME via matching the signature of each code
module. In addition, security vulnerabilities in the IME were
also discovered [12], [13]. Tereshkin et al. [13] proposed a
memory remapping approach which enables the host CPU to
access the IME memory. Ermolov ef al. [12] revealed multiple
buffer overflow vulnerabilities in the IME, which allows local
users to perform a privilege-escalation attack and run arbi-
trary code. Due to the powerful but uncontrolled function in
IME, some researchers [53], [54], [55] tried to disable the IME
or confine its ability to interact with the host system, yet do
not cause any disruption to the normal operation in the host
system. In this paper, we demonstrate that defenders can
leverage IME to introspect the host system.

8 DiscussION

Security Issues. In our prototype, we implement NIGHTHAWK Via
coderinjectionintortherlME. It is possible to be compromised
by new attacks despite mitigating the interface for code injec-
tion. The security arms race will persist, however the IME has
arreasonablysmallnTCB. NIGHTHAWK is able to defense the
SMM attacks which intend to access the locked SMRAM by
reconfiguring the SMM related registers. Howevermifuthe
SMM code can be manipulated directly by attackers, SMM
based functions like CR3 reading operation may not be
trusted but we can defense it by integrating the work [49].
DMA Access. The introspection workflow in NIGHTHAW-
kleverages uDMA to fetch host memory. If the xDMA chan-
nel from the IME is blocked (e.g., by I/OMMU [56)), it will
prevent NIGHTHAWK from reading the Target Host memory.
Fortunately, [/OMMUncantberconfigured torallow this
access in the BIOS. Moreover, NIGHTHAWK is able to check
therly OMMUrconfiguration similar to IOCheck [57]. Note
that the IME accessing reserved 16 MB memory at the top of
DRAM does not go through the Intel VT-d remapping (.e.,
I/OMMU implementation of Intel) [26], thus, I/OMMU
cannot block IME from accessing its inner memory.
Performance. The performance of NIGHTHAWK heavily
depends on the hardware design of the IME. In this paper,


Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL


ZHOU ETAL.: COPROCESSOR-BASED INTROSPECTION FRAMEWORK VIA INTEL MANAGEMENT ENGINE

our testbed’s IME suffered from low performance (Section 6.2)
mainly due to a slow ME processor speed. However, this situ-
ation can be improved with a powerful chipset [12]. In addi-
tion, we reverse engineered our testbed’s IME to inject code.
This approach may not have resulted in the best performance
(i.e., there may have been a higher-performance method of
customizing IME code).

9 CONCLUSION

In this paper, we presented NIGHTHAWK, a transparent intro-
spection framework for verifying the memory integrity of a
Target Machine and monitoring the state of runtime host sys-
tem. It leverages Intel ME, an existing co-processor running
aside with the main CPU with ring -3 privilege, so that our
approach has a minimal TCB, is capable to detect low-level
system software attacks, and introduces minimal overhead.
To demonstrate the effectiveness of our system, we imple-
mented a prototype of NiGHTHAWK with two physical
machines. The experimental results show that: 1) NIGHTHAWK
is able to detect real-world attacks against OS kernels, Xen-
and KVM-based hypervisors, and System Management
RAM. 2) NIGHTHAWK is able to monitor the state of runtime
host system including executed processes, physical memory
usage, critical information from Proc file system. The experi-
mental results show NIGHTHAWK verifies the integrity of target
host system with a low performance overhead, and effectively
monitor the state of runtime host system in transparency.

ACKNOWLEDGMENTS

This work was supported by the National Natural Science
Foundation of China under Grant 62002151.

REFERENCES

[1] National Institute of Standards, NIST, “National vulnerability
database,” 2018. [Online]. Available: http://nvd.nist.gov

[2] Github, “RootKits list,” 2018, [Online]. Available: https://github.
com/d30sal/RootKits-List-Download

[3] X.Jiang, X. Wang, and D. Xu, “Stealthy malware detection through
vmm-based out-of-the-box semantic view reconstruction,” in Proc.
14th ACM Conf. Comput. Commun. Secur., 2007, pp. 128-138.

[4] S. T. Jones, A. C. Arpaci-Dusseau, and R. H. Arpaci-Dusseau,
“VMM-based hidden process detection and identification using
Lycosid,” in Proc. ACM SIGPLAN/SIGOPS Int. Conf. Virtual Execu-
tion Environ., 2008, pp. 91-100.

[5] H.Moon, H. Lee, J. Lee, K. Kim, Y. Paek, and B. B. Kang, “Vigilare:
Toward snoop-based kernel integrity monitor,” in Proc. ACM
Conf. Comput. Commun. Secur., 2012, pp. 28-37.

[6] N. L. Petroni Jr.,, T. Fraser, ]. Molina, and W. A. Arbaugh,
“Copilot-A coprocessor-based kernel runtime integrity monitor,”
in Proc. USENIX Secur. Symp., 2004, pp. 179-194.

[7] F. Zhang, K. Leach, A. Stavrou, H. Wang, and K. Sun, “Using
hardware features for increased debugging transparency,”
in Proc. IEEE Symp. Secur. Privacy, 2015, pp. 55-69.

[8] M. Malka, N. Amit, M. Ben-Yehuda, and D. Tsafrir, “rIOMMU:
Efficient IOMMU for I/O devices that employ ring buffers,”
in ACM SIGPLAN Notices, vol. 50, no. 4, pp. 355-368, 2015.

[9] C.Spensky, H. Hu, and K. Leach, “LO-PHI: Low-observable phys-
ical host instrumentation for malware analysis,” in Proc. Netw.
Distrib. Syst. Secur. Symp., 2016, pp. 1-15.

[10] A.M. Azab, P. Ning, Z. Wang, X. Jiang, X. Zhang, and N. C. Skal-
sky, “HyperSentry: Enabling stealthy in-context measurement of
hypervisor integrity,” in Proc. ACM Conf. Comput. Commun. Secur.,
2010, pp. 38-49.

[11] F.Zhang, J. Wang, K. Sun, and A. Stavrou, “Hypercheck: A hard-
ware-assistedintegrity monitor,” IEEE Trans. Dependable Secure
Comput., vol. 11, no. 4, pp. 332-344, Jul./ Aug. 2014.

1931

[12] M. Ermolov and M. Goryachy, “How to hack a turned-off com-
puter, or running unsigned code in intel management engine,”
in Proc. Black Hat Eur., 2017, pp. 1-16.

[13] A. Tereshkin and R. Wojtczuk, “Introducing ring-3 rootkits,”
in Proc. Black Hat USA, 2009, pp. 1-85.

[14] L. Zhou, ]J. Xiao, K. Leach, W. Weimer, F. Zhang, and G. Wang,
“Nighthawk: Transparent system introspection from ring-3,”
in Eur. Symp. Res. Comput. Secur., 2019, pp. 217-238.

[15] H. I. Gael, “Intel AMT and the intel ME,” 2009. [Online]. Avail-
able: https://.intel.com/en-us/blogs/2011/12/14/intelr-amt-
and-the-intelr-me

[16] Intel, “Innovation Engine,” 2015. [Online]. Available: https:/ /en.
wikichip.org/wiki/intel /innovation_engine

[17] Intel Corporation, “Intel trusted execution technology (intel txt):
Software development guide,” 2017. [Online]. Available: https://
www.intel.com/content/dam/www /public/us/en/
documents/guides/intel-txt-software-development-guide.pdf

[18] R.Wojtczuk and J. Rutkowska, “Attacking SMM Memory via Intel
CPU Cache Poisoning,” invisiblethingslab.com. https://blog.
invisiblethings.org/2009/03/19/attacking-smm-memory-via-
intel-cpu.html

[19] ]. Yao, “SMM protection in EDK II,” 2017. [Online]. Available:
https:/ /uefi.org/sites/default/files /resources /
Jiewen%20Yao0%20-

%20SMM %20Protection%20in%20%20EDKII_Intel.pdf

[20] Open Source Project, “Meshcommander,” 2019, [Online]. Avail-
able: http:/ /www.meshcommander.com

[21] Synopsys, “embARC,” 2019. [Online]. Available: https://embarc.
org/embarc_osp/doc/build /html/arc/arc.html

[22] The Fedora Project, “TBoot,” 2018. [Online]. Available: https://
sourceforge.net/projects/tboot, 2018.

[23] X.Ruan, Platform Embedded Security Technology Revealed: Safeguard-
ing the Future of Computing with Intel Embedded Security and Man-
agement Engine. New York, NY,USA: Apress, 2014.

[24] B.Jain, M. B. Baig, D. Zhang, D. E. Porter, and R. Sion, “SoK: Intro-
spections on trust and the semantic GAP,” in Proc. IEEE Symp.
Secur. Privacy, 2014, pp. 605-620.

[25] D.Jang, H. Lee, M. Kim, D. Kim, D. Kim, and B. B. Kang, “ATRA:
Address translation redirection attack against hardware-based
external monitors,” in Proc. ACM SIGSAC Conf. Comput. Commun.
Secur., 2014, pp. 167-178.

[26] Intel Corporation, “Intel 3 series express chipset family,” 2007.
[Online]. Available: https:/ /www.intel.com/Assets/PDF/
datasheet/316966.pdf

[27] A. Partow, “General purpose hash function algorithms,” 2018.
[Online].  Available: http://www.partow.net/programming/
hashfunctions

[28] Y. Cheng, X. Fu, X. Du, B. Luo, and M. Guizani, “A lightweight
live memory forensic approach based on hardware
virtualization,” Inf. Sci., vol. 379, pp. 2341, 2017.

[29] L.Cui, Z. Hao, L. Li, and X. Yun, “SnapFiner: A page-aware snap-
shot system for virtual machines,” IEEE Trans. Parallel Distrib.
Syst., vol. 29, no. 11, pp. 2613-2626, Nov. 2018.

[30] X.Zhang, X. Wang, X. Bai, Y. Zhang, and X. Wang, “OS-level side
channels without procfs: Exploring cross-app information leakage
on i0S,” in Proc. Symp. Netw. Distrib. Syst. Secur., 2018, pp. 1-15.

[31] F. Pagani and D. Balzarotti, “Back to the whiteboard: A princi-
pled approach for the assessment and design of memory
forensic techniques,” in Proc. Conf. USENIX Secur. Symp., 2019,
pp. 1751-1768.

[32] “Adore-ng,” 2018.
trimpsyw/adore-ng/

[33] G. Pék, Z. Lazar, Z. Varnagy, M. Félegyhdazi, and L. Buttyan,
“Membrane: A posteriori detection of malicious code loading by
memory paging analysis,” in Eur. Symp. Res. Comput. Secur., 2016,
pp- 199-216.

[34] ]. Stuettgen, “On the viability of memory forensics in compro-
mised environments,” Technische Fakulta Univ. Erlangen-Nur-
emberg, Erlangen, Germany, 2015.

[35] G. Combs, “Wireshark,” 2019, [Online]. Available: https://www.
wireshark.org

[36] L. Duflot, O. Levillain, B. Morin, and O. Grumelard, “Getting into
the SMRAM: SMM Reloaded,” in Proc. CanSec West, 2009, pp. 1-47.

[371 F. Zhang, K. Leach, K. Sun, and A. Stavrou, “SPECTRE:
A dependable introspection framework via system management
mode,” in Proc. Ann. IEEE/IFIP Int. Conf. Dependable Syst. Netw.,
2013, pp. 1-12.

[Online]. Available: https://github.com/


http://nvd.nist.gov
https://github.com/d30sa1/RootKits-List-Download
https://github.com/d30sa1/RootKits-List-Download
https://.intel.com/en-us/blogs/2011/12/14/intelr-amt-and-the-intelr-me
https://.intel.com/en-us/blogs/2011/12/14/intelr-amt-and-the-intelr-me
https://en.wikichip.org/wiki/intel/innovation_engine
https://en.wikichip.org/wiki/intel/innovation_engine
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://www.intel.com/content/dam/www/public/us/en/documents/guides/intel-txt-software-development-guide.pdf
https://blog.invisiblethings.org/2009/03/19/attacking-smm-memory-via-intel-cpu.html
https://blog.invisiblethings.org/2009/03/19/attacking-smm-memory-via-intel-cpu.html
https://blog.invisiblethings.org/2009/03/19/attacking-smm-memory-via-intel-cpu.html
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
https://uefi.org/sites/default/files/resources/Jiewen%20Yao%20-%20SMM%20Protection%20in%20%20EDKII_Intel.pdf
http://www.meshcommander.com
https://embarc.org/embarc_osp/doc/build/html/arc/arc.html
https://embarc.org/embarc_osp/doc/build/html/arc/arc.html
https://sourceforge.net/projects/tboot, 2018.
https://sourceforge.net/projects/tboot, 2018.
https://www.intel.com/Assets/PDF/datasheet/316966.pdf
https://www.intel.com/Assets/PDF/datasheet/316966.pdf
http://www.partow.net/programming/hashfunctions
http://www.partow.net/programming/hashfunctions
https://github.com/trimpsyw/adore-ng/
https://github.com/trimpsyw/adore-ng/
https://www.wireshark.org
https://www.wireshark.org
Léon GALL


1932

[38]
[39]

[40]

[41]

[42]

[43]

[44]

[45]

[46]

[471

[48]

[49]

[50]

[51]

[52]

[53]

[54]

[55]

[56]

[57]

IEEE TRANSACTIONS ON DEPENDABLE AND SECURE COMPUTING, VOL. 18, NO. 4, JULY/AUGUST 2021

Github, “ToorKit,” 2015. [Online]. Available: https://github.
com/deb0ch/toorkit

J. D. McCalpin, “Stream,” 2018. [Online]. Available: http:/ /www.
cs.virginia.edu/stream/ref. html

T. Garfinkel, B. Pfaff, J. Chow, M. Rosenblum, and D. Boneh,
“Terra: A virtual machine-based platform for trusted computing,”
in Proc. ACM SIGOPS Operating Syst. Rev., 2003, pp. 193-206.

A. Seshadri, M. Luk, N. Qu, and A. Perrig, “SecVisor: A tiny
hypervisor to provide lifetime kernel code integrity for commod-
ity OSes,” in Proc. ACM Symp. Operating Syst. Princ., 2007,
pp- 335-350.

ARM Ltd., “ARM Security Technology - Building a Secure System
using TrustZone Technology,” 2009. [Online]. Available: http://
infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-
009492¢/PRD29-GENC-009492C _trustzone_security whitepaper.
pdf

Intel, “64 and IA-32 Architectures Software Developer’s Manual,”
2018. [Online]. Available: http:/ /www.intel.com/content/ www/
us/en/processors/architectures-software-developer-manuals.
html

M. Hoekstra, R. Lal, P. Pappachan, C. Rozas, V. Phegade, and
J. del Cuvillo, “Using innovative instructions to create trustwor-
thy software solutions,” in Proc. Workshop Hardware Architectural
Support Secur. Privacy, 2013, Art. no. 11.

H. Wang et al., “Towards memory safe enclave programming with
rust-SGX,” in Proc. ACM SIGSAC Conf. Comput. Commun. Secur.
ACM, 2019, pp. 2333-2350.

D. Kaplan, J. Powell, and T. Woller, “AMD memory encryption,
White Paper,” Apr. 2016. [Online]. Available: http://amd-dev.
wpengine.netdna-cdn.com/wordpress/media/2013/12/
AMD_Memory_Encryption_Whitepaper v7-Public.pdf

O. Kwon, Y. Kim, J. Huh, and H. Yoon, “ZeroKernel: Secure
context-isolated execution on commodity GPUs,” IEEE Trans.
Dependable Secure Comput., to be published, doi: 10.1109/
TDSC.2019.2946250.

Z.Hua, J. Gu, Y. Xia, H. Chen, B. Zang, and H. Guan, “vTZ: Virtu-
alizing ARM trustzone,” in Proc. Conf. USENIX Secur. Symp., 2017,
pp- 541-556.

R. Chevalier, M. Villatel, D. Plaquin, and G. Hiet, “Co-processor-
based behavior monitoring: Application to the detection of attacks
against the system management mode,” in Proc. 33rd Annu.
Compu. Secur. Appl. Conf., 2017, pp. 399-411.

D. Sklyarov, “Intel ME: Flash file system explained,” in Proc. Black
Hat Europe, 2017, pp. 1-32.

O. Sklyarov, “Intel ME: The way of the static analysis,” in Proc.
TROOPERS17,2017, pp. 1-51.

P. Stewin and I. Bystrov, “Understanding DMA malware,” in
Proc. Int. Conf. Detection Intrusions Malware, Vulnerability Assess-
ment, 2012, pp. 21-41.

N. Corna, “ME cleaner: Tool for partial deblobbing of Intel ME/
TXE firmware images,” 2017. [Online]. Available: https://github.
com/corna/me._cleaner

M. Ermolov and M. Goryachy, “Disabling Intel ME 11 via undocu-
mented mode,” 2017. [Online]. Available: http://blog.ptsecurity.
com/2017/08/disabling-intel-me.html

Persmule, “Neutralize ME firmware on SandyBridge and Ivy-
Bridge platforms,” 2016. [Online]. Available: https://
hardenedlinux.github.io/firmware/2016/11/17/

neutralize ME_firmware_on_sandybridge and_ivybridge.html
D. Abramson et al. “Intel Virtualization Technology for Directed
1/0,” Intel Technol. ]., vol. 10, no. 3, pp. 179-192, 2006.

F. Zhang, H. Wang, L. Kevin, and A. Stavrou, “A framework to
secure peripherals at runtime,” in Proc. Eur. Symp. Res. Comput.
Secur., 2014, pp. 219-238.

Lei Zhou received the PhD degree in computer
science from Central South University. He is cur-
rently a postdoctoral fellow with the Department
of Computer Science and Engineering, Southern
University of Science and Technology. His pri-
mary research interests include x86 systems
security, including trustworthy execution, hard-
ware-assisted security, and memory forensics.

Fengwei Zhang received the PhD degree in
computer science from George Mason University.
He is currently an associate professor with the
Department of Computer Science and Engineer-
ing, Southern University of Science and Technol-
ogy. His primary research interests include
systems security, with a focus on trustworthy exe-
cution, hardware-assisted security, debugging
transparency, transportation security, and plausi-
ble deniability encryption.

Jidong Xiao received the PhD degree in com-
puter science from the College of William and
Mary. He is currently an assistant professor with
the Department of Computer Science, Boise
State University. His research interests include
cyber security, with a particular emphasis on
operating system security and virtualization/cloud
security. He has approximately six years industry
experience, including various roles at Intel,
Symantec, Nokia, and Juniper.

Kevin Leach received the PhD degree in com-
puter engineering from the University of Virginia.
He is currently a senior research fellow with the
Computer Science and Engineering Division, Uni-
versity of Michigan—Ann Arbor. His research
interests include systems security, specifically the
debugging transparency problem, though occa-
sionally work on conversational artificial intelli-
gence, program analysis, medical informatics,
and big data applications.

Westley Weimer received the PhD in computer
science from the University of California, Berke-
ley. He is currently a professor with the Computer
Science and Engineering Division, University of
Michigan—Ann Arbor. His main research inter-
ests include consciousness, time, and advancing
software quality by using both static and dynamic
programming language approaches, and auto-
matic or minimally guided techniques that can
scale and be applied easily to large, existing
programs.

Xuhua Ding received the PhD degree in com-
puter science from the University of Southern
California. He is currently an associate professor
with the School of Information Systems, Singa-
pore Management University. His research inter-
ests include network and system security, applied
cryptography, trustworthy systems for data pro-
tection, to design the trustworthy systems in com-
modity x86, and ARM platforms to counter kernel
space attacks.

Guojun Wang received the PhD degree in com-
puter science from Central South University. He
is currently a professor with the School of Com-
puter Science and Cyber Engineering, Guangz-
hou University, China. His research interests
include artificial intelligence, big data, cloud com-
puting, Internet of Things, blockchain, trustwor-
thy/dependable computing, network security,
privacy preserving, recommendation systems,
smart cities, and medical information systems.

> For more information on this or any other computing topic,
please visit our Digital Library at www.computer.org/csdl.


https://github.com/deb0ch/toorkit
https://github.com/deb0ch/toorkit
http://www.cs.virginia.edu/stream/ref.html
http://www.cs.virginia.edu/stream/ref.html
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://infocenter.arm.com/help/topic/com.arm.doc.prd29-genc-009492c/PRD29-GENC-009492C_trustzone_security_whitepaper.pdf
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://www.intel.com/content/www/us/en/processors/architectures-software-developer-manuals.html
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://amd-dev.wpengine.netdna-cdn.com/wordpress/media/2013/12/AMD_Memory_Encryption_Whitepaper_v7-Public.pdf
http://dx.doi.org/10.1109/TDSC.2019.2946250
http://dx.doi.org/10.1109/TDSC.2019.2946250
https://github.com/corna/me_cleaner
https://github.com/corna/me_cleaner
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
http://blog.ptsecurity.com/2017/08/disabling-intel-me.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html
https://hardenedlinux.github.io/firmware/2016/11/17/neutralize_ME_firmware_on_sandybridge_and_ivybridge.html


<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /sRGB
  /DoThumbnails true
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Algerian
    /Arial-Black
    /Arial-BlackItalic
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BaskOldFace
    /Batang
    /Bauhaus93
    /BellMT
    /BellMTBold
    /BellMTItalic
    /BerlinSansFB-Bold
    /BerlinSansFBDemi-Bold
    /BerlinSansFB-Reg
    /BernardMT-Condensed
    /BodoniMTPosterCompressed
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /BritannicBold
    /Broadway
    /BrushScriptMT
    /CalifornianFB-Bold
    /CalifornianFB-Italic
    /CalifornianFB-Reg
    /Centaur
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /Chiller-Regular
    /ColonnaMT
    /ComicSansMS
    /ComicSansMS-Bold
    /CooperBlack
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FootlightMTLight
    /FreestyleScript-Regular
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /HarlowSolid
    /Harrington
    /HighTowerText-Italic
    /HighTowerText-Reg
    /Impact
    /InformalRoman-Regular
    /Jokerman-Regular
    /JuiceITC-Regular
    /KristenITC-Regular
    /KuenstlerScript-Black
    /KuenstlerScript-Medium
    /KuenstlerScript-TwoBold
    /KunstlerScript
    /LatinWide
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaBright
    /LucidaBright-Demi
    /LucidaBright-DemiItalic
    /LucidaBright-Italic
    /LucidaCalligraphy-Italic
    /LucidaConsole
    /LucidaFax
    /LucidaFax-Demi
    /LucidaFax-DemiItalic
    /LucidaFax-Italic
    /LucidaHandwriting-Italic
    /LucidaSansUnicode
    /Magneto-Bold
    /MaturaMTScriptCapitals
    /MediciScriptLTStd
    /MicrosoftSansSerif
    /Mistral
    /Modern-Regular
    /MonotypeCorsiva
    /MS-Mincho
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /NiagaraEngraved-Reg
    /NiagaraSolid-Reg
    /NuptialScript
    /OldEnglishTextMT
    /Onyx
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Parchment-Regular
    /Playbill
    /PMingLiU
    /PoorRichard-Regular
    /Ravie
    /ShowcardGothic-Reg
    /SimSun
    /SnapITC-Regular
    /Stencil
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /TempusSansITC
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanMTStd
    /TimesNewRomanMTStd-Bold
    /TimesNewRomanMTStd-BoldCond
    /TimesNewRomanMTStd-BoldIt
    /TimesNewRomanMTStd-Cond
    /TimesNewRomanMTStd-CondIt
    /TimesNewRomanMTStd-Italic
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /VinerHandITC
    /Vivaldii
    /VladimirScript
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryStd-Demi
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 150
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages true
  /ColorImageDownsampleType /Bicubic
  /ColorImageResolution 150
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 150
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages true
  /GrayImageDownsampleType /Bicubic
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.40
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages true
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
    /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
    /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
    /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
    /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
    /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
    /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
    /ENU (Use these settings to create PDFs that match the "Suggested"  settings for PDF Specification 4.0)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


