AdaCore TecH paper

NVIDIA:

Using RecordFlux and SPARK to
Implement SPDM for Secure Computing

https://www.adacore.com

NVIDIA: Using RecordFlux and SPARK to
Implement SPDM for Secure Computing

One of the basic requirements for enterprise platform security is device attestation:
trustworthy evidence of a device’s identity and security properties. Theindustry standard
Security Protocol and Data Model (SPDM) addresses this need, defining message formats
and session behaviors that device suppliers can implement for attestation.

AdaCore partnered with NVIDIA in a project that has implemented a subset of the SPDM Version
1.1.0 specification; the resulting library will be integrated into the firmware of microcontrollers and
microprocessors that NVIDIA designs. AdaCore’s RecordFlux toolset was used to formally specify the
message structure and protocol behaviors in RecordFlux's Domain Specific Language (DSL) and to
generate source code in the mathematically analyzable SPARK subset of Ada. AdaCore’s SPARK Pro
toolset was then used to prove memory safety (no buffer underflow / overflow), the absence of integer
overflow, and other integrity properties of the generated code, as well as specific functional properties
in several critical components. The SPARK code was subsequently compiled by AdaCore's GNAT Pro
Ada tool suites targeted to the RISC-V and Arm architectures.

The SPDM project has expanded NVIDIA's usage of the Ada/SPARK technology and has shown the
benefits of using the RecordFlux and SPARK Pro tool suites to design and implement complex high-
assurance code for mission-critical applications. The project gave NVIDIA higher confidence in integrity
properties of the resulting firmware than would have been achieved using traditional manual methods
or an SPDM technology based on a language with less extensive built-in checking. And using the
RecordFlux formalism to capture SPDM semantics resulted in a precise and unambiguous specification,
avoiding potential misunderstandings of natural language descriptions.

SPDM

As stated in its Introduction section, “The Security Protocol and Data Model (SPDM) Specification
defines messages, data objects, and sequences for performing message exchanges over a variety
of transport and physical media. The description of message exchanges includes authentication
of hardware identities, measurements for firmware identities and session key exchange protocols
to enable confidentiality and integrity protected data communication. The SPDM allows efficient
access to low-level security capabilities and operations.” The standard was developed and is
being maintained by DMTF (dmtf.org), a not-for-profit association comprising major players in
the device and telecommunications industries. DMTF creates open manageability standards for
IT infrastructure.

SPDM messages are exchanged between two endpoints, known as a Requester and a Responder,
following a specific sequential protocol. The flow of messages is shown in the SPDM standard,
from which the accompanying figure is derived, and comprises several kinds of messages:

AdaCore Technical Paper February 2023

Léon GALL

Capability discovery and
negotiation

. The GET_VERSION / VERSION exchange — © Responder

establishes the major SPDM version to be |

used for subsequent messages. ‘7(76&{%?3]6&”‘13]‘

+ The GET_CAPABILITIES / CAPABILITIES ‘ e ‘

exchange allows a Requester to discover the !

Responder’'s SPDM capabilities (for example, ‘ . GET_CAPABILITIES jj
support for optional message exchanges). e CAPABILITIES

|

* The NEGOTIATE_ALGORITHMS A :
ALGORITHMS exchange allows the Requester . _NEGOTIATE_ALGORITHMS .

— ALGORITHMS

and Responder to agree on the cryptographic

lgantingms 1o be vsee, [supporcd AN

: ‘ | GET_DIGESTS | 1k

. . —<«——— DIGESTS :D

Responder identity N B o
authentication, if supported / 3 L et

: - GET_CERTIFICATE ——— ‘
necessary : e ooz ¥

- The GET DIGESTS / DIGESTS exchange allows =

the Requester to retrieve hashes of the . CHALLENGE | L
Responder’s certificate chains; these hash . . CHALLENGE_AUTH | §
values (digests) can be used to determine | T e T
whether the certificate chains have changed. ! :
: . GET_MEASUREMENTS jj ;
| | Pemeeeeeccececccceeeeeeeeaay '
+ The GET_CERTIFICATE/ CERTIFICATE exchange ; —— MEASUREMENTS] o
allows the Requester to retrieve one or more !
h |
certificate chains from the Responder, to S o exonanee T :
establish trust in the Responder’s identity. e

+ The CHALLENGE / CHALLENGE_AUTH
exchange allows the Requester to verify
that the Responder knows the private key
associated with a certificate chain.

<—— Mutual Authentication ——>

Firmware measurements,
if supported

+ The GET_MEASUREMENTS / MEASUREMENTS
exchange allows the Requester to determine
the configuration or other characteristics of
the Responder, for example whether debug
restrictions are in place.

Key agreement for secure channel establishment, if supported

* The KEY_EXCHANGE / KEY_EXCHANGE_RSP message pair is used to authenticate the Responder (or
both parties), decide on cryptographic parameters, and establish shared keying data.

+ The FINISH / FINISH_RSP exchange completes the handshake initiated by a KEY_EXCHANGE message.

The SPDM standard defines the detailed binary structure for each kind of message, specifying
the size and interpretation of each field. The format is complex, with some messages containing
interdependent fields and/or fields that are conditionally present.

AdaCore Technical Paper February 2023

RecordFlux

The AdaCore RecordFlux technology consists of
a Domain-Specific Language (DSL) for precisely
defining the structure of binary messages, and a
toolset for generating formally verifiable code for
parsers, message generators, and protocol sessions.
The produced source code is in the SPARK language,
an Ada subset that is amenable to mathematical
verification analysis by AdaCore’s SPARK Pro toolset.
SPARK Pro can prove a range of program properties,
ranging from valid information flow and memory
safety, up to full functional correctness.

A simple but representative example to illustrate the
RecordFlux DSL notation is a TLV (“Tag-Length-Value”)
message, which has two valid formats:

A structure with three components
The message structure can be

+ An 8-bit Tag field with value 1, indicating that two depicted graphically: I

fields immediately follow,
« A 16-bit Length field, and

+ A Vvalue field (the payload), whose length (in 8-bit
bytes) is specified by the Length field.

A structure with one component

« An 8-bit Tag field with value 3, indicating that no
further fields are present.

A message with any other content in its Tag field is
invalid.

The structure of messages is often non-linear because
of optional fields. For this reason the RecordFlux DSL
message syntax uses a graph-based representation (a
directed acyclic graph). The order of fields is defined by
then clauses, which are also used to state conditions
and properties for the following field.

The TLV structure is specified as follows in RecordFlux,
using an Ada-like notation. The valid Tag field contents
are represented mnemonically by enumeration values
Msg Data (1)andMsg Error (3).

TLV messages can carry Value fields of different types,
and this flexibility is reflected in the special RecordFlux
type Opaque. The actual type for a specific message
will be specified in application code that generates
or processes the message. The interpretation of an
opaque field can also be specified in the RecordFlux
language using a separate message type and a
RecordFlux feature known as refinement.

AdaCore Technical Paper February 2023

Léon GALL

Léon GALL

Léon GALL

package TLV is

type Tag Type is (Msg Data => 1, Msg Error => 3) with Size => §;
type Length Type is range 0 .. (2 ** 16) - 1 with Size => 16;

type Raw is
message
Length : Length Type
then Value
with Size => Length * 8;
Value : Opaque;
end message;

type Message Type is
message
Tag : Tag Type
then Length
if Tag = Msg Data
then null
if Tag = Msg Error;
Length : Length Type
then Value
with Size => Length * 8;
Value : Opaque;
end message;
end TLV;

Message processing sessions can typically be represented by a state machine with well-defined
actions and transitions for each state. For the TLV example, assume that valid messages (i.e., those
with Tag = Msg Data) are processed by simply retransmitting the raw data that the message
contains. RecordFlux uses Ada’s syntax for generic templates to model this session behavior,
reflecting the generic nature of sessions: the user must define the semantics of the formal functions
and connect the channels when integrating the code that was generated for the session.

AdaCore Technical Paper February 2023

with TLV;
package TLV Responder is
generic
Network : Channel with Readable, Writable;
with function Plat Create Response
(Message : TLV::Message Type) return TLV::Raw;
session TLV Session is
Request : TLV::Message Type;
Response : TLV::Message Type;
begin
state Idle is
begin
Network’Read (Request) ;
transition
goto Prepare Response
if Request.Tag = TLV::Msg Data
goto Send Error
end Idle;

state Prepare Response is
Raw : TLV::Raw;

begin
Raw := Plat Create Response (Request);
Response := TLV::Message Type’ (Tag => TLV::Msg Data,
Length => Raw.Length,
Value => Raw.Value);
transition

goto Send Response
exception

goto null
end Prepare Response;

state Send Response is
begin

Network’Write (Response);
transition

goto Idle
end Send Response;

state Send Error is
begin
Network’Write (Request) ;
transition
goto null
end Send Error;
end TLV Session;
end TLV Responder;

The RecordFlux toolset can be used to generate Ada/SPARK source code from the specifications.
This source code is then available to applications that need to process TLV messages and prove

properties of the resulting code.

AdaCore Tecnical Paper

February 2023

The Challenge

A modern enterprise platform is typically composed of a heterogeneous set of both reprogrammable
and fixed-logic components and presents a rich target environment for malevolent actors. Device
suppliers need to anticipate and thwart potential threats such as message tampering and confidentiality
breaching.

A prerequisite for platform security is a secure authentication mechanism to establish trust
between devices servicing requests for data (“Requesters”) and devices responding to such requests
(“Responders”). The Security Platform and Data Model (SPDM) specification addresses this need, but
the message formats and message exchange protocols are complex. NVIDIA's challenge: implement
a chosen subset of SPDM functionality, with high confidence that the implementation is provably
correct (for example, knowing that their application is memory safe and would never raise a run-
time exception), while staying within tight device storage and run-time memory constraints for the
generated code. Achieving a high assurance level is critical, since the devices involved in attestation
are roots of trust. They need to be bug free in order to provide confidence in the measurements that
they report.

The Decision

NVIDIA has been using AdaCore's SPARK language and toolset to develop ultra-high reliability
firmware in other contexts (see https://www.adacore.com/case-studies for more information), and
their success in those efforts gave them a natural incentive to use the SPARK technology to implement
SPDM. However, the complexities of the SPDM message formats, for example the interdependencies
among message fields, are not easily modeled in the data definition facilities of a general-purpose
language. Higher-level abstraction constructs in a domain-specific language oriented towards the
specialized requirements of message communication would make the SPDM implementation more
straightforward to develop and maintain, and allow for more rigorous verification.

AdaCore’s RecordFlux product fulfills this need:

+ lItdefines a DSL that can precisely express the structure of complex messages with interdependent
and varying-size fields, as well as the logic of requester/responder protocols.

« It provides tools to generate SPARK code for generating and/or parsing such messages and for the
protocol behavior (a finite-state machine).

Security properties of the resulting code can then be formally verified by the SPARK toolset. A benefit of
RecordFlux is thus to make the power of SPARK'’s formal-methods-based verification more accessible
in more use cases

Although other SPDM implementations are available (for example, OpenSPDM), NVIDIA wanted a
technology with a more secure foundation, especially with respect to the programming language. All
these considerations led them to choose the RecordFlux and SPARK approach.

AdaCore Technical Paper February 2023

https://www.adacore.com/case-studies
Léon GALL

Léon GALL

Léon GALL

Léon GALL

Léon GALL

The Project
The SPDM implementation for this project consisted of a number of tasks:
Architecture, Testbed & Integration

This phase of the project created a high-level architecture for the SPDM protocol implementation,
defined the required interfaces, and set up a testbed to validate interoperability with OpenSPDM.
It also integrated the resulting responder framework into the transport layer and implemented a
mapping from session IDs to SPDM protocol instances.

SPDM Formalization

The structure of SPDM messages and the dynamic behavior of an SPDM responder were formalized
in the RecordFlux DSL. The supported messages included capability discovery and negotiation, key
exchange, and session termination.

Validation and Proof

The code generated from both the Architecture, Testbed & Integration task and the SPDM Formalization
task were proven by the SPARK Pro toolset to be free of run-time errors, and thus verifiably free of any
buffer overrun/underrun, integer overflow, or dereferencing of null pointers. Further, for conditionally
structured messages, all field accesses were proved to be valid. The test tool was validated against
an OpenSPDM responder to ensure that a complete key exchange and session establishment were
possible. Additionally, the code size for the protocol implementation was verified to be within a
specified limit (35kB when compiled standalone on a RISC-V 64-bit target).

Attestation

The SPDM RecordFlux model was extended to support attestation, for example with the formalization
of the GET_DIGESTS, GET_CERTIFICATE, and GET_MEASUREMENTS messages and responses.

Session Key Update
The SPDM message and session models were extended to support the key update protocol.

As part of the joint project, AdaCore made a number of enhancements to RecordFlux based on SPDM-
specific requirements and NVIDIA feedback:

* RecordFlux's Domain Specific Language was extended to support a more generalized message
structure.

+ Thecode generator was extended to handle the various SPDM message types and to ensure that the
resulting SPARK code could be proved automatically for absence of run-time errors. Thus memory
safety is assured (all buffer accesses are guaranteed to be within range), and “wraparound” integer
overflow will not occur. Since these properties are proved statically, run-time code does not need
to be generated (and indeed is not generated) to enforce these checks.

+ The allocation scheme for session variables was changed, to avoid the need for dynamic allocation
(thus better supporting the intended bare metal target environment and avoiding the need to
demonstrate absence of heap exhaustion).

AdaCore Technical Paper February 2023

Léon GALL

The Results

To both NVIDIA and AdaCore, the project demonstrated that RecordFlux and SPARK are appropriate
technologies for implementing high-assurance, remote communication protocols, and SPDM in
particular. Several factors stand out:

+ RecordFlux's Domain-Specific Language has the expressiveness and precision
needed to capture the complexities of the SPDM message structure and protocol
sessions. The resulting specification serves as a “single source of truth” and prevents
errors that can arise from misunderstandings of natural language descriptions of
syntax and semantics.

+ The SPARK code generated by RecordFlux was amenable to analysis by the SPARK
Pro toolset to achieve several levels of assurance. For example, SPARK Pro proved
that the code for the dynamic behavior of the SPDM responder for the implemented
messages was memory safe and free of other run-time errors, and also proved
specific security properties of the message structure code. The SPDM message
specifications comprised around 3000 lines of code, from which 135K lines of
provable SPARK code were generated.

+ Code compactness is critical in the embedded applications where NVIDIA's firmware
will be used, and the project demonstrated that RecordFlux can be competitive with
Cwhile allowing much higher confidence in the code’s correctness. The code for the
protocol implementation was less than 35KB on a RISC-V 64-bit target.

+ AdaCore’s responsive and helpful customer support is one of the company's
hallmarks, and this project was no exception. AdaCore's engineers worked with the
NVIDIA team to ensure that any questions concerning RecordFlux or SPARK were
addressed promptly and thoroughly.

“We are very pleased with the results of our SPDM project with AdaCore,” said Ron Koo, Senior System
Software Engineer at NVIDIA. “We wanted a tool that would allow us to implement SPDM in SPARK and
to prove important security properties, but to prove them at a higher level than the SPARK code itself.
RecordFlux certainly facilitated that and resulted in a robust implementation, and we look forward to
using it on other projects in the future.”

“Our goal for RecordFlux from the outset has been to leverage formal verification and the SPARK
language to address the vulnerabilities that communication protocols and complex data formats can
bring,” said Alex Senier, RecordFlux team lead. “The SPDM project with NVIDIA shows that this goal has
been met. The RecordFlux DSL allows domain experts to precisely specify a protocol, and the SPARK
toolset can formally prove a range of security properties for the generated code. In short, RecordFlux
and SPARK can be a real game changer for highly trustworthy protocol implementations.”

AdaCore Technical Paper February 2023

For more information
For details on SPDM:

* DMTF, Security Protocol and Data Model (SPDM) Architecture White Paper; DSP2058, Version 1.0.0;
2020-09-04.
https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.0.0_1.pdf

« DMTF, Security Protocol and Data Model (SPDM) Specification; DSP0274, Version 1.1.0; 2020-07-15.
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf

A public version of the SPDM implementation, together with the validation platform, is available at
https://github.com/AdaCore/spdm-recordflux

For information about RecordFlux see
https://adacore.com/recordflux

For information on SPARK see
https://docs.adacore.com/spark2014-docs/html/ug/

AdaCore Technical Paper February 2023

AdaCore adacore.com

https://www.adacore.com/documentation
https://www.adacore.com/documentation
https://www.dmtf.org/sites/default/files/standards/documents/DSP2058_1.0.0_1.pdf
https://www.dmtf.org/sites/default/files/standards/documents/DSP0274_1.1.0.pdf
https://docs.adacore.com/spark2014-docs/html/ug/

