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ABSTRACT

Advanced Persistent Threats (APTs) pose a significant cybersecurity risk by lever-

aging sophisticated techniques, with lateral movement (LM) playing a central role in

these attacks. Lateral movement allows adversaries to navigate through compro-

mised networks, escalating privileges, and gaining access to critical resources over

extended periods. However, the detection of lateral movement has been hindered by

a lack of comprehensive, high-quality datasets that accurately reflect the diverse and

evolving tactics used in such attacks. Existing datasets suffer from several limita-

tions, including a scarcity of lateral movement instances, outdated attack patterns,

and insufficient diversity in techniques and attack paths, especially in cloud-based

environments. Moreover, automatic labeling methods for dataset creation are often

imprecise, complicating the training of effective detection models.

This work addresses these challenges by proposing a new benchmark dataset

specifically tailored for lateral movement attacks. We conduct a comprehensive anal-

ysis of existing lateral movement attack datasets, highlighting gaps and providing

insights into the strengths and weaknesses of current approaches. In response, we in-

troduce the Lateral Movement Dataset Generator (LMDG), a framework designed to

generate high-quality datasets for lateral movement and APT detection. The LMDG

framework automates the generation of benign network traffic, simulates realistic at-

tack scenarios, and incorporates an innovative labeling technique called process tree

labeling, which improves the accuracy of automatic labeling compared to existing

methods.

Our contributions offer significant advancements in the development of lateral

movement detection systems. The new dataset provides a valuable resource for train-

ing and evaluating machine learning models, while the LMDG framework offers a

reproducible toolset for generating datasets that accurately represent real-world at-

tack behaviors. This work lays the foundation for future research into multi-stage

APT detection, enabling the development of holistic systems that can better defend

against the evolving landscape of sophisticated cyber threats.
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CHAPTER 1

Introduction

In the ever-evolving landscape of cybersecurity, the threat landscape is characterized

by increasingly sophisticated and persistent attacks. Advanced Persistent Threats

(APTs) are among the most formidable, representing a class of cyberattacks that

employ stealthy and prolonged strategies to infiltrate, control, and exfiltrate sensitive

information from targeted networks. These attacks often exploit vulnerabilities to

gain an initial foothold and, through a series of meticulous and interconnected steps,

expand control within the compromised environment. Lateral movement, a pivotal

tactic within APT campaigns, allows attackers to pivot across networked systems,

escalating privileges and accessing critical resources that were initially out of reach. As

cyber adversaries continue to refine their techniques, lateral movement has emerged

as a key strategy for evading detection, maintaining access, and progressing toward

their ultimate goals [1, 9, 19, 17].

The concept of lateral movement has been explored extensively in cybersecurity

literature, with various definitions emphasizing its importance in the progression of

cyberattacks. As defined by the MITRE ATT&CK framework, lateral movement

involves the use of techniques that enable adversaries to enter and control remote

systems within a network, with the end goal of gaining further access and discovering

valuable targets [17]. However, the literature reveals a significant gap in the clarity

and precision of this definition. While the general concept is widely acknowledged,

there is a lack of a comprehensive and universally accepted framework to characterize

lateral movement in its entirety. Existing definitions often provide a broad overview,

1



1. INTRODUCTION

but they fail to capture the nuances and complexities that define this critical phase

of an attack [12, 2, 15, 18]. This thesis aims to address this gap by providing a

clear, precise, and comprehensive definition of lateral movement that can serve as the

foundation for more effective detection models and strategies.

The challenge in detecting lateral movement is compounded by several factors.

These attacks are often prolonged, with threat actors moving through networks over

extended periods while blending in with normal network activity. Additionally, the

sheer volume of data generated by enterprise networks makes it difficult to identify

malicious activity amidst the noise. Attackers frequently exploit legitimate authenti-

cation credentials and system tools, further obscuring their actions. The complexity

of detecting lateral movement is also heightened by the use of novel malware variants,

zero-day exploits, and evasion techniques that allow attackers to bypass conventional

detection mechanisms [5, 11, 7, 4, 3]. The growing sophistication of lateral movement

tactics has made it a critical focus for cybersecurity research, with numerous efforts

aimed at developing models for its early detection and mitigation [6].

Despite the importance of lateral movement detection, current research is hin-

dered by challenges related to data quality. The effectiveness of machine learning

(ML) models for detecting lateral movement depends heavily on the quality and ac-

curacy of the datasets used for training and evaluation. Many existing datasets suffer

from issues such as noisy labels, class imbalances, and insufficient diversity in attack

patterns, limiting their usefulness for developing robust detection models [8, 13]. Fur-

thermore, most datasets lack sufficient instances of lateral movement attacks, making

it difficult to train models that can generalize across a wide range of attack scenarios

[20, 10]. This thesis contributes to the field by addressing these challenges through

the introduction of the Lateral Movement Datasets Generator (LMDG) framework, a

comprehensive solution designed to generate high-quality lateral movement datasets.

By automating the generation of benign and attack data, as well as the labeling

process, the LMDG framework enables the creation of datasets that more accurately

reflect real-world attack scenarios [10, 14].

The contributions of this thesis are threefold. First, we conduct a thorough anal-

2



1. INTRODUCTION

ysis of existing cybersecurity benchmark datasets to assess their effectiveness in rep-

resenting lateral movement attacks. Second, we introduce a novel lateral movement

dataset that addresses many of the quality issues observed in current datasets, pro-

viding a valuable resource for training and evaluating detection models. Finally,

we propose a new automatic labeling technique, process tree labeling, which offers a

more accurate and scalable solution for labeling lateral movement activities in system

and network logs. By providing a comprehensive framework for dataset generation,

this research aims to advance the state of the art in lateral movement detection and

improve the effectiveness of cybersecurity defense mechanisms against APTs [10, 16].
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Lateral Movement Datasets

Analysis
Anas Mabrouk, Sherif Saad, and Mohammad Mamun
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2.1 Introduction

In Cybersecurity, the persistent evolution of cyber threats poses an ongoing challenge

for organizations and individuals. Among the array of sophisticated tactics employed

by threat actors, the concept of ”lateral movement” has emerged as a pivotal strategy

for adversaries seeking to maneuver within compromised network environments. As

elucidated by the exposition in [12], Lateral Movement embodies an array of method-

ologies engaged by malevolent entities to infiltrate and orchestrate control over remote

network systems. The attainment of their intended goals is frequently characterized

by the imperative act of pivoting across an assortment of interconnected systems and

accounts. Corresponding definitions mirroring this conception of Lateral Movement

are also extant within the literature, as expounded upon in [5], [1], [10], and [15],

delineating the concept as the orchestrated movement of an attacker from a primary

host to successive nodes within a compromised network, culminating in the pursuit

of a designated target.

Our investigation into lateral movement detection through a comprehensive lit-

erature review has revealed a lack of a precise and comprehensive definition for this

concept. As an illustration, consider the definition provided by MITRE ATT&CK
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[12], which characterizes lateral movement as follows: ”Lateral Movement consists of

techniques that adversaries use to enter and control remote systems on a network.

Following through on their primary objective often requires exploring the network to

find their target and subsequently gaining access to it. Reaching their objective of-

ten involves pivoting through multiple systems and accounts.” This definition, while

informative, offers an overview of the lateral movement concept without a profound,

detailed explanation. Similarly, other literature sources showed comparable defini-

tions as mentioned above. Cybersecurity literature offers a wide array of models

designed for detecting lateral movement, APTs, anomalies, and threat hunting. It is

a reasonable expectation for these models to identify instances of lateral movement

whenever they occur. However, it’s essential to recognize that we cannot detect or

effectively combat something that remains vague and unclear. As such, it becomes

crucial to establish a precise and clear definition of lateral movement. This precision

is necessary for developing models that can accurately detect it and for evaluating

the effectiveness of existing models in identifying this particular threat.

Let’s begin by establishing two fundamental concepts: horizontal progression and

vertical progression. Horizontal progression entails obtaining an initial foothold on

one or multiple hosts within a network, with each initial access executed indepen-

dently of the others. For instance, consider a scenario where a network scan reveals

ten hosts within a segment. Among these, three have distinct vulnerabilities that

can be exploited for access. It’s important to note that each of these initial accesses

occurs in isolation. This form of horizontal progression, while significant for gaining

initial access, does not qualify as lateral movement. On the contrary, vertical pro-

gression involves accessing multiple systems where these accesses are interdependent.

To illustrate, an adversary might secure an initial foothold within network segment

A, proceed to segment B, and then advance to segment C. Importantly, these initial

accesses are not isolated but instead rely on one another. For instance, the adver-

sary gains control over a host in segment A, providing remote access to a machine in

segment B. From a machine in segment B, further access is obtained to a machine
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in segment C. Lateral movement, therefore, can be defined as the vertical

progression between hosts, accounts, or the transition from one set of priv-

ileges to another. Lateral movement across hosts occurs when an adversary gains

the ability to access host B from host A. Hosts A and B may exist within the same

subnet or across different network segments. Lateral movement between accounts,

on the other hand, transpires when an adversary secures access to account B after

having initially accessed account A. Account B may either possess higher privileges

than account A or provide access to specific resources that account A lacks access

to. Additionally, we can extend our perspective to encompass situations where an

adversary, through privilege escalation, attains access to a specific set of resources.

This can be regarded as a form of lateral movement, as the adversary transitions from

one set of resources (privileges) to another.

An illustrative instance of lateral movement, as per the defined concept, is pre-

sented in Figure 2.1.1 in the form of a directed graph. In this scenario, an adversary

initially secures access to host H1 using account A1, along with a set of privileges

denoted as P1. The adversary then undertakes privilege escalation, transitioning

to a distinct privilege set, P2. Subsequently, the intruder accesses a new host, H3,

employing a fresh account, A7, and privileges designated as P5. Finally, access is

extended to host H5 using the same account and associated privilege set. This ex-

ample demonstrates three intermediate steps or ”hops” between distinct states or

nodes within the graph. It’s important to note that each atomic lateral movement

represents a single hop within such a graph, which can be aggregated to form more

intricate pivoting behaviors. Consequently, lateral movement scenarios can be decon-

structed into these atomic movements, representing the fundamental building blocks

of lateral movement.
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Fig. 2.1.1: A Lateral Movement Example.

When discussing the cloud environment, we can apply a similar concept with a

slight adjustment. In the cloud, we encounter Identities and permissions (or policies),

which can be likened to the Accounts and Privileges mentioned in our previous defini-

tion. Identities encompass user accounts, as well as application and service accounts,

as they require authentication, similar to users when accessing resources. Permissions

or policies, on the other hand, correspond to the privileges in our earlier definition,

essentially outlining the permissions associated with each identity.

One key distinction is that, instead of having hosts or resources directly, there

exists an additional layer known as the services layer. These services, like AWS

EC2 or S3 buckets, offer resources such as compute instances and object storage.

Consequently, in the context of lateral movement in the cloud, we observe a vertical

progression encompassing identities, permissions/policies, services, and resources. A

recent example highlighted by the Microsoft Threat Intelligence team [6] involved

adversaries gaining initial access to an Azure-based database server through SQL

injection. Subsequently, they attempted to obtain a cloud identity token using the

IMDS (Instance Metadata Service) to access other cloud resources.

2.2 Datasets Analysis

Commencing with our analysis, we will examine the extant open-source datasets that

have been employed within the scholarly discourse encompassing the domains of Lat-

eral Movement detection, Advanced Persistent Threat (APT) detection, Intrusion
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Detection, and Threat hunting. The objective of this scrutiny is to ascertain the

presence of instances pertaining to lateral movement within these datasets.

2.2.1 LANL Datasets (2015, 2018)

Two datasets originating from Los Alamos National Laboratory’s corporate (LANL),

namely, the ”Unified Host and Network Data Set” [17] and the ”Comprehensive,

Multi-Source Cyber-Security Events” (LANL 2015) [7]. The LANL 2018 dataset

constitutes a subset of network and host events procured from the LANL enterprise

network during an approximately 90-day timeframe; notably, this dataset does not

encompass any annotated instances of malicious events, thereby precluding its utility

in the evaluation of models for Lateral Movement detection. Conversely, the LANL

2015 dataset comprises a collection of Windows-based authentication events origi-

nating from individual computing nodes and centralized Active Directory domain

controller servers spanning a 58-day duration. Additionally, it encapsulates process

initiation and termination events sourced from individual Windows-based machines,

Domain Name Service (DNS) query activities as observed on internal DNS servers,

network flow data originating from various key router locations, and an explicitly de-

lineated array of red teaming exercises designed to exemplify malicious authentication

behaviors.

Upon meticulous examination of the malicious authentication incidents, it be-

comes evident that the manifestation of lateral movement is absent, substantiated

by the absence of the pivotal traversal between disparate hosts, as stipulated by the

aforementioned definitional parameters. To expound further, a directed graph can be

meticulously crafted to depict the interplay of these authentication activities among

hosts. An anticipated outcome within this contextualized representation would be

the emergence of pathways embodying a compositional magnitude of two or beyond.

Regrettably, the empirical observation reveals that the most protracted trajectory

within this directed graph remains confined to a singular step. The graphical illus-
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tration of the entire gamut of red teaming authentication instances is encompassed

within Figure 3.6.4.

Fig. 2.2.1: LANL 2015 malicious authentications as directed graph.
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2.2.2 DARPA Transparent Computing Engagement 3 (DARPA

2018)

In this engagement’s scope, six hosts running diverse platforms, notably Nginx on

FreeBSD, Ubuntu 14.04, Ubuntu 12.04, Windows 10, and Android 6.0.1. The com-

mencement of the engagement transpired with an initial phase characterized by the

generation of benign data, where a meticulously scripted sequence of operations was

executed on each host. Following the benign data generation phase, control over the

testing environment was relinquished to the offensive team, who subsequently initi-

ated a sequence of maneuvers aimed at emulating the behaviors exhibited by both

novel and pre-existing Advanced Persistent Threats (APTs) across the entirety of the

test range. Throughout this period, a continuous stream of benign background traffic

was sustained. At the same time, activities of a malicious nature were exclusively

carried out between 9 am and 5 pm on weekdays, and the engagement lasted for five

days. Upon examining the attack scenarios within this dataset, it becomes evident

that various tactics have been employed. These encompass reconnaissance, privilege

escalation, command-and-control communication, and data exfiltration. Notably, the

dataset does not manifest any instances of lateral movement.

2.2.3 DARPA Transparent Computing Engagement 5 (DARPA

2019)

The configuration within this dataset closely resembled that of Engagement 3, albeit

encompassing a larger group of hosts. The assembly consisted of 16 distinct hosts

that operated on diverse operating systems, namely Windows, Ubuntu, and Android,

mirroring the compositional framework of the preceding dataset. Before and during

the engagement, There was a phase of benign data generation. All instances of

attack materialized exclusively between 9 a.m. and 5 p.m. on weekdays across eight

days. In contradistinction to the third engagement, the present one comprises two

lateral movement scenarios. The first scenario is characterized by a sequence wherein

attackers successfully compromise a host within the targeted network, configuring it
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to function as their command and control hub. After this, they pivoted to another

Linux-based host using stolen authentication credentials. The second scenario closely

parallels the first one, involving a similar strategy wherein attackers initially gained

a foothold on the network, subsequently pivoting onto multiple intermediary hosts

through SSH and stolen credentials. Within this dataset, these two instances are

the exclusive manifestations of lateral movement. These instances diverge from the

protracted temporal characteristics commonly associated with lateral movements as

they transpire over a short interval. Both instances share a commonality in their

approach, employing an identical technique to accomplish lateral maneuvering.

2.2.4 DARPA Operationally Transparent Cyber 2019 (OpTC)

Compared to Engagement 3 and 5, this dataset has many hosts, a thousand hosts in

a Windows network, and the data from five hundred hosts was collected rather than

from the complete set of hosts due to space constraints. The evaluation started with

benign record generation, followed by the red team attacks, which were performed

in three days. Benign traffic ran continuously during red team activity. Kafka, an

open-source stream-processing server, facilitates information sharing among system

components. Windows 10 endpoints employ sensors to monitor host events, packag-

ing them into JSON records sent to Kafka. These records are then translated into

eCAR format by a server and reinserted into Kafka. A data analytics component

further processes the eCAR records, converting them into a graph structure for anal-

ysis and visualization. Within this dataset, two occurrences of lateral movement are

identifiable. The initial incident occurred on the first day, involving a sequence of four

intermediary transitions across five distinct hosts, with one of these hosts designated

the domain controller. The attacker employed Windows Management Instrumenta-

tion (WMI) to effectuate the traversal between hosts, augmenting the process by

integrating additional techniques. The subsequent occurrence unfolded the next day,

likewise leveraging WMI; however, it exhibited greater complexity than its prede-

cessor, characterized by a larger number of intermediary transitions. Similar to the

circumstances in Engagement 5, this dataset exhibits a limited number of instances of
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lateral movement occurring within a concise timeframe, underscored by a deficiency

in the array of strategies employed for accomplishment.

2.2.5 CERT Insider Threat Test Dataset (2020)

The CERT Insider Threat Dataset [9] is a valuable resource in cybersecurity, offering

a comprehensive collection of real-world instances and data related to insider threats.

Insider threats, which involve malicious or negligent actions taken by individuals

within an organization, pose a substantial risk to data security, intellectual property,

and operational integrity. The CERT Insider Threat Dataset significantly enhances

our ability to identify, prevent, and mitigate insider-driven security breaches by pro-

viding access to a diverse array of documented cases and associated data points. The

dataset contains five scenarios of insider threats. An example for these scenarios is as

follows: an individual previously unaccustomed to utilizing removable storage devices

or engaging in post-business hours activities initiates a pattern of logging into the sys-

tem after operational hours, employing removable storage media for data interaction,

and subsequently transmitting data to the domain ”wikileaks.org.” Following these

actions, this individual promptly disengages from organizational affiliations. This

dataset does not contain any instances of lateral movement [12], as stated in the

malicious scenarios description.

2.2.6 PicoDomain Dataset (2020)

The PicoDomain [8] simulation comprised a compact Windows office setting encom-

passing five workstations, a domain controller, and a gateway firewall/router. This

setup is connected to a limited-scale internet housing websites and adversary infras-

tructure. The internal network featured a Windows Active Directory environment

with distinct Organizational Units (OUs): HR, R&D, and a confidential supersecret

OU. Scripts mimicking web browsing and SMB file sharing were utilized, and data

collection spanned three days. The Mandiant Attack Lifecycle (MAL) [3] was the

framework for outlining the adversary’s campaign strategy, mainly focusing on the
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recurring phases of hostile campaigns. The initial MAL stages include Initial Recon-

naissance, Initial Compromise, and Establish Foothold. Subsequent phases, repeated

as necessary, encompass Escalate Privileges, Internal Reconnaissance, Move Later-

ally, and Maintain Presence. The MAL concludes with the adversary accomplishing

their mission. The dataset reveals prevalent attacker engagement in multiple stages.

Notably, lateral movement (LM) predominantly utilized WMI and DCOM techniques

with minimal diversity. The dataset comprises a single LM scenario, shown in figure

2.2.2, over a short three-day span, lacking instances with an extended temporal scope.

Fig. 2.2.2: Lateral Movement in PicoDomain Dataset. [8]

2.2.7 DARPA Intrusion Detection Datasets (1998, 1999, 2000)

MIT Lincoln Laboratory has generated a six-week training dataset along with two-

weeks testing dataset for the 1998 DARPA Intrusion Detection Evaluation [4]. The

training data spans six weeks, with the initial two weeks seeing gradual additions of

background traffic and attacks, reaching a steady state. The subsequent four weeks

remain consistent in terms of attack types and background traffic. Data collection

occurs from 8 AM to 6 AM the next day on weekdays, giving 22 hours of daily

data. This involves continuous data collection on a network simulating over 1000
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virtual hosts and 700 users, split into inside and outside segments. There are 2

routers, 2 hubs, fewer than 40 inside hosts, and approximately 13 outside hosts.

After a thorough examination of the dataset, we’ve observed the absence of Lateral

Movement instances. In total, the dataset encompasses more than 100 instances of

20 distinct attack types, encompassing activities such as denial of service, remote

unauthorized access, local privilege escalation, surveillance, probing, and anomalous

user behavior. It’s noteworthy to point out that there is a single type of attack

labeled ”multihop,” which, despite its name, could be argued as not fitting the lateral

movement category since it lacks the pivotal traversal between disparate hosts, as

defined in the introduction.

2.2.8 NDSec-1 Dataset (2017)

The authors created the dataset [2] by setting up a network with two parts: a private

network (used by a company or organization) and a simulated Internet. These parts

were divided by a router that acted as a NAT gateway and firewall for the private

network. The private side had various workstations and machines running different

Windows and Linux versions. A tcpdump sensor captured traffic within the private

network. Log event data were collected on each host. The dataset contains three

attack scenarios, in which we can consider the first two as demonstration of lateral

movement. In the first attack, a machine simulated a compromised BYOD host within

a secure network. Attack methods such as brute-forcing, ARP, and DNS spoofing

were employed against SSH, email, and web servers. The second scenario involved a

brute-force attack on a web server, resulting in an SQL injection that accessed login

details and password hashes from the database. This impacted a small user group,

where customized malware was utilized to encrypt files on two hosts and report to an

external server. It’s noticeable that this dataset comprises just two scenarios, both

executed within a single day. The lateral movement path’s extent can be seen as

encompassing two hops.
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2.2.9 Pivoting Detection Dataset (2017)

Within this dataset [1], network traffic information takes shape as network flows

observed within a large organization throughout a day. These flows embody the

interactions of internal hosts within the observed network setting. Each flow sample

in the dataset carries a binary label, indicating its involvement in a pivoting activity.

The labeling process underwent manual execution and validation. The dataset’s size

reaches about 6 GB, encompassing close to 75 million network flows. The dataset

predominantly records pivoting activities where the ”pivoter” host controlled the

”terminal” host remotely using third-party tools like the Windows Remote Desktop

protocol. It’s important to note that these actions are typical, non-malicious pivoting

activities that occurred within the monitored organization. As such, they depict

infrequent and harmless occurrences. As previously noted, this dataset was gathered

within a brief timeframe of just one day. This limited duration may not be an ideal

representation of Lateral Movement, which often occurs over an extended period.

Upon creating a graph that visualizes all the pivoting activities with their temporal

progression within the dataset in figures 2.2.3 2.2.4 2.2.5 2.2.6, it becomes evident

that there are only a few instances of Lateral Movement, all of which involve two

hops. The specific technique employed in these pivoting instances remains unclear;

however, it is noteworthy that all of them were executed over TCP.
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Fig. 2.2.3: Lateral Movements at Pivoting Dataset at time t1

Fig. 2.2.4: Lateral Movements at Pivoting Dataset at time t2
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Fig. 2.2.5: Lateral Movements at Pivoting Dataset at time t3

Fig. 2.2.6: Lateral Movements at Pivoting Dataset at time t4
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2.2.10 StreamSpot Dataset (2016)

The creation of this dataset [11] aimed to address the challenge of identifying anoma-

lies within a continuous flow of heterogeneous graphs that consist of various node

and edge types. The goal was to achieve real-time detection using limited memory

resources. This problem finds its roots in security applications, particularly in de-

tecting advanced persistent threats (APTs) at the host level. The dataset comprises

flow-graphs originating from one attack and five benign scenarios, all executed on a

single host. The benign scenarios encompass routine online activities such as brows-

ing YouTube, downloading files, visiting cnn.com, using Gmail, and playing a video

game. The attack scenario involves a drive-by download through a malicious URL,

exploiting a Flash vulnerability to gain root access on the host. To capture these

scenarios, Selenium Remote Control automated the execution of 100 tasks. The flow

graphs for each task were constructed using traced system calls from the task’s initi-

ation until completion. As explained this dataset does not contain any instances of

lateral movement.

2.2.11 ISCX Intrusion Detection Evaluation Dataset (2012)

The experimental network setup in [16] comprises 21 interconnected Windows work-

stations that are operating on different versions of the Windows OS, namely Windows

XP and 7. These workstations have been distributed among four separate LANs,

while a fifth LAN has been designated for servers offering essential services such as

web hosting, email communication, DNS (Domain Name System), and Network Ad-

dress Translation (NAT). The NAT server has a dual role: it serves as the gateway

for the network’s connection to the Internet. It concurrently functions as a firewall,

permitting legitimate communication and obstructing unauthorized access attempts.

Positioned as the network’s primary hub, the main server undertakes responsibilities,

including hosting the network’s website, managing email services, and serving as the

internal name resolver. Additionally, a secondary server is dedicated to handling

internal ASP.NET applications. The main server and the NAT server run a Linux
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operating system. The paper’s description of the attack scenarios reveals four distinct

attacks spanning a week. Upon analyzing these attacks, it becomes apparent that

each case involved a series of lateral movements, encompassing two successive hops,

passing through three hosts. The sequence of lateral movements consistently began

with the targeted hosts receiving a deceptive email containing a malicious PDF file

harboring a reverse TCP shell. Subsequently, both the initial and secondary hops

followed a uniform approach, exploiting hosts operating Windows XP and utilizing

a vulnerable SMB authentication protocol. Notably, there was only a single occur-

rence where the second hop was executed through a brute force method to ascertain

user credentials. It is evident from the dataset that there needs to be more varied

methodologies for executing lateral movement. Additionally, all instances of lateral

movement follow a consistent pattern, consisting of a predetermined sequence span-

ning two hops. These movements occur briefly, confined explicitly to a single day.

2.2.12 DAPT (2020)

The DAPT2020 [13] dataset was developed as an Advanced Persistent Threat (APT)

dataset with two primary objectives: to make attacks indistinguishable from normal

traffic and to include traffic across both the public-to-private interface and the inter-

nal (private) network. The testbed used was minimal, consisting of two virtual ma-

chines—one connected to a private network and the other to a public network—along

with a log server and a gateway router. This simplified architecture represents a lim-

itation, as it does not accurately reflect the complexity of real-world environments.

Data collection spanned five days, with the first day capturing only normal traffic and

the subsequent four days containing various stages of an APT attack. On the fourth

day, the lateral movement phase occurred, involving reconnaissance and exploitation

activities from the compromised public VM to gain access to critical systems on the

internal network. This phase employed tools and techniques such as Nmap for net-

work scanning, the vsftpd 2.3.4 vulnerability, weak SSH authentication, a MySQL

script for CVE-2012-2122, and Metasploit. However, the dataset includes only a

lateral movement instance executed over a 10-hour window—a significantly shorter
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timeframe than realistic LM attacks, which can span weeks or even months.

2.2.13 Unraveled (2023)

The Unraveled dataset [14] builds upon the DAPT2020 dataset, introducing sig-

nificant enhancements. The testbed architecture has been substantially improved,

emulating a realistic enterprise network environment. The system architecture sep-

arates corporate and production networks with a firewall. The organization has 15

employees, using Snort as a Network Intrusion Detection System (NIDS) monitored

by a Blue Team. The corporate network contains three subnets, each simulating

a department with different operating systems. Logs are sent to a centralized ELK

server in the production network. The production network consists of a public subnet

with a web server and a honeypot and a private subnet hosting critical services like

a database, internal application, and mail server. A firewall regulates traffic, allow-

ing only specific public-to-private connections, while private servers can access the

public network freely. An additional enhancement in the Unraveled dataset was the

extended execution of the APT attack over six weeks. However, the lateral movement

phase remained relatively simplistic, occurring within a single day and consisting of

internal reconnaissance and password cracking. In both the DAPT2020 and Unrav-

eled datasets, the attack execution and labeling processes were conducted manually.

2.3 Conclusion

In summary, the current datasets face significant challenges, highlighting the need

to develop a new dataset that effectively addresses these issues. These challenges

encompass a shortage of Lateral Movement instances in existing datasets, which hin-

ders model training and generalization. Furthermore, the limited diversity in Lateral

Movement techniques and the often short timeframes associated with these activi-

ties present additional obstacles in creating robust detection models. Moreover, the
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prevalence of Lateral Movement paths comprising only a few hops limits the cur-

rent datasets’ scope and symbolic value. The absence of dedicated datasets tailored

for Cloud-based Lateral Movement scenarios further underscores the need for com-

prehensive and up-to-date resources in this domain. Another critical concern is the

obsolescence of existing datasets, rendering them inadequate for capturing recent at-

tack patterns and trends. Lastly, some datasets offer only a partial view of the overall

threat landscape, focusing solely on network flow data, thus emphasizing the neces-

sity for more comprehensive datasets encompassing a broader spectrum of Lateral

Movement activities. Addressing these challenges in dataset creation is paramount

to advancing the efficacy of Lateral Movement detection models in cybersecurity.
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3.1 Introduction

Advanced Persistent Threats (APTs) represent a sophisticated category of cyberat-

tacks characterized by their prolonged and stealthy presence within a targeted com-

puter system or network, aimed at ultimately exfiltrating sensitive data or causing

significant harm [1, 31, 76]. APTs employ a diverse array of techniques and tactics

meticulously crafted to circumvent the defensive mechanisms of the victim’s security

infrastructure [59].

Among the array of sophisticated techniques employed by advanced threat actors,

the concept of ”Lateral Movement” has emerged as a critical strategy for adversaries

seeking to maneuver within compromised network environments. As elucidated by the

exposition in [59], Lateral Movement embodies an array of methodologies engaged by

malevolent entities to infiltrate and orchestrate control over remote network systems.

The attainment of their intended goals is frequently characterized by the imperative

act of pivoting across an assortment of interconnected systems and accounts. Corre-

sponding definitions mirroring this conception of Lateral Movement are also extant

within the literature, as expounded upon in [41], [3], [54], and [65], delineating the

concept as the orchestrated movement of an attacker from a primary host to succes-
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sive nodes within a compromised network, culminating in the pursuit of a valuable

target.

Lateral movement-based attacks are becoming a growing threat to large private

and government networks, frequently causing information exfiltration and service dis-

ruptions [12]. Analyzing various APT campaigns reveals that nearly all employ lateral

movement to navigate networks. The purpose of lateral movement is to transition

from one system to another, infiltrating additional resources and gaining higher priv-

ileges. This process enables attackers to discover and collect valuable data, expand

their control over the targeted organization, and maintain long-term access to the

compromised IT infrastructure [81, 1, 31, 71]. Since lateral movement is a crucial

phase in an APT attack, early detection is vital to minimize losses and prevent at-

tackers from gaining further access to the network [10].

Detecting Lateral Movement attacks poses a significant challenge, primarily due

to several factors; firstly, the prolonged duration of these attacks, which can extend

over months, significantly complicates their detection. Additionally, the sheer vol-

ume of enterprise traffic provides adversaries ample opportunities to blend in and

seamlessly remain undetected amidst regular network activity. Various tactics and

techniques exist for executing Lateral Movement attacks, often leaving traces within

network and system logs [59]. Attackers can effectively evade detection mechanisms

by leveraging legitimate authentication credentials, system tools, and other evasion

techniques. Furthermore, the prevalence of false security alerts further adds to the

difficulty of distinguishing genuine threats from benign anomalies. Moreover, the in-

corporation of zero-day exploits or novel malware variants as part of these attacks

further amplifies the complexity of detection [10, 37, 14, 6, 4].

Current research endeavors for lateral movement detection rely on machine learn-

ing [74, 12, 53, 77, 55]. The machine learning paradigm depends heavily on datasets

to train and evaluate detection models, and the quality of these datasets directly

impacts model performance and evaluation accuracy. Without high-quality training

data, models can exhibit performance discrepancies, reducing accuracy and increas-

ing false positives [25, 45] (see section 3.2). A growing body of literature explores
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the evidence supporting that neglecting the fundamental importance of data has led

to inaccuracies and bias in ML models [57]. For instance, researchers in [16] demon-

strated that even minor modifications to a benchmark dataset significantly impact

model performance more than the specific machine learning technique. Therefore,

better data quality is essential to improve generalization and avoid bias in machine

learning models [5, 69].

Most cybersecurity datasets suffer from quality issues, particularly those contain-

ing lateral movement attacks. Common data quality problems include noisy labels,

insufficient labeling, class imbalance, limited diversity of attack patterns, outdated

attack types, simplistic synthetic generation environments, and short generation pe-

riods (see section 3.6). Additionally many existing datasets either lack instances of

lateral movement attacks altogether or contain only a limited number of such in-

stances[79, 45, 35, 17]. Consequently, developing a comprehensive dataset, or ideally

a framework, that addresses these challenges and others is essential for advancing

research in lateral movement detection.

To this end, our paper introduces a framework called LMDG (Lateral Movement

Datasets Generator), which addresses most of the issues discussed in sections 3.2 and

3.6. Our contributions can be summarized as follows:

• Conducting a thorough analysis of current cybersecurity benchmark datasets

to assess the presence of lateral movement attacks. For datasets containing LM

attacks, we analyze the properties of these attacks, including the number of

LM attacks, diversity of techniques used, the time frame of the attacks, num-

ber of hops or LM movements, data sources collected from these attacks (e.g.,

authentication logs, network flows), labeling methods employed, and testbed

architecture used 3.6. To the best of our knowledge, this study presents the

first analysis specifically tailored for evaluating lateral movement datasets.

• Creating a benchmark dataset focused on lateral movement attacks that address

many of the existing issues in current LM datasets and conducting a qualitative
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analysis of it 3.4 3.5. This dataset will be valuable for the research community

in training and evaluating LM detection models.

• Developing the LMDG framework used to generate the dataset, providing a re-

producible framework for creating lateral movement/APT datasets (see section

3.3). The framework automates the generation of benign data (i.e., normal em-

ployees behavior) 3.3.3, the execution of attack scenarios 3.3.4, and, crucially,

the labeling process (i.e., labeling the records in the system and network logs

associated with the attacks). Automatic labeling is particularly challenging in

lateral movement datasets due to benign internal hosts performing malicious

activities. In the literature on cybersecurity dataset generation, three primary

automatic labeling techniques are discussed: Injection Timing, Behavior Pro-

files, and Network Security Tools [35, 47]. We propose a new automatic labeling

technique, process tree labeling, which we argue is better and more accurate than

all other automatic labeling techniques 3.3.5.

3.2 Challenges of Cybersecurity Datasets Creation

As indicated by [45, 75, 78], the lack of high-quality public datasets significantly hin-

ders the experimentation and evaluation of Intrusion Detection Systems (IDS), es-

pecially anomaly-based detectors. This scarcity arises from several challenges, which

can be categorized into four groups: general challenges and those specific to realistic,

synthetic, and semi-synthetic datasets.

3.2.1 General Challenges

Complex attacks, e.g., Advanced Persistent Threats (APTs), do not follow a uniform

path and continually evolve, exploiting new vulnerabilities and tools to stay effective

and are performed over prolonged periods. Hence, datasets need to cover extensive

periods, often several months, which presents significant challenges in data storage
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and processing [76]. Moreover, accurately labeling such large datasets requires ex-

pert knowledge, adding to the burden [76]. Despite these challenges, more research

is needed to develop consistent metrics to assess the realism of datasets in terms of

live network performance and the distribution of anomalies and threats [45]. Further-

more, data quality issues such as inconsistency, duplication, incompleteness, lack of

comprehension, absence of variety, and imprecise timestamps can compromise the ef-

fectiveness of machine learning models [79]. The difficulty in obtaining representative

and accurately labeled datasets is compounded by the rapid evolution of malicious

behaviors, which quickly renders existing datasets obsolete [35].

3.2.2 Realistic Datasets

Experimentation and data collection on live networks are typically infeasible, es-

pecially for systems with business or mission-critical functions or where the data

contains sensitive information [45]. In addition, specialized malware generators and

well-insulated network infrastructure are required to limit the damage from any mal-

ware or threat simulations [45]. The primary challenge arises from the sensitive

nature of the data: inspecting network traffic can reveal highly sensitive informa-

tion, including confidential or personal communications, an organization’s business

secrets, or its users’ network access patterns. Any breach of such information can

be catastrophic for the organization and affected third parties, leading researchers

to face insurmountable organizational and legal barriers when attempting to provide

datasets to the community [75]. Organizations capable of producing and publishing

representative and accurate data are often reluctant due to the risk of exposing sensi-

tive information, while efforts to anonymize data are considered prohibitively costly

[35]. Although sanitizing captured data by removing or anonymizing sensitive infor-

mation has been tried, these efforts have seen limited success due to the persistent

fear that information can still leak, a well justified concern; additionally, maintaining

such datasets can be prohibitively expensive [75].
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3.2.3 Synthetic Datasets

Creating representative environments for IDS datasets requires a skillful design that

includes numerous network assets such as simulated servers, clients, routers, and

switches, making these datasets challenging to create and maintain [45]. Existing

datasets often represent only a synthetic subset of infrastructure, and network repre-

sentation is a critical issue identified in analyzing several major public labeled datasets

[45]. Due to the scarcity of public data, researchers frequently need to assemble their

datasets. However, this is challenging as most researchers lack access to appropriately

sized networks. The activity in a small laboratory network fundamentally differs from

the aggregate traffic seen in larger networks where NIDSs are deployed, making it dif-

ficult to generalize conclusions from small environments to more extensive settings

[75, 17]. While synthetic datasets can be free of sensitivity concerns, realistically, sim-

ulating Internet traffic is difficult. Anomaly detection systems evaluated using only

simulated activity often lack realism and relevance [75, 17]. Additionally, synthetic

datasets have several drawbacks, including the absence of noise, leading to unrealis-

tically good detection results, a limited range of threat event types, a lack of label

accuracy, and potential biases from following an insufficiently accurate synthetic user

model [76, 45]. The absence of a systematic approach for dataset generation that can

be frequently updated further complicates the creation of high-quality datasets [35,

17].

3.2.4 Semi-synthetic Datasets

Semi-synthetic datasets combine realistic data, often collected from network traffic

or system logs, with synthetic data. This fusion offers advantages but also inherits

challenges from both sources. As noted in [73], semi-synthetic datasets can suffer

from limitations in both real and synthetic data. Integration between the two data

types can be complex, ensuring they reflect real-world relationships. Additionally,

the synthetic component can introduce bias if not carefully constructed [76]. This ne-

cessitates techniques that ensure the synthetic data accurately reflects the statistical
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properties of the real data, preventing the model from learning unrealistic patterns.

3.3 LMDG Framework

3.3.1 Overview

The LMDG framework leverages virtualization technologies, specifically using Virtu-

alBox, to simulate organizational networks. As discussed in Section 3.2, synthetically

generated datasets offer several advantages, such as the ability to create controlled

and repeatable experimental conditions and the flexibility to simulate a wide range

of attack scenarios and network configurations. However, they also come with limi-

tations, such as a potential lack of realism and the challenge of accurately mimicking

real-world traffic patterns and user behaviors. The LMDG framework addresses these

downsides by incorporating advanced virtualization techniques and realistic scenario

generation, thereby enhancing the fidelity and utility of the synthetic datasets for

research in lateral movement detection. One of the key features of VirtualBox is its

ability to configure virtual machines to join various types of virtual networks, includ-

ing NAT networks, Bridged networks, Internal networks, and Host-Only networks,

among others. This capability provides significant flexibility in simulating diverse

organizational network environments. Each type of virtual network serves distinct

purposes: NAT networks facilitate internet access for virtual machines while isolating

them from the host network; Bridged networks allow virtual machines to appear as

separate entities on the physical network, enabling direct communication with other

physical and virtual devices; Internal networks restrict communication to virtual ma-

chines within the same network, enhancing security and isolation for specific test

environments; and Host-Only networks enable communication solely between the vir-

tual machines and the host system, without external network access. These diverse

networking options empower researchers to accurately emulate the unique topologies

and structures of different organizational networks, thereby enhancing the realism

and applicability of the simulations for research in lateral movement detection and
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other cybersecurity studies.

Active Directory (AD), Microsoft’s directory service, is widely recognized as the

most popular solution for managing and organizing IT profiles within organizations,

facilitating essential functions such as authentication, authorization, and account-

ing. Its extensive adoption stems from its robust capabilities in centralized user

and resource management, policy enforcement, and security administration across

Windows-based environments [61, 58]. The recent CrowdStrike incident underscored

the profound dependence of businesses and organizations on Windows-based systems.

The large-scale outage disrupted critical IT operations across numerous industries,

halting business activities and leading to substantial financial losses [64, 46].

Building on the virtualization technology, the LMDG framework leverages Win-

dows Domains and Active Directory to simulate comprehensive network software

configurations within organizational settings. This integration enables the creation

of realistic and dynamic network environments that closely mimic real-world orga-

nizational infrastructures, enhancing the accuracy and relevance of the generated

datasets for research in lateral movement detection and other cybersecurity applica-

tions. By utilizing these technologies, the LMDG framework provides a valuable tool

for studying and mitigating advanced persistent threats (APTs) and other complex

cyber-attacks in environments that reflect the actual operational scenarios of many

enterprises.

For log collection, the LMDG framework employs packet-capturing technology,

such as Wireshark, to acquire network traffic traces that can subsequently be pro-

cessed to create network flow records. This method ensures detailed and granular

capture of network interactions, providing a rich dataset for analysis. A continuously

running service is deployed on every host and gateway within the simulated envi-

ronment to ensure robustness. This service is designed to capture and store network

traffic persistently, even in the event of system crashes, thereby providing the integrity

and continuity of the traffic data. Due to its comprehensive and robust logging capa-

bilities, the LMDG framework leverages Windows Event Logs regarding system log

collection. Windows Event Logs offer detailed system and application event records,
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including security events, system performance data, and operational diagnostics. This

extensive logging is critical for creating accurate and reliable datasets, as it captures

various events and activities within the Windows environment. By integrating these

technologies, the LMDG framework ensures the collection of high-fidelity data essen-

tial for developing and evaluating advanced cybersecurity detection models, particu-

larly in the context of lateral movement and other sophisticated attack vectors.

In the following subsections, we will provide a detailed discussion of our network

topology 3.3.2, which can be easily extended and tailored to various topologies based

on the target enterprise network. We will also elaborate on the Benign Data En-

gine (BDE) 3.3.3, crucial in generating realistic benign user behavior essential for

any credible dataset. Furthermore, we will describe the Attack Engine 3.3.4, which

automates adversary emulation to facilitate flexible and efficient execution of attacks.

Finally, we will focus on the most significant and innovative component of the LMDG

framework, the Labelling Engine (LE) 3.3.5. The LE can automatically and accu-

rately extract records associated with attacks from network and system logs with

minimal noise, utilizing process tree labeling method. This capability is particularly

challenging yet essential, as internal hosts often execute lateral movement attacks.

3.3.2 Testbed Infrastructure

This network, showed in figure 3.3.1, simulates a small-sized company with five de-

partments, each residing in a distinct network segment with its dedicatedWindows do-

main. For instance, the Sales department operates within the domain of sales.lmt.com

and is situated in the subnet 192.168.59.0/24 with its dedicated domain controller

DC 3. Three additional subnets are present in the network configuration: one signi-

fies the root Windows domain lmt.com, another accommodates the company’s servers,

and a third denotes a DMZ, i.e., 192.168.0.0/24 which is part of the IT Windows

domain. Routers facilitate connections between these diverse subnets. Naturally, the

structure of this network can be adjusted and expanded as needed.

In our experimental setup, VirtualBox networking was utilized to configure net-

work segmentation. All subnets were established as internal networks, isolating them
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Fig. 3.3.1: The network topology used to generate LMDG dataset.

from external traffic, except the Demilitarized Zone (DMZ), which was configured

as a NAT network. This NAT configuration allows the DMZ to communicate with

external networks while maintaining the isolation of internal subnets, supporting a

realistic simulation of enterprise network structures.

The experimental environment was configured with all Windows 10 and Windows

11 operating systems hosts, while servers operated on Windows Server 2022. This

selection reflects commonly deployed systems in modern enterprise networks, ensuring

the realism and relevance of the simulated environment for cybersecurity research.

This topology is realistic and superior to many commonly used topologies in the

literature for several reasons. Firstly, it mirrors the complex, segmented network

structure of a typical small to medium-sized enterprise, incorporating multiple sub-

nets and dedicated Windows domains for different departments. This segmentation

enhances security and reflects real-world organizational practices. Additionally, the
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inclusion of a Demilitarized Zone (DMZ) for public-facing services and separate sub-

nets for critical infrastructure such as company servers and root domains provide

a more accurate and comprehensive environment for generating datasets. These el-

ements contribute to a higher fidelity simulation of enterprise network traffic and

potential security threats, making the datasets derived from this topology more ap-

plicable and valuable for the research community.

3.3.3 Benign Data Engine (BDE)

In the context of the LMDG framework, the Benign Data Engine (BDE) is tasked

with generating normal network behavior, effectively simulating employee activities.

Figure 3.3.2 provides an overview of the BDE engine, which comprises two primary

components: the Sessions Scheduler 3.3.3.1 and the Sessions Executor 3.3.3.2.

The engine operates based on four key inputs:

• User Credentials and Hosts: This includes the credentials of employees and

the specific hosts (workstations or devices) they use within the network.

• Sessions Scheduler Configuration File: This file defines the parameters for

the Sessions Scheduler, dictating how it should generate and manage sessions

timing for each user or employee.

• Behavioral Scripts: These scripts detail the activities of employees, it can

operate on both individual level and a departmental level, such as those specific

to the IT department. They encapsulate routine tasks and behaviors expected

in a typical workday.

The Sessions Scheduler orchestrates generating session behaviors (i.e., login and

logout times), ensuring the simulated activities align with realistic standard user be-

havior patterns. Concurrently, the Sessions Executor enables the efficient simulation

of multiple user sessions, reflecting the concurrent activities of various employees
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within the network. This design enhances the generated data’s realism and ensures

scalability and performance in simulating complex network environments.

Fig. 3.3.2: Benign Data Engine (BDE) overview.

3.3.3.1 Sessions Scheduler

The role of the Sessions Scheduler is to generate a list of tuples

Si = [(t1, t2), (t3, t4), . . . , (t2ki−1, t2ki)]

for each employee i, representing their session behavior. Each tuple (t2j−1, t2j) denotes

the login and logout times of a session, where t2j−1 is the login time and t2j is the

logout time. The duration of a session is given by t2j − t2j−1. The final output of

the Sessions Scheduler is a list of lists T = [S1,S2, . . . ,Sn], where T encapsulates the

session behaviors for all n employees in the network. Each Si in T provides a detailed

account of an individual employee’s login and logout activities throughout the day.

The process by which the Sessions Scheduler generates the lists Si for an employee

i is outlined as follows. Initially, the Sessions Scheduler determines whether employee

i is absent based on probability values specified in the configuration file (third input,
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Figure 3.3.2) defined by the dataset creators. For instance, the dataset creators can

define a probability interval [p1, p2], where 0 ≤ p1, p2 ≤ 1. The Sessions Scheduler

then selects a random value from this interval to represent the probability of employee

i being absent on a given day. This approach ensures that each employee i has a

distinct probability of being absent. If employee i is absent, then the list Si = ∅.

Additionally, there is a separate probability interval [p′1, p
′
2] for determining absences

during weekends, which typically corresponds to a higher probability of absence. The

Sessions Scheduler selects a random value from this interval for weekends, reflecting

the increased likelihood of employees being absent on non-working days.

If employee i is not absent, the Sessions Scheduler will proceed to generate the list

Si. Initially, it determines the starting time (first login) for employee i. To facilitate

this, the dataset creators define four time intervals representing various starting times:

abnormally early, abnormally late, late, and on time. These intervals are denoted as

[te1, te2], [ta1, ta2], [tl1, tl2], and [to1, to2] respectively. To determine the four possible

starting times for the current employee i, the Sessions Scheduler randomly selects a

value from each of the four corresponding intervals. Thus, for employee i, there ex-

ist four distinct candidate starting times denoted as tstart abnormal early, tstart abnormal late,

tstart late, and tstart on time. In the configuration file, operators can define different prob-

ability intervals for each possible starting time, namely [pe1, pe2], [pa1, pa2], [pl1, pl2],

and [po1, po2]. It is noteworthy that the probability intervals [pe1, pe2] and [pa1, pa2]

are typically very small, reflecting the rarity of abnormally early and abnormally

late starting times. Conversely, the interval [po1, po2] is usually assigned the highest

probabilities, indicating the likelihood of employees starting on time. Consequently,

the Sessions Scheduler assigns a random probability value to each candidate starting

time, drawn from their respective probability intervals. This process can be likened

to tossing an unfair tetrahedron (a die with four faces), where each face represents

a starting time option. The resulting face corresponds to the actual starting time of

employee i, denoted as tstart, which constitutes the first value of the first tuple in the

list Si, i.e., t1. Thus, the Sessions Scheduler effectively determines the starting time

for employee i using this probabilistic method, ensuring that each potential starting
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time is considered.

Selecting the end time tend for each employee i, denoted as the second time in the

last tuple of the list Si (i.e., last logout time t2ki), undergoes a process akin to deter-

mining the start time tstart. Similarly, the Sessions Scheduler employs a probabilistic

approach, mirroring the methodology used for selecting tstart. Dataset creators define

intervals representing various end times, such as abnormally early, abnormally late,

late, and on time, each associated with corresponding probability intervals.

This probabilistic approach to determining employee starting and ending times

offers flexibility and realism by modeling diverse punctuality behaviors. By assigning

higher probabilities to on-time arrivals and accommodating randomness, it captures

the dynamic nature of workplace scenarios. This method ensures the creation of

diverse datasets, preventing predictable patterns and simulating unexpected occur-

rences. Ultimately, it enables the Sessions Scheduler to generate session behavior

lists that closely resemble real-world employee activities, facilitating the creation of

valuable network traffic datasets for applications such as security analysis, anomaly

detection, and performance optimization.

The Sessions Scheduler is not limited to drawing values from the defined time

and probability intervals using a uniform distribution; it can also utilize exponential

and normal distributions. For instance, consider Figure 3.3.3, which illustrates the

Sessions Scheduler’s process of selecting the value for tstart abnormal early over 20,000

iterations. In this example, the Sessions Scheduler is configured to draw a time value

t within the interval [3:30 AM - 7:29 AM] according to an exponential distribution

with a lambda λ = 0.00037, where λ is the distribution parameter. By plotting the

frequency of each minute between 3:30 AM and 7:29 AM, Figure 3.3.3 demonstrates

that the Sessions Scheduler successfully draws values in accordance with the spec-

ified exponential distribution. This capability allows for more realistic and varied

simulations of employee behavior.

Figure 3.3.4 presents a similar experiment in which the Sessions Scheduler draws

20,000 values for tstart late based on a flipped exponential distribution. Conversely, Fig-

ure 3.3.5 depicts the Sessions Scheduler drawing 20,000 trials for tstart on time according
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to a normal distribution with a confidence interval of 2.58.

When conducting a large number of trials with the Sessions Scheduler, interesting

patterns emerge in the selection of tstart times as an example. Each of the four

potential start times—tstart abnormal early, tstart abnormal late, tstart late, and tstart on time—is

drawn from distinct time intervals using different distributions. Specifically:

• tstart abnormal early is drawn from the interval [3:30 AM - 7:29 AM] following an

exponential distribution with λ = 0.00028.

• tstart abnormal late is drawn from the interval [10:01 AM - 4:00 PM] following a

flipped exponential distribution with λ = 0.00020.

• tstart late is drawn from the interval [8:31 AM - 10:00 AM] following a flipped

exponential distribution with λ = 0.00050.

• tstart on time is drawn from the interval [7:30 AM - 8:30 AM] following a normal

distribution with a confidence interval of 2.58.

Each start time is then assigned a probability from predefined intervals:

• tstart abnormal early is assigned a probability from the interval [0.025 - 0.05].

• tstart abnormal late is assigned a probability from the interval [0.025 - 0.05].

• tstart late is assigned a probability from the interval [0.05 - 0.2].

• tstart on time is assigned a probability of 1−P (tstart abnormal early)−P (tstart abnormal late)−

P (tstart late), which is at least 0.70.

The actual tstart is determined by a weighted random selection (unfair toss) among

these four times. Running the Sessions Scheduler for 20,000 trials and plotting the

histogram of tstart yields the distribution shown in Figure 3.3.6. As observed, the ma-

jority of occurrences fall within the 7:30 AM to 8:30 AM interval, following a normal

distribution, due to tstart on time having the highest probability. The next most fre-

quent interval is 8:31 AM to 10:00 AM, following a flipped exponential distribution,
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attributed to tstart late having the second highest probability. Finally, values at the

extremes are rarely selected, reflecting their assigned low probabilities.

After defining tstart and tend, the Sessions Scheduler will determine whether em-

ployee i will have a lunch break using a similar probabilistic approach. If a lunch

break is scheduled, the controller will then specify tlunch start and tlunch end, which

denote the start and end times of the lunch break, respectively.

Algorithm 3.3.1 AllocatePoints

1: procedure AllocatePoints(ts, te, P , i, mmin, mmax)
2: if i = |P | then
3: return (0, ∅)
4: end if
5: m← random(mmin,mmax)
6: ∆t← te − 2m− ts
7: if ∆t < P [i] then
8: return AllocatePoints(ts, te, P , i+ 1, mmin, mmax)
9: end if
10: breaker ← α
11: repeat
12: tr ← random(ts +m, te −m)
13: ∆t1 ← te − P [i]− tr
14: ∆t2 ← tr − ts
15: if breaker = 0 then
16: return (0, ∅)
17: end if
18: breaker ← breaker − 1
19: until ∆t1 ≥ m ∧∆t2 ≥ m
20: T ← (tr, P [i])
21: (S1, T1)← AllocatePoints(ts, tr, P , i+ 1, mmin, mmax)
22: (S2, T2)← AllocatePoints(tr + P [i], te, P , i+ 1, mmin, mmax)
23: if S1 > S2 then
24: return (1 + S1, T1 ∪ {T})
25: else
26: return (1 + S2, T2 ∪ {T})
27: end if
28: end procedure

The final task of the Sessions Scheduler is to schedule the random logouts and

logins occurring between tstart and tlunch start, as well as between tlunch end and tend.
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This task is divided into two stages. First, the controller randomly determines the

number of logouts before and after lunch and the duration of each logout. These values

are chosen from intervals defined by the dataset creators in the configuration file (see

Figure 3.3.2). Subsequently, the controller places these logouts on the timeline while

adhering to specific rules, such as maintaining a minimum time interval between

consecutive logouts and ensuring that logout times within the interval [t1, t2] are

proportional to the length of the interval. These constraints are also configurable

parameters. The ‘AllocateLogouts‘ algorithm 3.3.1 is devised to allocate logout points

for employees within a designated time frame, with the aim of maintaining a minimum

time interval between consecutive logouts. Beginning with the specification of a start

time ts and an end time te, the algorithm proceeds to recursively iterate through

a list of predetermined periods P , each representing a duration for which a logout

needs to be allocated. At each iteration, the algorithm dynamically determines a

random minimum time between consecutive logouts, ensuring that this time does

not violate the prescribed minimum and maximum thresholds mmin and mmax, α is

a large number say 3000. By recursively branching into two segments—before and

after each chosen logout point—the algorithm evaluates potential logout allocations

while maximizing the number of allocated points. Through this recursive process,

the ‘AllocatePoints‘ algorithm optimally balances randomness with adherence to time

constraints, ensuring efficient and effective logout point allocation.

3.3.3.2 Sessions Executor

The second component of the Benign Data Engine (Figure 3.3.2) is the Sessions

Executor. This component is responsible for creating a thread or job for each employee

i in the list T . Utilizing the employee’s credentials, the Sessions Executor executes

the corresponding behavioral script BSj on the specified host Hr at the scheduled

session times listed in Si.

For the thread associated with employee i, at the start time t2j−1 from the tuple

(t2j−1, t2j) in the list Si, the Sessions Executor initiates a remote session on host Hr

using the credentials of employee i. It then begins executing the behavioral script
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BSj linked to that employee. The script continues to run until the end time t2j, at

which point the session is terminated. This process repeats for each subsequent tuple

(t2j+1, t2j+2) in Si until the final tuple (t2ki−1, t2ki) is reached.

Fig. 3.3.3: Frequency distribution of tstart abnormal early from 03:30 AM to 07:29 AM
over 20,000 trials. The distribution follows an exponential distribution with a rate
parameter λ = 0.00037, indicating higher frequencies of abnormal early start times
occurring at earlier minutes and tapering off towards later minutes.
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Fig. 3.3.4: Frequency distribution of tstart late from 08:31 AM to 10:00 AM over 20,000
trials. The distribution follows a flipped exponential distribution with a rate pa-
rameter λ = 0.0006, demonstrating lower frequencies at earlier times and gradually
increasing towards later times.

Fig. 3.3.5: Frequency distribution of every minute from 07:30 AM to 08:30 AM of
tstart on time over 20,000 trials drawn by the Sessions Scheduler based on a normal
distribution with confidence interval of 2.58.
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Fig. 3.3.6: Frequency distribution of every minute from 03:30 AM to 04:00 PM of
tstart over 20,000 trials drawn by the Sessions Scheduler.

Each department can have a single behavioral script that represents the general

behavior of its employees. Alternatively, there is an option for each user to have their

own individual behavioral script, configurable in the configuration file. For every exe-

cution block (Figure 3.3.2), a subset of the available behaviors in the behavioral script

will be executed at random using a probabilistic approach. These behaviors simulate

typical user actions during a normal working day, such as browsing, downloading from

the internet, running local programs, accessing internal servers (file server, database

server, web server). The behavioral scripts within the framework can be adapted to

align with various enterprise-specific use cases, allowing for a high degree of customiza-

tion to mirror distinct operational environments. These scripts can also be configured

to execute additional programs and activities that more accurately emulate realistic

user behaviors, enhancing the fidelity of the simulation.

The described approach offers a realistic and flexible method for simulating user

behavior in a network environment. By using customizable behavioral scripts for

departments or individual users, and employing a probabilistic approach to execute

a variety of typical user actions, the system ensures dynamic and varied simulations.

The approach’s scalability and adaptability make it suitable for simulating both small
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and large sized organizations. The source code for BDE has been made available on

our GitHub [56], providing researchers with access for purposes of dataset generation

or other academic and research pursuits.

3.3.4 Attack Engine (AE)

In this context, an ”attack engine” refers to a method or framework that enables the

automated execution of cyberattacks. For example, automating DDoS attacks can

often be achieved by deploying specific scripts on the attacking hosts to initiate the

attack. However, as discussed in this section, automating lateral movement attacks

presents unique challenges that are more complex and less straightforward than those

associated with simpler scripted attacks.

3.3.4.1 Lateral Movement Attacks

According to the MITRE ATT&CK framework [59], nine tactics qualify as lat-

eral movement techniques. These include Exploitation of Remote Services, Internal

Spearphishing, Lateral Tool Transfer, Remote Service Session Hijacking, Remote Ser-

vices, Replication through Removable Media, Software Deployment Tools, Taint Shared

Content, and the Use of Alternate Authentication Material. In the LMDG dataset,

multiple lateral movement tactics from this list—such as Exploitation of Remote Ser-

vices and the Use of Alternate Authentication Material—are employed, as discussed

further below 3.3.4.5.

Each of these lateral movement tactics encompasses various techniques. For in-

stance, the ”Use of Alternate Authentication Material” tactic can be executed through

techniques like ”Pass-the-Hash” or ”Pass-the-Ticket” attacks. To clarify the complex-

ity and unique nature of lateral movement attacks compared to more straightforward

attack types, we provide a detailed example of one of these attacks. This analysis

highlights the operational challenges and automation complexities inherent in imple-

menting these advanced tactics.
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One of the attack scenarios demonstrated in the LMDG dataset involves a pass-

the-hash (PtH) attack, a technique classified under the “Use of Alternate Authentica-

tion Material” tactic in the MITRE ATT&CK framework. An outline of the attack

sequence is depicted in Figure 3.3.7. The scenario begins by assuming an attacker

has obtained the local administrator credentials for domain controller DC2 in subnet

1, potentially through techniques like phishing. Using these credentials, the attacker

initiates an SSH connection to an SSH server in subnet 7 (attack step 1 in Figure

3.3.7) and subsequently connects to DC2 (attack step 2 in Figure 3.3.7) via SSH using

the same credentials. Once on DC2, the attacker downloads and executes Mimikatz

to extract credential hashes from the LSASS process, including those from recent

sessions. In this case, an enterprise administrator recently accessed DC2 (shown by

the green arrow in Figure 3.3.7), allowing the attacker to retrieve the administrator’s

credentials. The attacker gains an elevated shell with the enterprise admin hash (step

3 in Figure 3.3.7), enabling access to restricted directories on a file server in subnet

6 (step 4 in Figure 3.3.7). This elevated access allows sensitive information to be

exfiltrated from a folder accessible only to the enterprise administrator. Attack step

3 in figure 3.3.7 represents a transition from one privilege level to another (privilege

escalation), which aligns with our proposed definition of lateral movement as out-

lined in the Discussion section 3.7. We classify this privilege escalation as a form of

pivoting, categorizing it within lateral movement activities.
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Fig. 3.3.7: First Attack Scenario in LMDG dataset which is a Passing the Hash
attack (PtH). This figure also illustrates the traversal behavior (hops) in the Passing
the TGT attack scenario outlined in Subsection 3.3.4.5.1, providing a step-by-step
visualization of the movement through network nodes.
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3.3.4.2 Challenges in Automating Lateral Movement Attacks

As demonstrated in the preceding attack example 3.3.4.1 and further detailed in

subsection 3.3.4.5, obtaining elevated and reverse shells frequently occurs in executing

lateral movement attacks. This section addresses the unique challenges this poses for

automating lateral movement attacks.

Consider automating the Pass-the-Hash (PtH) attack described in subsection

3.3.4.1 and illustrated in Figure 3.3.7. Initial steps, such as SSH-ing into the SSH

server with stolen credentials, then SSH-ing again to the domain controller DC2 to

execute commands like downloading and running Mimikatz, are feasible to automate

using conventional scripting methods. These represent Attack Steps 1 and 2 in Figure

3.3.7.

However, challenges emerge when performing the PtH attack to obtain an ele-

vated shell via Mimikatz. The command for PtH, shown in Figure 3.3.8, involves

“sekurlsa::pth,” specifying Mimikatz to perform PtH, followed by required parame-

ters like user, domain, NTLM hash, and executable command (in this case, to spawn

an elevated shell). Even if the NTLM hash is known, running this command within an

automation script initiates a new cmd.exe process under elevated credentials, making

it difficult, if not impossible, to access or interact with this newly created shell. Iden-

tifying and interfacing with this elevated shell becomes highly challenging without

access to properties like process ID, particularly if the current credentials lack the

necessary permissions.

This issue is compounded when dealing with reverse shells, as the new shell may be

spawned on a different host. Furthermore, automation becomes more complex if the

NTLM hash is unknown and must be dynamically retrieved during attack execution.

Automating lateral movement thus requires adapting to dynamically derived informa-

tion, such as reusing information from previous attack steps—something traditional

automation scripts are not well-equipped to handle.

Two significant challenges arise in automating lateral movement attacks through

traditional methods: handling elevated and reverse shells and dynamically extracting
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and reusing information from prior attack steps for subsequent actions.

1 sekurlsa::pth /user:Administrator /domain:LMT

/ntlm:cb8a428385459087a76793010d60f5dc /run:"cmd.exe"↪→

Fig. 3.3.8: Example command for obtaining an elevated shell using the pass-the-hash
(PtH) technique via Mimikatz.

3.3.4.3 A Candidate Solution

A viable solution to the challenge of automating elevated and reverse shells in lateral

movement (LM) attacks, as discussed in section 3.3.4.2, is to implement a client-server

architecture to coordinate different attack steps. This approach utilizes an attack

controller, or orchestrator, that issues commands to agents deployed on various hosts.

These attack agents act as terminals, receiving instructions from the orchestrator. To

illustrate, we will revisit the attack scenario in section 3.3.4.1 and demonstrate how

this client-server architecture could be applied to streamline the automation of the

attack.

Consider an orchestrator or controller deployed in subnet 7, with an attack agent,

A1, running on the SSH server—equivalent to the first attack step illustrated in

Figure 3.3.7, analogous to an external SSH connection to the SSH server. Instead

of establishing an SSH connection from agent A1 to DC2, a new agent, A2, can be

spawned on DC2 using the same credentials, representing the second attack step

in Figure 3.3.7. On DC2, agent A2 can execute the same commands detailed in

subsection 3.3.4.1, such as downloading and running Mimikatz.

The third step in the attack sequence involves a pass-the-hash (PtH) operation

to obtain an elevated shell, or terminal, that will access the file server. Instead of

executing the PtH command (Figure 3.3.8) on A2 to spawn a new, isolated terminal,

we can modify the PtH command’s /run parameter to spawn an elevated agent A3.

Instead of /run:"cmd.exe", the parameter would be configured as /run:"<code to

spawn agent A3>". After executing the modified PtH command, the elevated agent

A3 is created, completing the final attack step (step 4 in Figure 3.3.7) to access a
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restricted directory and exfiltrate data.

Fig. 3.3.9: Partial process tree illustrating the execution of the Pass-the-Hash (PtH)
attack on DC2, as discussed in subsection 3.3.4.1.

Figure 3.3.9 illustrates a portion of the process tree generated during the exe-

cution of the Pass-the-Hash (PtH) attack using a client-server architecture for au-

tomation. In this configuration, we observe Agent A2, represented by the process

splunkd A2.exe, which is the initial agent deployed on Domain Controller DC2.

Agent A2 is responsible for executing several preliminary commands. Subsequently,

it performs the PtH attack, leveraging elevated privileges to spawn a new, elevated

agent, Agent A3, identifiable by the process name splunkd A3.exe. After its creation,

Agent A3 will start communicating with the controller to continue to execute the at-

tack sequence, ultimately accessing a restricted directory on the file server to retrieve

sensitive data. This process tree visualizes the hierarchical structure of process inter-
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actions, illustrating how the client-server model facilitates controlled privilege escala-

tion within the attack flow. This approach effectively addresses the challenge of man-

aging elevated and reverse shells. Any newly spawned agent—whether on the same

host as its parent agent or on a different host in the case of reverse shells—establishes

communication with the central controller, enabling it to receive and execute required

commands. We refer to this valuable feature as attack steps chaining , a capability

that can be achieved with any client-server-based attack orchestration tool, several

tools with this functionality, including CALDERA, are mentioned in [33].

3.3.4.4 CALDERA as an Attack Engine

Following the approach outlined in [33], we utilized Caldera to implement the client-

server architecture discussed in subsection 3.3.4.3 to automate attack execution steps.

As previously noted, Caldera, along with other tools referenced in [33], can be em-

ployed to facilitate this level of attack automation. We refer to such tools collectively

as ”attack engines.”

Caldera™ [60] is an adversary emulation platform developed by MITRE for au-

tonomous breach-and-attack simulations, manual red-team operations, and auto-

mated incident response. Based on the MITRE ATT&CK™ [59] framework, Caldera

includes a core system consisting of the main framework code, an asynchronous

command-and-control (C2) server, a REST API, and a web interface. It also supports

plugins—separate repositories that extend the core functionality by adding agents,

graphical interfaces, and collections of Tactics, Techniques, and Procedures (TTPs),

enabling a flexible and comprehensive approach to adversary emulation.

We now examine the various components of Caldera and demonstrate how it

can be leveraged to automate attack execution for the generation of cybersecurity

datasets, using examples from the attack scenario described in subsection 3.3.4.1.

The primary component of Caldera is the Caldera Server , an asynchronous

command-and-control (C2) server equipped with a REST API and a web interface.

Upon deployment, each agent communicates with the Caldera Server to report its sta-

tus (e.g., alive or inactive) and to receive and execute commands. Most automation
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tasks are managed through the Caldera Server’s web interface. It is essential to clarify

that, in this context, the Caldera Server is employed exclusively as a tool for automat-

ing attack execution specifically for cybersecurity dataset creation rather than as an

actual C2 server. Ideally, the Caldera Server should operate without leaving any

trace of its communication with the agents or other artifacts that could influence the

dataset. The server should remain transparent and invisible to avoid contaminating

the dataset with automation-related traces. Attack scenarios that involve an actual

C2 server should be hosted on a separate machine from the Caldera Server, and all

Caldera Server artifacts should be removed from the dataset to maintain its integrity.

The second key component of the Caldera framework is the Agents deployed

on various hosts to perform specific attack steps. These Caldera agents function as

terminals or shells, receiving preconfigured commands—known as ”abilities” within

the Caldera framework—and executing them on the target host. The Caldera server

can generate agent code that establishes initial access when executed on a target host

with specific credentials and marks the beginning of an attack sequence. This agent

code contains essential information, including the Caldera server’s IP address and the

group to which the agent belongs, which plays a critical role in attack steps chaining

(as will be detailed in the discussion of Caldera Operations below). In the context

of the Caldera framework, it is assumed that an initial compromise has already been

achieved. For instance, in the attack detailed in Subsection 3.3.4.1 and illustrated in

Figure 3.3.7, we posit that the initial attack step—specifically, establishing an SSH

connection to the internal network—has been successfully executed. The first agent,

Agent A1, is deployed on the SSH server in this scenario. Subsequently, Agent A1

autonomously executes the remaining attack steps as directed by the controller. This

process culminates in the spawning of a new agent, designated as Agent A2, on DC2.

Agent A2 will further advance the attack sequence and facilitate the creation of an

elevated agent, Agent A3. Both agents are depicted in Figure 3.3.9. This sequence of

actions is what we refer to as attack steps chaining in Subsection 3.3.4.3.

Next, we discuss the concepts of Abilities and Adversaries within the Caldera

framework. An Ability represents one or more commands designed to execute a
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specific action and serves as an atomic building block for attacks. For example, an

ability may execute a simple command, such as a 10-second sleep, or a more complex

command, such as Mimikatz execution. Each ability is defined by a name, description,

and associated MITRE ATT&CK tactic and technique, which will help in the labeling

process as discussed in section 3.3.5. An Adversary , on the other hand, comprises

a sequence of abilities that together model a specific behavior, often emulating the

attack patterns of well-known APT groups. Figure 3.3.10 illustrates an example of

an adversary along with its associated abilities, where each row represents a specific

ability. We can now construct our attack steps as adversaries, as depicted in Figure

3.3.10, where this particular adversary models attack step 3 from the scenarios out-

lined in Section 3.3.4.1 and visualized in Figure 3.3.7. The Caldera framework offers

substantial flexibility in designing and executing custom attack scenarios, enabling

precise representation of complex adversarial behaviors.

Fig. 3.3.10: Caldera Adversary representing attack step 3 from figure 3.3.7 . Each
row corresponds to an ability, detailing the command name and associated MITRE
ATT&CK tactics and techniques.

Next, we discuss CalderaOperations , which involves assigning specific adversary

profiles to active agents and prompting them to execute these profiles. In our context,

these profiles correspond to distinct attack steps, such as the adversary shown in

Figure 3.3.10, representing the third attack step illustrated in Figure 3.3.7. Each

agent is assigned a group designation, and execution begins for adversaries within

selected groups; thus, any agent within the specified group will initiate the assigned

adversary profile, even if only a single agent is present.

Finally, we examine Caldera Parsers and Facts, essential features that ad-

dress the second challenge outlined in Subsection 3.3.4.2: dynamically extracting and
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reusing information from prior attack steps for subsequent actions. When an agent

executes a command—such as dumping NTLM hashes—parsers extract relevant infor-

mation from the command output, such as usernames and associated NTLM hashes.

This data is then transmitted back to the Caldera server, where it is stored as *Facts*

for subsequent attack steps, enabling actions like pass-the-hash attacks with stored

user credentials. Thus, Facts are live variables that carry information across different

attack stages. Facts are generated in two primary ways: dynamically from parsers

or manually, such as by saving a specific user’s NTLM hash to be used later in the

attack sequence.

3.3.4.5 Lateral Movement Attacks in LMDG Dataset

The LMDG dataset contains seven attack scenarios that achieve lateral movement

using various tactics and techniques. Of these, three attacks were successful, while

four were unsuccessful. We discuss possible reasons for each unsuccessful attack,

considering that our setup includes Windows 10, Windows 11, and Windows Server

2022—the latest Windows versions with advanced security mechanisms. This combi-

nation of successful and unsuccessful attacks is valuable for understanding attacker

behavior, as many attacks tend to fail due to robust defenses, with only some achiev-

ing success.

Our dataset includes multiple versions of each attack, targeting different hosts and

subnets. In some cases, attacks were executed repeatedly to enrich the dataset with

diverse instances of attack records; we refer to this repetition of the same scenario,

version pair, as a trial.

The attack steps depicted in the figures, e.g., figure 3.3.7, within the attack ex-

planations represent lateral movement hops, as defined in Section 3.7. All attack

scenarios share the first two steps: initial access to the SSH server from outside the

network using stolen credentials, followed by access to an additional internal machine.

Beyond these initial steps, each attack scenario diverges in tactics and execution.

More details about attacks execution are presented in 3.4.
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3.3.4.5.1 Second Attack Scenario The first attack scenario was introduced in

Subsection 3.3.4.1. In the second scenario of the LMDG dataset, a Pass-the-TGT

(Ticket Granting Ticket) attack is presented, corresponding to the ”Use of Alternate

Authentication Material” tactic in the MITRE ATT&CK framework. The attack

unfolds through several stages, as depicted in Figure 3.3.7.

The process begins with the attacker SSH-ing into the SSH server located in

subnet 7 using stolen credentials of the local administrator from the IT department

in subnet 1 (Step 1). The attacker then proceeds to SSH into the domain controller

(DC2) in subnet 1 using the same credentials (Step 2). The enterprise administrator,

shown in Figure 3.3.7 with a green arrow, has recently authenticated to DC2. The

attacker then dumps the LSASS memory on DC2, exposing authentication tokens,

including the enterprise administrator’s TGT. In Step 3, the attacker injects this

TGT into memory, impersonating the enterprise administrator and obtaining elevated

privileges without requiring the administrator’s plaintext credentials. Finally, in Step

4, the attacker uses the injected TGT to access the restricted file server in subnet 6,

extracting sensitive information from directories that are typically only accessible to

the enterprise administrator.

The attack ultimately failed, and it may have failed due to several factors. Ker-

beros replay protection mechanisms could have blocked the reuse of the TGT, while

session constraints tied to specific network contexts may have prevented the attacker

from using the ticket across subdomains. Additionally, domain policies and advanced

auditing configurations might have detected and blocked unusual ticket requests. Al-

though the attack successfully obtained the TGT in Step 3, these barriers may have

prevented further progress to Step 4, where the attacker would have attempted to

access the restricted file server and exfiltrate data. This scenario highlights potential

challenges in lateral movement through authentication token manipulation.

3.3.4.5.2 Third Attack Scenario In another scenario within the LMDG dataset,

an AS-REP Roasting attack demonstrates a technique aligned with the Credential

Access tactic in the MITRE ATT&CK framework. As detailed in Figure 3.3.11, the
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attack sequence begins with an attacker who initially gains access to the SSH server

using the credentials of an employee in the marketing department in subnet 3 (step

1). then the attacker moves to host seven within subnet three via SSH (step 2).

With access established, the attacker downloads necessary tools, including Rubeus,

to facilitate the AS-REP Roasting attack.

AS-REP Roasting (also known as ”ASREPRoast”) exploits a vulnerability in Ac-

tive Directory (AD) accounts configured without requiring Kerberos pre-authentication.

This lack of pre-authentication allows an attacker to request an encrypted Ticket

Granting Service (TGS) response directly, exposing the password hash, which can

then be extracted and cracked offline to reveal plaintext credentials.

In this scenario, the attacker identifies an AS-REP Roasting user within the do-

main, extracts the hash, and successfully cracks it offline. With the recovered cre-

dentials, the attacker moves laterally within the network using the newly obtained

user account (step 3). After establishing access under this new identity, the attacker

requests a Ticket Granting Ticket (TGT) with delegation rights. This TGT is saved

locally, and the attacker uses PowerShell to extract the Base64-encoded portion of

the ticket, storing it as ticket.base64. Leveraging Rubeus again, the attacker initiates

Service-for-User (S4U) impersonation to escalate privileges by impersonating the Ad-

ministrator user for a specific service (in this case, HTTP/service within subnet 3).

This impersonation uses the S4U2Self and S4U2Proxy Kerberos extensions, allowing

the attacker to exploit Kerberos delegation mechanisms. By injecting this ticket into

memory, the attacker aims to achieve Pass-the-Ticket (PTT) authentication, gaining

unauthorized access to target resources with elevated privileges (step 4), an advanced

privilege escalation technique in Kerberos-enabled environments.

The attack has failed, and it may have failed due to several technical constraints,

including strict KDC and domain policies enforced by the Windows Server environ-

ment, which restrict TGT delegation and service account impersonation. For ex-

ample, if the Service-for-User-to-Proxy (S4U2Proxy) functionality were disabled, the

impersonation attempt would likely fail. Additionally, advanced domain monitoring

and auditing could detect and block abnormal Kerberos requests in real time. The
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network’s use of Kerberos Constrained Delegation (KCD) may have also limited the

attacker’s ability to delegate to the HTTP service in subnet 3, preventing the imper-

sonation attempt. These protective measures might have halted the attack at step 4,

preventing further privilege escalation.

Fig. 3.3.11: Third Attack Scenario in LMDG dataset which is AS-REP Roasting
attack.

3.3.4.5.3 Fourth Attack Scenario In another scenario from the LMDG dataset,

an advanced delegation attack demonstrates multiple techniques spanning Credential

Access, Persistence, and Privilege Escalation tactics within the MITRE ATT&CK

framework. The sequence, detailed in Figure 3.3.12, begins with an attacker who ini-

tially gains access to an SSH server using the credentials of a standard user (step 1).
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The attacker then transitions laterally to host nine within subnet four via SSH (step

2). With access to this host, the attacker downloads critical tools, such as Rubeus,

necessary to facilitate an AS-REP Roasting attack.

In this scenario, the attacker identifies a domain user vulnerable to AS-REP Roast-

ing, extracts the hash, and cracks it offline. With the recovered credentials, the at-

tacker conducts lateral movement by using this new user account to further their

access within the network (step 3).

Upon acquiring additional access, the attacker identifies a misconfiguration involv-

ing the AddSelf permission under the current user account. This permission enables

the attacker to assign themselves to AD groups with higher privileges. Exploiting

this, the attacker leverages the AddSelf permission to add their account to the Ex-

change Windows Permissions group, which has broad rights within AD (step 4). The

attacker now has a foothold to manipulate permissions further and moves to escalate

privileges.

With these elevated permissions, the attacker uses PowerView (from the Power-

Sploit toolkit) to modify AD object permissions. By executing the Add-DomainObjectAcl

command, the attacker assigns themselves DCSync rights over the Domain Admins

group by altering the Access Control List (ACL) (step 5). The DCSync right is a

highly privileged permission that allows the account to perform directory replication

activities, effectively emulating domain controller operations. This privilege enables

the attacker to request password hashes and other sensitive data directly from the

domain controller, granting access to high-privilege accounts, including domain ad-

ministrators. This escalation step gives the attacker control of the domain without

direct access to the domain controller.

Following this setup, the attacker performs a credential theft attack using Mimikatz,

invoking the lsadump::dcsync command to impersonate a domain controller and re-

trieve sensitive authentication data, precisely the NTLM hash of the domain ad-

ministrator within subnet 4. This process leverages the granted DCSync rights to

replicate AD data without compromising the domain controller. By capturing the

NTLM hash, the attacker can impersonate the administrator, potentially carrying
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out Pass-the-Hash (PtH) attacks to gain unauthorised access across the domain.

In step 6, the attacker conducts the PtH attack to gain domain administrator

access. However, due to the security restrictions related to double-hop authentication,

the attack fails to propagate the administrator’s full rights across machines. To

overcome this, the attacker reinitiates the attack in step 6 within the same machine

context, renewing the Ticket Granting Ticket (TGT) to ensure persistence and full

administrator rights.

Finally, in step 7, with administrator privileges secured, the attacker can access

sensitive data on restricted file servers within subnet 6, demonstrating a complete

compromise and data exfiltration pathway within the network.This scenario high-

lights the critical risk posed by unauthorised delegation and improperly configured

permissions, especially when AddSelf and DCSync rights are combined to achieve

unauthorised privilege escalation and persistence within an AD environment.

Fig. 3.3.12: Fourth Attack Scenario in LMDG dataset which is an Advanced Delega-
tion attack.
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3.3.4.5.4 fifth Attack Scenario In another scenario from the LMDG dataset,

a password spray attack demonstrates multiple techniques spanning Credential Ac-

cess, Persistence, Privilege Escalation, and Exfiltration tactics within the MITRE

ATT&CK framework. The sequence, detailed in Figure3.3.13, begins with an at-

tacker who initially gains access to an SSH server using the credentials of a standard

user (step 1). The attacker then transitions laterally to host seven within subnet three

via SSH using the same credentials (step 2). With access to this host, the attacker

finds a zip file protected with a password. The attacker will then download a wordlist

that he will need to perform his brute attack, forcing the zip file using an automated

custom script, where he succeeds. The attacker identifies the users in the domain

and then performs a password-spraying attack where he finds a valid combination of

credentials to be the domain administrator on subnet 3.

In step 3, the attacker will log in with the found credentials, perform privilege

escalation, gaining all the rights on the subnet three domain with an administrator

account on the DC 4 machine. The attacker looks for writable shares where he

finds one owned by the enterprise administrator where a script is present and is

being executed by the enterprise administrator periodically. The attacker abuses the

privilege of the owned account to write into this script, adding a malicious payload to

take ownership of the enterprise admin with a reverse shell payload. A reverse shell

in cybersecurity is a network connection in which a compromised system initiates an

outbound connection to a remote attacker-controlled machine, creating a shell access

session. Unlike a standard shell, where an attacker attempts to connect directly to

the target system, a reverse shell ”reverses” the connection flow. The compromised

system opens a specific port when the reverse shell is executed in step 4. It connects

to the attacker’s machine, typically via protocols like TCP or HTTP, gaining access

over the enterprise administrator account, compromising the whole domain. Finally,

in step 5, the attacker can now access the forbidden data in the file server in subnet

6.
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Fig. 3.3.13: Fifth Attack Scenario in LMDG dataset which is a Password Spray attack.

3.3.4.5.5 sixth Attack Scenario In another scenario within the LMDG dataset,

a silver ticket attack is demonstrated, which aligns with the Privilege Escalation and

Persistence tactics in the MITRE ATT&CK framework. The attack sequence is out-

lined in Figure 3.3.14. The scenario initiates with an attacker who has access to the

SSH server with credentials of the local administrator of subnet 5 (step 1) and then

gains access to the DC 6 host within subnet five via SSH (step 2), where the enterprise

administrator presented in subnet 0 recently authenticated via SSH.

The attacker begins by downloading the tools that he will need in the attack, like

Mimikatz. The attacker starts by dumping the Local Security Authority Subsystem

Service (LSASS) memory on the compromised host using Mimikatz. This action

exposes recent authentication tokens, including the enterprise administrator’s NTLM

hash. In this attack, the attacker utilizes Mimikatz to perform a Silver Ticket attack

against a specific service within a Kerberos-enabled network.

The attacker forges a service ticket for a service on the target machine using the
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enterprise administrator’s credentials. The forged ticket is created by specifying the

user, domain, service, and the NTLM hash of the administrator’s hash. This service

ticket is injected into the current session using the (Pass-the-Ticket) option, allowing

the attacker to authenticate as the enterprise Administrator account to access the

service without needing a valid Ticket Granting Ticket (TGT) (step 3).

Unlike a Golden Ticket, which grants broad access across the domain, the Silver

Ticket is restricted to the targeted service but still allows the attacker to bypass

standard authentication mechanisms and gain unauthorized access to the service,

potentially enabling the exfiltration of sensitive data or further exploitation of the

network.

After performing this attack in step 3, the attacker will now move to step 4 to try

to access the forbidden data only accessible by the enterprise administrator on the

file server on subnet 6.

The attack was ultimately unsuccessful, likely due to several technical barriers.

If detected as a replay attempt, Kerberos replay protection mechanisms may have

blocked the reused TGT. Additionally, session and context constraints tied the TGT

to specific network contexts, potentially limiting its effectiveness across subdomains.

Strict domain policies and auditing features on the Windows Server may have flagged

or blocked suspicious ticket requests, especially from unexpected endpoints or high-

privilege accounts. Lastly, service ticket signature validation might have prevented

unauthorized access if the target server verified ticket integrity. Although the attacker

obtained the TGT by step 2, these constraints may have halted further progress,

preventing access to restricted resources in subnet 4.
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Fig. 3.3.14: Sixth Attack Scenario in LMDG dataset which is a Silver Ticket attack.
This figure also illustrates the traversal behavior (hops) in the Golden Ticket attack
scenario outlined in Subsection 3.3.4.5.6, providing a step-by-step visualization of the
movement through network nodes.

3.3.4.5.6 seventh Attack Scenario In another scenario within the LMDG

dataset, a Golden Ticket attack is demonstrated, aligning with the Privilege Es-

calation and Persistence tactics in the MITRE ATT&CK framework. The attack

sequence, as detailed in Figure 3.3.14, initiates with an attacker who initially gains

access to the SSH server using the credentials of a local administrator in subnet 5

(step 1) and subsequently gains access to the DC 6 host within subnet five via SSH
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(step 2), where the enterprise administrator in subnet 0 recently authenticated to the

domain controller.

Upon accessing the domain controller, the attacker downloads tools such as Mimikatz.

Using Mimikatz, the attacker dumps the Local Security Authority Subsystem Service

(LSASS) memory, revealing cached authentication tokens, including the NTLM hash

and AES key of the enterprise administrator’s account. Leveraging this information,

the attacker generates a Golden Ticket—a forged Kerberos Ticket Granting Ticket

(TGT) for the domain administrator account, utilizing the /aes256 parameter to

specify the administrator’s AES key.

The attacker then forges the Golden Ticket with Mimikatz. This crafted ticket

allows the attacker to impersonate the enterprise administrator across the entire do-

main (step 3). Unlike a Silver Ticket, which limits access to a specific service, a

Golden Ticket provides domain-wide access to any Kerberos-enabled resource with-

out needing a valid initial TGT, enabling full administrative privileges and sustained

persistence within the network. After creating and injecting the Golden Ticket in

step 3, the attacker attempts to use it in step 4 to access sensitive files exclusive to

the enterprise administrator on a file server within subnet 6.

The attack was ultimately unsuccessful, possibly due to several security con-

straints. Kerberos replay protection may have flagged frequent Golden Ticket use

as a replay attempt, blocking access. Session and context constraints, which bind

sessions to specific subdomain contexts, could have limited the ticket’s effectiveness

across domains. Additionally, stringent domain policies and auditing on Windows

Server might have detected unusual ticket activity, especially high-privilege tickets

appearing in new subdomains. Finally, service ticket signature validation on the tar-

get server may have rejected unauthorized tickets despite the Golden Ticket’s privi-

lege escalation. These defenses likely hindered further steps, preventing access to the

protected file server in subnet six and data exfiltration.

66



3. LMDG: A FRAMEWORK FOR LATERAL MOVEMENT DATASETS GENERATION

3.3.5 LMDG Labelling Engine (LE)

In cybersecurity datasets, labeling involves identifying and extracting records associ-

ated with attack activities from system logs and network traffic. The Labeling Engine

serves as the component responsible for automating this extraction process. This sub-

section will examine the challenges of achieving accurate labeling and introduce our

innovative labeling methodology.

3.3.5.1 Challenges in Attack Data Labeling

A thorough review of the literature on labeling techniques for cybersecurity dataset

generation reveals that there are primarily three approaches for automatically labeling

attack-related records, as outlined in [47]. These approaches are Injection Timing ,

Behavioral Profiling , and Network Security Tools.

The Injection Timing approach labels all system logs or network traffic within

a defined time window—precisely, the period in which the attack occurred—as ma-

licious. This technique is frequently employed in research, either on its own or in

combination with other labeling methods, to improve labeling accuracy [50, 9, 21, 32,

36]. However, Injection Timing operates on the strong assumption that no benign

events or traffic will occur within the attack timeframe; thus, all events within this

period are labeled as malicious. This assumption often proves inaccurate, particularly

for complex attacks, such as lateral movement, which can be interwoven with benign

activity or even exploit benign processes as part of their execution. Consequently,

using Injection Timing for labeling in cases of lateral movement or other sophisticated

attacks can lead to substantial mislabeling and fails to achieve the necessary accuracy.

The second approach for automatic labeling is the Behavioral Profiles method,

which relies on predefined behavioral profiles for malicious and benign actions to

facilitate labeling. This approach identifies attack-specific characteristics, such as

originating from specific machines, allowing records associated with those machines

to be easily labeled as malicious. Behavioral profiles thus capture unique attack

traits that streamline the labeling process and are widely utilized in the literature
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[15, 72, 68]. However, this method proves ineffective in lateral movement attacks,

where legitimate hosts and user accounts are leveraged to conduct malicious actions,

rendering behavioral profiles insufficient for accurate labeling.

The Network Security Tools approach for automatic data labeling utilizes in-

formation generated by network security tools, including packet sniffers, honeypots,

and intrusion detection systems (IDS), to classify records as malicious or benign [2,

68]. This method leverages the detection capabilities of these tools to label network

traffic or system events based on observed signatures or anomalous behavior pat-

terns. However, this approach can suffer from significant accuracy limitations due

to the inherent weaknesses of the tools, which are prone to generating false positives

(incorrectly labeling benign data as malicious) and false negatives (failing to identify

actual malicious activity). The tendency of IDSs, for instance, to produce excessive

alerts can lead to mislabeling, thus diminishing the reliability of this approach for

precise labeling in cybersecurity datasets.

As demonstrated, there is a critical need for a more accurate and precise automatic

labeling technique capable of generating high-quality datasets suitable for training

machine learning detection models. In response, we introduce a novel and robust

labeling methodology designed to address the limitations of existing approaches. Our

method significantly improves labeling accuracy, making it particularly well-suited for

scenarios involving lateral movement and advanced persistent threats (APTs), where

traditional methods often fall short.

3.3.5.2 LMDG Labeling Engine

Our labeling methodology builds upon and extends the labeling approach introduced

in [33], with specific enhancements and improvements outlined in the related work

section 3.6.1.1.2. We designate this approach as process tree labeling , which can

be considered an additional automatic labeling technique and, as we argue, the most

accurate among those reviewed. The effectiveness of process tree labeling relies on

the client-server architecture introduced in 3.3.4.3 and 3.3.4.4 for automating attack

execution, a dependency explored in greater detail in [33].
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Upon the completion of attack execution, the LMDG labeling engine, along with

its input—a descriptive file containing metadata on attack steps—operates from the

controller, depicted in Figure 3.3.1. The engine distributively performs the labeling

task across each affected host, using the defined attack steps from the input file to

extract the relevant subset of system logs and network connections associated with

each attack stage on every affected host. The LMDG labeling engine completes this

process in three primary phases: Attack Steps Forest Construction , System

Logs Labeling , and Network Traffic Labeling . Before detailing these stages, we

will first discuss the input to this engine, namely the descriptive file containing attack

steps metadata.

3.3.5.2.1 LMDG Labeling Engine Input The input to the labeling engine

consists of a set of hosts impacted by various attack steps, where each host includes

a collection of malicious processes with specific attributes. Let H represent the set

of all such hosts, i.e., H = {h1, h2, ..., hn}, with each host hi ∈ H uniquely identified

by a HostName. For each host hi, let P (hi) denote the set of processes associated

with the malicious agents deployed on that host during any attack step, i.e., P (hi) =

{p1, p2, ..., pm}. Each process pj ∈ P (hi) is described by the following tuple

pj = (π, ts, te, σ, ν, τ, κ, ϕ)

In this tuple, π denotes the process identifier associated with a deployed Caldera

agent, i.e., PID. ts and te define the time window during which a particular attack

step occurred (start time and end time). The specific step within the attack and the

overarching scenario are identified by the κ and σ fields in the tuple, with ϕ indicating

whether the step was completed successfully. Since an attack scenario can be executed

across various hosts or subnets, multiple versions of the same scenario may exist. For

example, in subsection 3.3.4.1, the pass-the-hash (PtH) attack can be executed on
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different subnets (e.g., subnet 4 instead of subnet 1). This versioning is captured

by the ν field in the tuple. Additionally, we may execute the same scenario version

multiple times; thus, the τ field is included to distinguish between these instances,

offering clear differentiation across repeated executions or trials.

Each host hi ∈ H can be formally represented as a tuple containing its HostName

and the set of associated processes, P (hi), for each Caldera agent deployed on that

host. Formally, this is expressed as hi = (HostNamei, P (hi)). The overall input

structure can then be denoted by Input = {h | h ∈ H}, where each host h belongs

to the set H. This structured organization facilitates the grouping of processes by

host, enabling efficient distribution of the labeling process and correlation of process

executions with the various stages of distinct attack scenarios. For instance, for a

host h1 with HostName as DC01.it.lmt.com, part of the set of processes associated

with it might look like:

P (h1) =


(4712 , 2024-08-04T15:31:28Z , 2024-08-04T17:12:07Z , 1 , 2 , 1 , 2 , 1),

(1604 , 2024-08-09T09:20:18Z , 2024-08-11T13:26:20Z , 3 , 1 , 1 , 5 , 0)


For each host, the metadata attributes, such as π, ts, and others, are gathered

from Caldera reports generated post-attack execution. Within Caldera’s framework

3.3.4.4, we define an Adversary (Figure 3.3.10) for each attack step within a specific

scenario. An Operation is then executed using this Adversary, and it is within the

Operation’s execution report that all relevant metadata can be retrieved. It is impor-

tant to note that while Caldera does not natively provide components to define attack

steps, versions, or trials explicitly, we achieve this differentiation through our custom

naming conventions for Adversaries and their associated Abilities and the way we use

other Caldera components, effectively encoding these distinctions into the metadata

collected.

For a specific host hi, the set of associated malicious processes, P (hi), may contain
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multiple processes, e.g., pr and pk, with identical process ID value π within their

associated tuples. This duplication arises because the same Caldera agent, identified

by its process ID π, can execute multiple attack steps. The other fields within the

tuples of pr and pk, such as start time ts, end time te, attack step κ, and others, will

differ accordingly.

As shown in Figure 3.3.10, which provides an example of an adversary setup,

each defined ability (represented as a row) is specified with its corresponding MITRE

ATT&CK tactics and techniques, and even a descriptive label may be added. Con-

sequently, in our labeling process, system logs, and network traffic are labeled by

the attack step and the relevant tactics and techniques associated with each step,

enhancing the granularity and interpretability of the labeling outputs. Next, we will

move to the explanation of the three main steps of our labeling methodology.

3.3.5.2.2 Attack Steps Forest Construction The first essential step in our

labeling engine is the Attack Steps Forest Construction, upon which the subsequent

steps rely. In this phase, we construct attack process trees for each host hi based on

the set of processes P (hi) = {p1, p2, . . . , pm}, where P (hi) represents the collection of

malicious processes associated with the host during any attack step. For each process

pj ∈ P (hi), a process tree is constructed, rooted at the process identifier (PID) of

pj. This tree is further constrained within the start and end times, ts and te, of

pj, ensuring that all descendant processes of pj’s PID fall within this time interval.

This temporal constraint ensures that each process tree captures the causally and

temporally relevant events surrounding each attack step, laying the foundation for

accurate step-level labeling.

In this step, we construct the forest F , which is defined as a collection ofm distinct

trees, each corresponding to a process pj ∈ P (hi) = {p1, p2, . . . , pm}. Each tree

Tpj ∈ F captures the hierarchical structure of all descendant processes initiated by the

root process pj and constrained with the interval [ts, te], effectively representing the

malicious process tree for the specific attack step. This structured forest F therefore

serves as a comprehensive representation of attack-related process executions across
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different attack steps on host hi.

Algorithm 3.3.2 Attack Steps Forest Construction

1: procedure AttackStepsForestConstruction(H)
2: F ← ∅ ▷ Initialize the forest of attack steps
3: for hi ∈ H do
4: for pj ∈ P (hi) do
5: π ← pj.π, ts ← pj.ts, te ← pj.te
6: σ ← pj.σ, ν ← pj.ν, τ ← pj.τ
7: κ← pj.κ, ϕ← pj.ϕ ▷ Extract pj’s attributes
8: L ← ∅ ▷ Initialize a list for process IDs
9: Tpj ← GetProcessTree(π, ts, te,L) ▷ Build process tree of process

pj
10: Tpjmeta

← (Tpj , ts, te, σ, ν, τ, κ, ϕ)
11: F ← F ∪ {Tpjmeta

}
12: end for
13: end for
14: return F
15: end procedure
16: procedure GetProcessTree(π, ts, te,L)
17: L ← L ∪ {π}
18: E ← {e ∈ E4688hi

| e.π = π ∧ ts ≤ e.t ≤ te}
19: for e ∈ E do
20: if e.π /∈ L then
21: L ← L ∪ {e.π}
22: GetProcessTree(e.π, ts, te,L)
23: end if
24: end for
25: return L
26: end procedure

The specifics of this step are outlined in Algorithm 3.3.2, where the set E4688hi

represents all process creation events recorded in the Windows Security log for host

hi. These events correspond precisely to Windows Event ID 4688, which logs each

instance of process initiation. More formally, if Ehi
is the set of all Windows events

in host hi then E4688hi
= {e | e.EventID = 4688 ∧ e ∈ Ehi

}

An example of the output generated by Algorithm 3.3.2 is shown in Figure 3.3.15.

This output corresponds to the example previously detailed in Subsection 3.3.4.1,

which illustrates a Pass-the-Hash (PtH) attack scenario, as depicted in Figure 3.3.7.

In Figure 3.3.15, the example demonstrates two process trees rooted at the same
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process ID π of pr. The first tree is constructed within the constrained time interval

[t1, t2], encompassing all subprocesses that occurred within this interval and represents

attack step 3 from Figure 3.3.7. The second tree is built under the time constraint

[t3, t4], including all subprocesses within this later interval, and represents attack step

4 from the same figure 3.3.7.

Fig. 3.3.15: Output of algorithm 3.3.2 showing two process trees rooted at the same
malicious process pr. The first tree, representing attack step 3, and the second tree,
representing attack step 4 in Figure 3.3.7 explained in subsection 3.3.4.1.

We next move to the subsequent steps, System Logs Labeling and Network Traffic

Labeling, which depend on the constructed attack steps forest F .

3.3.5.2.3 System Logs Labeling In this step, for each host hi, we iterate over

the set Lhi
, which represents the collection of all Windows event logs on that host.

For each log l ∈ Lhi
, we further iterate over the trees in the constructed forest F ,
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where each tree Tpj ∈ F corresponds to a specific attack step. The primary objective

here is to examine whether the current log l contains any events with process IDs

matching those within the current tree Tpj that occurred within the specified time

interval [ts, te] associated with Tpj . If such events are found, they are extracted and

tagged with metadata inherited from Tpj , including details like the attack scenario,

version, step number, and step success status. This labeling process operates at

the step level, incorporating relevant MITRE ATT&CK tactics and techniques to

contextualize each event within the broader attack framework. The details of this

step is shown in algorithm 3.3.3.

Algorithm 3.3.3 Event Log Labeling

1: Elabeled ← ∅ ▷ Initialize labeled events
2: for each l ∈ Lhi

do
3: for each Tpj ∈ F do
4: π ← pj.π ▷ Extract tree metadata
5: [ts, te]← [pj.ts, pj.te]
6: (σ, ν, τ, κ, ϕ)← (pj.σ, pj.ν, pj.τ, pj.κ, pj.ϕ)
7: El,t ← {e ∈ l | e.π ∈ Tpj ∧ ts ≤ e.t ≤ te} ▷ Filter events matching π and

time interval
8: if El,t ̸= ∅ then
9: for each e ∈ El,t do
10: e← (e, σ, ν, τ, κ, ϕ) ▷ Label with tree metadata
11: Elabeled ← Elabeled ∪ {e}
12: end for
13: end if
14: end for
15: end for
16: return Elabeled

3.3.5.2.4 Network Traffic Labeling. In this step, we construct the set E5156hi
=

{e | e.EventID = 5156 ∧ e ∈ Ehi
}, which represents the collection of Windows events

with Event ID 5156, corresponding to the Windows Filtering Platform (WFP). The

WFP monitors and filters network traffic on Windows systems, and Ehi
denotes the

set of all Windows event logs at host hi. Subsequently, we iterate over the trees in

the constructed forest F and examine whether any process ID in the current tree

Tpj matches a process ID from the events in E5156hi
. If a match is found, we filter
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the relevant events and label them with the metadata of the corresponding tree Tpj ,

including attack scenario, version, attack step, step success, and so on. Similar to the

System Logs Labeling step, we also consider MITRE ATT&CK tactics and techniques

for contextualizing the events within the attack framework.

Algorithm 3.3.4 Network Traffic Labeling

1: Elabeled ← ∅ ▷ Initialize labeled events
2: E5156hi

← {e | e.EventID = 5156 ∧ e ∈ Ehi
} ▷ Construct the set of WFP events

for host hi

3: for each Tpj ∈ F do
4: π ← pj.π ▷ Extract tree metadata
5: [ts, te]← [pj.ts, pj.te]
6: (σ, ν, τ, κ, ϕ)← (pj.σ, pj.ν, pj.τ, pj.κ, pj.ϕ)
7: for each e ∈ E5156hi

do
8: if e.π = π and ts ≤ e.t ≤ te then
9: e← (e, σ, ν, τ, κ, ϕ) ▷ Label with tree metadata
10: Elabeled ← Elabeled ∪ {e}
11: end if
12: end for
13: end for
14: return Elabeled

The process of network flow labeling can be effectively performed using the packet

capture (PCAP) files collected from each host, as mentioned in subsection 3.3.2. To

associate these flows with specific attack steps, the labeling process leverages the

labeled event set Elabeled, which is constructed as described in Algorithm 3.3.4.

Based on the steps and algorithms presented, we argue that our automated la-

beling methodology, referred to as ”Process Tree Labeling,” offers superior accuracy

compared to other existing automatic labeling techniques. The approach’s effective-

ness stems from its ability to systematically associate process activities with precise

attack steps, leveraging temporal and contextual information from system logs and

network traffic data. This method enhances the fidelity of the labeling process, en-

suring that each event is accurately attributed to its corresponding stage within the

attack lifecycle, thereby improving the overall precision and reliability of the labeling

results.
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3.4 Dataset

The experimental environment comprises 25 virtual machines (VMs), including a Con-

troller, a Caldera server, domain controllers, application servers, hosts, and routers.

Over 22 valid user accounts were set up, but only 11 user credentials were leveraged

by the Benign Data Engine to generate benign data on 11 hosts. Windows Event

logs and PCAP files were collected from all Windows machines, excluding the Con-

troller; no system logs or PCAPs were collected from the Caldera server. Additionally,

PCAP files were captured from routers 1 and 2 to provide supplementary network

data, though this traffic is also captured in the PCAP files from the hosts.

The dataset was generated over 25 days, from October 10, 2024, to November 3,

2024. The Benign Data Engine continuously simulated employee behavior throughout

this time, producing benign data. Attack executions took place over 10 days, from

October 23, 2024, to November 1, 2024, resulting in a dataset containing both benign

and malicious activity during these days. The dataset exclusively contains benign

data for the initial 14 days before October 23, 2024.

We present some statistics and insights on attacks execution within the LMDG

dataset. Figure 3.4.1 illustrates the Daily Distribution of Attack Steps, with a his-

togram depicting the frequency of attack steps executed over time; each bar represents

the count of steps occurring on a particular day, with the x-axis denoting individual

days and the y-axis showing the number of occurrences, total size of attacks in LMDG

dataset is less than 1%.

Figure 3.4.2 displays the Timeline of Attack Step Occurrences by Scenario, using

a scatter plot to show the timing of attack steps across various days; each point

represents an occurrence at a specific day and time, with the x-axis indicating dates

and the y-axis showing the time of day to reveal daily distribution patterns. Distinct

color coding allows for quick differentiation among scenarios.

Figure 3.4.3 shows the Frequency Distribution of Scenario and Version Pairs,

where a bar plot represents the count of occurrences for each unique (Scenario, Ver-

sion) pair, with the x-axis listing scenario-version pairs and the y-axis showing occur-

76



3. LMDG: A FRAMEWORK FOR LATERAL MOVEMENT DATASETS GENERATION

rence counts, facilitating an effective comparison of attack frequencies across different

scenario versions. The complete execution timeline is provided in tabular format and

is available on our GitHub repository [56].

The total compressed dataset size, encompassing benign and malicious data (ex-

cluding router data), is 253 GB; when router data is included, the dataset size in-

creases to 527 GB. Specifically, the compressed PCAP file from router 1 is 201 GB,

and that from router 2 is 72 GB. The total uncompressed dataset amounts to 944 GB,

with 900.93 GB comprising PCAP files and 43.38 GB for system log files. Additional

dataset statistics for the uncompressed data are presented in Table 3.4.1.

The presented numbers reflect the raw dataset characteristics, offering a foun-

dation for extensive feature extraction. Similar to the LANL 2015 dataset, which

includes a wealth of authentication data, our dataset allows for detailed extraction of

authentication-related features and patterns. These authentication records and addi-

tional contextual information provide valuable insights for developing models in areas

such as intrusion detection, behavioral analysis, and user activity monitoring. The

dataset’s richness in event data and associated metadata establishes a comprehensive

base for various cybersecurity research tasks.
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Fig. 3.4.1: Daily Distribution of Attack Steps: This histogram visualizes the
frequency of attack steps executed over time, with each bar representing the count
of attack steps occurring on a specific day. The x-axis denotes individual days, while
the y-axis represents the number of occurrences.
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Fig. 3.4.2: Timeline of Attack Step Occurrences by Scenario: This scatter plot
illustrates the timing of attack steps across various days, with each point representing
the occurrence of an attack step on a specific day and time. The x-axis indicates
the occurrence dates, while the y-axis represents the time of day to highlight daily
distribution patterns. Each scenario is color-coded with a distinct hue, allowing for
quick differentiation of scenarios.
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Fig. 3.4.3: Frequency Distribution of Scenario and Version pairs: This bar
plot displays the count of occurrences for each distinct (Scenario, Version) pair. The
x-axis represents individual combinations of scenarios and their respective versions.
The y-axis shows the count of occurrences.

Table 3.4.1: Dataset Statistics

Statistic PCAP Size (GB) Log Size (GB)

Total Size 900.93 43.38

Average Size 37.54 2.17

Minimum Size 0.51 0.41

Maximum Size 451.00 4.97

3.5 Qualitative Analysis

The quality of a cybersecurity dataset can be regarded as a function of the distinct

phases outlined in Figure 3.6.1: specifically, the design of the testbed infrastructure

and services, the generation of benign data, the collection of logs and traffic, the

execution of attacks, and the labeling process. Each phase plays a critical role in
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determining the overall dataset quality, with improvements in the precision and rigor

of each phase contributing directly to the robustness and usability of the resulting

dataset.

In Section 3.3.2, we introduced the testbed infrastructure, which simulates a re-

alistic enterprise network environment. Within the LMDG framework, virtualization

plays a vital role in this phase, enabling the construction of highly realistic and com-

plex testbeds and network architectures. This approach allows for scalable, flexible,

and detailed emulation of enterprise networks, enhancing the authenticity and appli-

cability of the dataset for security research.

In the step of benign data generation, or user behavior simulation, we introduced

our Benign Data Engine (BDE) in Section 3.3.5.2, as depicted in Figure 3.3.2. The

quality of the generated benign data using BDE can be seen as a function of the

behavioral scripts provided to it; the more realistic these scripts are, the higher the

quality of the resulting data. In our implementation, behavioral scripts were designed

based on departmental roles and included a degree of randomization to introduce in-

dividual variation within departments. These behaviors simulated activities typical

to employees, such as logging in and out, browsing the web, requesting services from

local servers, and executing local programs, authentically replicating employee inter-

actions within the network.

For the data collection phase, our dataset—as well as any dataset generated us-

ing our framework—is comprehensive, encompassing both system logs and network

traffic data, with labeling applied to each. This dual approach ensures the dataset’s

completeness, providing a thorough record of activities within the network that allows

for detailed analysis of benign and malicious behaviors.

As discussed in Section 3.6.2 on related work, existing datasets of lateral movement

(LM) attacks exhibit several limitations, including scarcity of LM instances, outdated

attack patterns, limited diversity in techniques, short execution timeframes, and a

restricted number of hops. In contrast, the LM attacks executed in our study, detailed

in Section 3.3.4.5, address these issues by incorporating numerous LM instances that

reflect recent patterns and a variety of techniques. These attacks were executed over
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an extended timeframe of 10 days and involved multiple hops across hosts, users,

and subnets, with specific scenarios reaching up to 7 hops. Using the CALDERA

platform or similar attack emulation tools further enhances flexibility in the design

and execution of such attacks, enabling a more realistic and comprehensive dataset.

Section 3.3.5 discusses our automated labeling methodology, specifically process

tree labeling, and outlines how it achieves a higher level of accuracy compared to

other automated labeling methods. This approach is particularly well-suited for la-

beling lateral movement and advanced persistent threat (APT) attacks, as it allows

for precise tracking of process hierarchies and relationships essential in these attack

scenarios.

The LMDG framework is designed to support the generation of high-quality

datasets through its various integrated components. The LMDG dataset serves as an

exemplar of this capability, demonstrating the framework’s effectiveness in producing

datasets that are comprehensive, well-structured, and suitable for advanced research

and analysis.

3.6 Related Work

This section examines the related work pertinent to our problem from two perspec-

tives. First, 3.6.1, we review existing research on the datasets generation process

within intrusion detection and Advanced Persistent Threats (APTs) domains. This

review covers the various components of dataset generation, including testbeds infras-

tructure, dataset collection, benign data generation, attacks execution, and labeling.

Particular emphasis is placed on the available frameworks designed to facilitate this

process. In the second perspective 3.6.2, we analyze the available datasets in the

intrusion detection and APT domains, evaluating the representation of lateral move-

ment (LM) attacks within these datasets. We present our analysis of selected datasets

and propose a refined definition of lateral movement based on our findings and con-

clusions.
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3.6.1 Cybersecurity Datasets Generation

In this subsection, we review the available literature on the datasets generation pro-

cess within intrusion detection and advanced persistent threat (APT) detection, as

datasets in these domains can have instances of lateral movement attacks.

An examination of the literature reveals the existence of several frameworks specif-

ically designed for this purpose. By ”frameworks,” we refer to systems that incor-

porate varying degrees of automation in the dataset generation process, such as the

automation of testbeds, attack simulations, or labeling. In cases where a real network

environment is not used, user behavior is typically automated.

As we will discuss, not all frameworks are comprehensive in their collection of

both network traffic and system logs. Some focus exclusively on system logs [50],

while others are limited to network traffic [22, 9, 43], resulting in incomplete datasets

for a holistic analysis.

Our criteria for selecting or filtering frameworks from the literature are based

on the framework’s ability to handle lateral movement (LM) attacks, particularly

regarding attack automation and labeling.

Many frameworks, by design, are not equipped to address lateral movement (LM)

attacks [20, 38, 70, 26, 15], as their primary focus is on other attack types, such as

scanning, probing, denial-of-service (DoS), or distributed denial-of-service (DDoS) or

their labeling techniques are insufficient for accurately handling the complexities of

LM attacks. These frameworks are often tailored to detect and label attacks based

on specific characteristics, such as network traffic patterns or the identification of at-

tacker IP addresses, which are unsuitable for capturing the complexities and unique

behaviors associated with LM attacks 3.1. Consequently, these frameworks fall short

in handling the stealthy, multi-stage nature of lateral movement, which typically

involves unauthorized internal network traversal and evasion techniques that differ

significantly from the more straightforward attack types these frameworks are de-

signed to address.
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3.6.1.1 Frameworks

3.6.1.1.1 AIT Framework The AIT framework refers to the notable trilogy of

research papers [50, 49, 51] presented by Landauer et al. at the Austrian Institute of

Technology (AIT), which we regard as one of the significant contributions for dataset

generation. Landauer et al. approached the dataset creation problem from a model-

driven engineering perspective [30, 50], which addresses the issue at an abstract level,

independent of implementation specifics. This abstraction is crucial for frameworks

intended for cybersecurity dataset generation, as it provides the necessary flexibility

and scalability expected in such frameworks.

The authors presented a figure (Figure 3.6.1) that encapsulates the critical steps in

generating a cybersecurity dataset. To create such a dataset, a testbed must first be

established, with the necessary infrastructure deployed. If a real testbed is being used,

this step may already be in place. Next, appropriate data collection mechanisms must

be implemented to capture benign and malicious behaviors. In the case of synthetic

or semi-synthetic dataset generation, A robust user behavior simulation mechanism

is also required to generate or define normal user activity within the testbed. Finally,

attacks must be executed, and the relevant records associated with these attacks

must be accurately labeled. A level of abstraction and automation is required for a

framework to be practical for one or more of these steps shown in figure 3.6.1, with

particular emphasis on attack automation and labeling—two of the most challenging

aspects, as discussed in Sections 3.3.4 and 3.3.5.

Fig. 3.6.1: Abstracting the problem of cybersecurity datasets generation [51].

We argue that their work offers two primary contributions. The first is their

significant advancement in the automation of testbed infrastructure generation [50,

49], encompassing steps 1 and 2 in Figure 3.6.1. The second contribution is the
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labeling methodology they introduced, which addresses the final step in Figure 3.6.1

[49].

The authors have made significant strides in testbed infrastructure automa-

tion, leveraging tools like Terraform1, Ansible2, and OpenStack3 to implement their

Kyoush platform4. This platform is designed to automate the creation of testbeds,

allowing researchers to bypass the need to start from scratch for each new use case.

Instead, Kyoush enables the reuse of existing components and supports the iterative

development of testbeds, making the process more efficient and scalable [50]. This

contribution represents one of the few notable advancements in testbed automation,

where such tools are crucial for facilitating complex experimentation in cybersecurity

research. However, as the authors acknowledge, their approach has some limitations.

A key aspect of Kyoush’s design is its model-driven approach, which, while offering

flexibility and reusability, introduces additional complexity. Unlike a static testbed

that is set up once and used as-is, a model-driven testbed requires the formalization of

installation procedures and the separation of fixed and variable components. These

components are subject to change as different use cases arise, and the framework

must be regularly maintained to ensure its relevance and functionality. This adds to

the overall effort required during the initial setup, making the process more resource-

intensive than straightforward, static testbeds.

1 {

2 "line": 1860,

3 "labels": ["attacker_change_user", "escalate"],

4 "rules": {

5 "attacker_change_user": ["attacker.escalate.audit.su.login"],

6 "escalate": ["attacker.escalate.audit.su.login"]

7 }

8 }

Fig. 3.6.2: labelling methodology in AIT.

1https://www.terraform.io/
2https://www.ansible.com/
3https://www.openstack.org/
4https://github.com/ait-aecid/kyoushi-environment
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The current implementation of the Kyoush platform is also limited in terms of its

capabilities. It supports the creation of only three subnets and is restricted to de-

ploying Linux-based virtual machines (VMs). This narrow scope inherently limits the

range of testbeds that can be generated, particularly for scenarios that require more

diverse environments. For instance, the inability to create Windows VMs constrains

the types of user behaviors and attack simulations that can be performed.

Despite these limitations, the authors argue that the increased upfront effort re-

quired for model-driven testbed design is offset by the long-term benefits, particu-

larly when testbeds are reused across multiple scenarios. In cases where application

requirements evolve, or multiple testbed instances with slight variations are needed,

Kyoush’s iterative approach offers considerable advantages. The ability to reuse and

adapt testbeds without having to recreate them from scratch not only saves time but

also provides greater flexibility in experimental design [50]. While Kyoush presents a

promising approach to testbed automation, further development is needed to enhance

its flexibility and broaden its applicability.

The second significant contribution of the authors, as outlined in [49], is their

labeling methodology . This methodology is divided into two primary components.

The first component can be characterized as injection timing labeling [47, 35], which

operates under the assumption that all traffic or events occurring within a specified

time interval are considered malicious. To enhance the accuracy of the generated

labels, the authors complement the injection timing technique with an additional

approach that evaluates the impact of each attack step on the state of the system

logs.

This complementary approach involves crafting tailored queries to extract relevant

events from the system logs, thereby allowing for a more precise identification of

malicious activities. Through this labeling strategy, the authors successfully pinpoint

the logs associated with each specific attack step.

For instance, Figure 3.6.2 illustrates a JSON object that assigns specific labels to

an individual log entry within the associated log file. The field ”line” in the JSON

object indicates the line number of the relevant event in the original log file, while the
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”labels” field contains the corresponding classifications. In this case, line 1860 in the

log file is labeled with ”attacker change user” and ”escalate,” corresponding to the

attack step wherein the attacker attains elevated privileges. A detailed examination of

this line and other entries in the original log file reveals that these entries correspond

to the user authenticating as the root.

However, as the authors acknowledge, two significant limitations are associated

with their labeling technique. The first drawback is that this method does not guaran-

tee accurate results and should, therefore, be regarded as a complementary approach

to the injection timing labeling method, serving to increase confidence in the labels.

This limitation arises because the technique relies on string similarity, i.e., query

matching, and thus cannot differentiate between messages that are not sufficiently

distinct in the system logs, potentially leading to incorrect labeling [50, 49]. Further-

more, determining the appropriate similarity threshold is challenging, as it depends

on the structural characteristics of all potential log events [50, 49].

The second drawback pertains to the manual nature of gathering the expected

log entries for each attack step, which involves constructing queries by executing

the attacks individually to build the attack dictionary. Any introduction of new

attack steps or changes to the logging infrastructure necessitates repeating this labor-

intensive process [50, 49]. Consequently, the authors could only perform a single

attack in their evaluation [51].

Regarding attack execution , the authors designed scripts to automate this pro-

cess. Still, they did not provide much detail on how the framework handles the

automation of more complex attacks, such as lateral movement (LM) attacks 3.3.4.

In terms of dataset collection , the framework primarily focuses on capturing Linux

system logs. The authors developed a User State Machine for benign data gener-

ation to simulate normal user behavior within the system.

3.6.1.1.2 LADEMU Framework LADEMU, developed by Gjerstad et al. in

[33], is a framework designed to generate APT datasets with automatic labeling. Af-
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ter thoroughly investigating the available frameworks for lateral movement dataset

generation, we recognize LADEMU as one of the most promising approaches for this

task. The framework introduces a new direction in the accurate labeling of cyberse-

curity datasets. This novel approach leverages adversary emulation platforms, such

as Caldera, to automate attack execution and utilize the information these platforms

provide to enhance labeling precision. This contribution marks a significant advance-

ment in dataset generation for cybersecurity research.

Our framework, LMDG, builds upon and advances prior efforts in cybersecurity

dataset generation, particularly following a similar approach to that of Gjerstad et al.

[33]. However, LMDG introduces several enhancements and improvements, specifi-

cally in labeling accuracy and benign data generation, further refining the process to

address better the complexities of lateral movement and other sophisticated attack

behaviors.

Regarding testbed infrastructure generation and associated services, LADEMU

operates within a virtualization environment, requiring users to build the testbed

using tools such as VirtualBox or VMware. This same approach is employed in our

framework, LMDG.

Concerning dataset collection , LADEMU primarily captures network data via

pcap files and utilizes Sysmon logs for host-based data. Our framework, LMDG,

expands upon this by collecting all Windows event logs, not limited to Sysmon (if

configured), and performs labeling across the entire set of Windows event logs, en-

hancing the comprehensiveness of the collected data.

For benign data generation , the authors of LADEMU utilize a GHOST tool

to automate the generation of realistic user behaviors. In contrast, LMDG introduces

a more general approach through its Benign Data Engine (BDE) (section x), which

decomposes the problem into two distinct phases: session scheduling for each user and

executing behavioral scripts during those sessions. These behavioral scripts can be

any script or program, including GHOST, thus offering greater flexibility in simulating

user behaviors.

Regarding attack execution , LADEMU leverages Caldera with all its capabil-
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ities, as discussed in section 3.3.4. This same platform has also been adopted in

LMDG to facilitate and automate attack execution.

In terms of labeling , LADEMU adopts a similar approach to our method (Section

Y), utilizing process IDs of agents to construct malicious process trees corresponding

to attack steps. Then, it searches for these processes within the Sysmon log. However,

four critical distinctions exist between our approach and LADEMU’s.

Firstly, after constructing malicious process trees—where the root is the Caldera

agent—LADEMU considers interactions between processes in these malicious trees

and any benign processes. Events associated with benign processes during the inter-

action window are labeled as malicious, and the interaction typically occurs over a

very brief period (in milliseconds), as noted by the authors. This approach presents

challenges. To illustrate, consider a scenario in which a process from the malicious

tree injects code into a benign process and continues interacting with it over an ex-

tended period. The benign process may then carry out both benign and malicious

activities, but the malicious effects can manifest long after the interaction [50]. Thus,

it is inaccurate to assume that malicious activity only occurs during the interaction

window. Moreover, LADEMU labels all events associated with a benign process as

malicious if they occur during the interaction interval [t1, t2]. However, the benign

process might simultaneously perform legitimate benign events, leading to mislabel-

ing. To mitigate this issue, LMDG only labels events directly associated with the

malicious process trees, avoiding the complexities and inaccuracies of labeling benign

processes based on interaction intervals.

Secondly, in constructing malicious process trees, LADEMU relies on the root

process ID, which is the Caldera agent, along with Caldera’s start and finish times-

tamps. While using the start time is a valid approach, as process IDs may repeat

over time, relying on the finish time can result in incomplete or ”trimmed” trees. As

previously discussed, the effects of malicious activities may not manifest immediately

and could take an extended period to appear [50]. To address this limitation, LMDG

improves upon this by using the root process ID and start time while extending the

finish time beyond Caldera’s provided value. This ensures that the process trees are

89



3. LMDG: A FRAMEWORK FOR LATERAL MOVEMENT DATASETS GENERATION

fully constructed, capturing all relevant activity that might occur after the initial

finish time set by Caldera.

Thirdly, LADEMU does not remove the command and control (C&C) signals

exchanged between the Caldera server and its agents from the dataset. However,

retaining these signals may reduce the realism of the dataset, as in real-world scenar-

ios, C&C traffic may be either encrypted, disguised, or absent in logs available for

analysis. To improve the authenticity of the dataset and more accurately simulate

real-world environments, LMDG addresses this issue by filtering out C&C signals

from the final dataset. This approach ensures that the resulting logs and events are

focused on system and network behaviors that would realistically be observed with-

out revealing the underlying orchestration of the attacks, thereby providing a more

genuine reflection of an adversarial environment.

Lastly, LMDG introduces a significant enhancement over LADEMU and other

existing frameworks by offering the ability to link labeled events with individual at-

tack steps and their corresponding attack scenarios. In complex environments, it is

typical for the same attack step to appear across multiple distinct attack scenarios.

LMDG enables a more nuanced and context-aware dataset by associating labeled

events with their specific scenarios. This added level of detail is crucial for developing

and training models aimed at detecting multi-step attacks or constructing advanced

threat detection systems. The ability to differentiate between the same attack step

occurring in various scenarios aids in understanding the broader attack context. It

provides deeper insights into adversarial behaviors, thus improving the fidelity of

machine-learning models designed for cybersecurity applications.

3.6.1.1.3 CREME Framework The CREME framework, developed by Bui et

al. [15], is designed to generate labeled datasets specifically for training intrusion

detection models. In addition to dataset generation, CREME offers a mechanism for

evaluating the quality and effectiveness of the datasets it produces. As with other

frameworks reviewed, we will analyze CREME’s methodology for each cybersecurity
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dataset generation process stage.

Concerning the testbed infrastructure , the CREME framework similarly relies

on virtualization technologies for constructing its testbeds, a methodology consistent

with other frameworks, including LMDG 3.3.2. Additionally, CREME offers a certain

level of automation in the initial configuration and service initialization of the testbed

once it has been established. This automation reduces manual intervention and en-

sures that the testbed is properly configured to support subsequent cybersecurity

dataset generation and evaluation stages.

Regarding dataset collection , the CREME framework captures network traffic

in pcap format using tcpdump, collects system logs via rsyslog 5, and gathers system

resource usage information with Atop 6. However, due to the reliance on rsyslog and

Atop, the framework is inherently restricted to Linux and Unix-based environments,

limiting its applicability to Windows-based systems.

In terms of benign data generation , the framework includes a component called

the ”Reproduction Module,” which handles both the generation of benign data and

the execution of attack scripts. This module simulates normal user behavior within

the testbed by running benign programs that represent typical activities. However,

the authors provide limited details on these scripts’ specific nature or contents and

do not elaborate on the types of user behaviors simulated through them. This lack of

clarity leaves questions regarding the scope and diversity of the behaviors incorporated

into the benign data generation process.

Regarding attack execution , the ”Reproduction Module” is tasked with run-

ning the attack scripts and managing various attack phases. The authors conducted

five specific attack scenarios: Mirai botnet, ransomware, disk wipe, resource hijack-

ing, and endpoint denial-of-service (DoS) attacks. While these attacks are relatively

straightforward and can be automated using pre-defined scripts, the authors do not

address more complex attack patterns, such as lateral movement. It remains unclear

whether the ”Reproduction Module” possesses the maturity or capabilities to man-

5https://www.rsyslog.com/
6https://linux.die.net/man/1/atop
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age these sophisticated attacks, as platforms like Caldera do effectively 3.3.4. This

limitation raises questions about the framework’s extensibility for more advanced

adversarial techniques.

The labeling approach used in the CREME framework can be categorized as Be-

havioral Profiles-based [47, 35], where labeling is derived from a prior understanding

of the attack programs or compromised machines defined during the configuration

phase. For instance, network traffic is labeled malicious if it originates from pre-

defined attack machines. The framework assumes that benign programs running on

vulnerable clients or injected devices will not access the target server during the attack

period. However, as previously discussed 3.3.5, Behavioral Profiles-based labeling is

less effective for lateral movement attacks, where both benign and malicious events

are generated by the same machine, leading to potential mislabeling.

3.6.2 Available Lateral Movement Datasets

A thorough analysis of publicly available cybersecurity datasets, particularly in in-

trusion detection, reveals a significant gap: most datasets lack examples of lateral

movement (LM) attacks. Prominent datasets such as DARPA, KDD, NSL-KDD, CI-

CIDS2017, and CICIDS2018 exemplify this limitation. Although these datasets have

been widely used in research, they focus primarily on other attacks, leaving a critical

void for modeling complex, multi-stage attacks like lateral movement.

The existing body of literature offers extensive evaluations and comparisons of

these datasets and discussions on the models developed using them. Given the depth

of research in this area, we will not reanalyze these datasets here but instead direct

readers to relevant references that provide comprehensive overviews [76, 62, 67, 39,

40, 8, 28].

Our study will identify the few datasets that explicitly incorporate LM attacks.

We will examine these datasets in detail, analyzing the attack scenarios they contain,

the structure of the LM attacks, and the relevance of these datasets for training

intrusion detection models capable of detecting multi-stage attacks. This deeper
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exploration will help address the critical need for realistic LM data in cybersecurity

research, contributing to developing more robust detection systems.

The datasets selected for detailed examination in our study are LANL [44], DARPA

Engagement 5 [24], DARPA OpTC [29], PicoDomain [52], Pivoting Detection Dataset

[4], DAPT [62], Unraveled [63].

3.6.2.0.1 LANL Dataset 2015 We will devote particular attention to this

dataset, as it is the most widely used for training and evaluating lateral movement

detection models. A review of the literature reveals numerous studies that utilize this

dataset for such purposes [34, 66, 13, 7, 27, 48, 11, 18].

Two datasets originating from Los Alamos National Laboratory’s corporate (LANL),

namely, the ”Unified Host and Network Data Set” [80] and the ”Comprehensive,

Multi-Source Cyber-Security Events” (LANL 2015) [44]. The LANL 2018 dataset

constitutes a subset of network and host events procured from the LANL enterprise

network during an approximately 90-day timeframe; notably, this dataset does not

encompass any annotated instances of malicious events, thereby precluding its utility

in the evaluation of models for Lateral Movement detection. Conversely, the LANL

2015 dataset comprises a collection of Windows-based authentication events orig-

inating from individual computing nodes and centralized Active Directory domain

controller servers spanning a 58-day duration. Additionally, it encapsulates process

initiation and termination events sourced from individual Windows-based machines,

Domain Name Service (DNS) query activities as observed on internal DNS servers,

network flow data originating from various key router locations, and an explicitly de-

lineated array of red teaming exercises designed to exemplify malicious authentication

behaviors.

Upon meticulous examination of the malicious authentication incidents, it be-

comes evident that the manifestation of lateral movement is absent, substantiated by

the absence of the pivotal traversal between disparate hosts, as outlined in our pro-

posed definition of lateral movement in section 3.7. To expound further, the malicious
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data generated by the red team consists of successful authentication events character-

ized by the following attributes: time, source user, source computer, and destination

computer, as illustrated in Table 3.6.2. To analyze potential lateral movement, we

construct a directed graph using these attributes. In this graph, an edge is created

from the user to the source computer, and another is formed from the source computer

to the destination computer. By examining the paths within this directed graph, we

aimed to identify lateral movement instances. However, upon analysis, we observed

that the longest path in the graph has a length of two, meaning that the sequence

”user→ source computer→ destination computer” is the longest path present. This

suggests that no true lateral movement instances were captured in the dataset. Since

the dataset lacks a ”destination user” attribute, it is impossible to observe any user

switching, as confirmed by our analysis. We can omit the user attribute for visualiza-

tion purposes and focus on representing the graph solely with source and destination

computers. In this simplified directed graph, the longest path is of length one, in-

dicating direct connections between source and destination computers. Figure 3.6.4

illustrates this directed graph, which includes all malicious events identified in the

dataset.
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Fig. 3.6.3: LANL 2015 malicious authentications as directed graph.
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Table 3.6.1: Examples of Malicious Authentications in LANL 2015 Dataset

Time Source User Source Computer Destination Computer

151036 U748@DOM1 C17693 C305

151648 U748@DOM1 C17693 C728

151993 U6115@DOM1 C17693 C1173

3.6.2.0.2 LANL Dataset 2015 We will devote particular attention to this

dataset, as it is the most widely used for training and evaluating lateral movement

detection models. A review of the literature reveals numerous studies that utilize this

dataset for such purposes [34, 66, 13, 7, 27, 48, 11, 18].

Two datasets originating from Los Alamos National Laboratory’s corporate (LANL),

namely, the ”Unified Host and Network Data Set” [80] and the ”Comprehensive,

Multi-Source Cyber-Security Events” (LANL 2015) [44]. The LANL 2018 dataset

constitutes a subset of network and host events procured from the LANL enterprise

network during an approximately 90-day timeframe; notably, this dataset does not

encompass any annotated instances of malicious events, thereby precluding its utility

in the evaluation of models for Lateral Movement detection. Conversely, the LANL

2015 dataset comprises a collection of Windows-based authentication events orig-

inating from individual computing nodes and centralized Active Directory domain

controller servers spanning a 58-day duration. Additionally, it encapsulates process

initiation and termination events sourced from individual Windows-based machines,

Domain Name Service (DNS) query activities as observed on internal DNS servers,

network flow data originating from various key router locations, and an explicitly de-

lineated array of red teaming exercises designed to exemplify malicious authentication

behaviors.

Upon meticulous examination of the malicious authentication incidents, it be-

comes evident that the manifestation of lateral movement is absent, substantiated by

the absence of the pivotal traversal between disparate hosts, as outlined in our pro-
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posed definition of lateral movement in section 3.7. To expound further, the malicious

data generated by the red team consists of successful authentication events character-

ized by the following attributes: time, source user, source computer, and destination

computer, as illustrated in Table 3.6.2. To analyze potential lateral movement, we

construct a directed graph using these attributes. In this graph, an edge is created

from the user to the source computer, and another is formed from the source computer

to the destination computer. By examining the paths within this directed graph, we

aimed to identify lateral movement instances. However, upon analysis, we observed

that the longest path in the graph has a length of two, meaning that the sequence

”user→ source computer→ destination computer” is the longest path present. This

suggests that no true lateral movement instances were captured in the dataset. Since

the dataset lacks a ”destination user” attribute, it is impossible to observe any user

switching, as confirmed by our analysis. We can omit the user attribute for visualiza-

tion purposes and focus on representing the graph solely with source and destination

computers. In this simplified directed graph, the longest path is of length one, in-

dicating direct connections between source and destination computers. Figure 3.6.4

illustrates this directed graph, which includes all malicious events identified in the

dataset.
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Fig. 3.6.4: LANL 2015 malicious authentications as directed graph.
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Table 3.6.2: Examples of Malicious Authentications in LANL 2015 Dataset

Time Source User Source Computer Destination Computer

151036 U748@DOM1 C17693 C305

151648 U748@DOM1 C17693 C728

151993 U6115@DOM1 C17693 C1173

3.6.2.0.3 DARPA Transparent Computing Engagement 5 (DARPA 2019)

The configuration within this dataset closely resembled that of Engagement 3 [23],

albeit encompassing a larger group of hosts. The assembly consisted of 16 distinct

hosts that operated on diverse operating systems, namely Windows, Ubuntu, and

Android, mirroring the compositional framework of the preceding dataset. Before

and during the engagement, There was a phase of benign data generation. All in-

stances of attack materialized exclusively between 9 a.m. and 5 p.m. on weekdays

across eight days. In contradistinction to the third engagement, which doesn’t contain

lateral movement attacks, the present one comprises two lateral movement scenar-

ios. The first scenario is characterized by a sequence wherein attackers successfully

compromise a host within the targeted network, configuring it to function as their

command and control hub. After this, they pivoted to another Linux-based host us-

ing stolen authentication credentials. The second scenario closely parallels the first

one, involving a similar strategy wherein attackers initially gained a foothold on the

network, subsequently pivoting onto multiple intermediary hosts through SSH and

stolen credentials. Within this dataset, these two instances are the exclusive manifes-

tations of lateral movement. These instances diverge from the protracted temporal

characteristics commonly associated with lateral movements as they transpire over a

short interval. Both instances share a commonality in their approach, employing an

identical technique to accomplish lateral maneuvering.
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3.6.2.0.4 DARPA Operationally Transparent Cyber 2019 (OpTC) Com-

pared to Engagement 3 [23] and 5 [24], this dataset has many hosts, a thousand hosts

in a Windows network, and the data from five hundred hosts was collected rather than

from the complete set of hosts due to space constraints. The evaluation started with

benign record generation, followed by the red team attacks, which were performed

in three days. Benign traffic ran continuously during red team activity. Kafka, an

open-source stream-processing server, facilitates information sharing among system

components. Windows 10 endpoints employ sensors to monitor host events, packag-

ing them into JSON records sent to Kafka. These records are then translated into

eCAR format by a server and reinserted into Kafka. A data analytics component

further processes the eCAR records, converting them into a graph structure for anal-

ysis and visualization. Within this dataset, two occurrences of lateral movement are

identifiable. The initial incident occurred on the first day, involving a sequence of four

intermediary transitions across five distinct hosts, with one of these hosts designated

the domain controller. The attacker employed Windows Management Instrumenta-

tion (WMI) to effectuate the traversal between hosts, augmenting the process by

integrating additional techniques. The subsequent occurrence unfolded the next day,

likewise leveraging WMI; however, it exhibited greater complexity than its prede-

cessor, characterized by a larger number of intermediary transitions. Similar to the

circumstances in Engagement 5, this dataset exhibits a limited number of instances of

lateral movement occurring within a concise timeframe, underscored by a deficiency

in the array of strategies employed for accomplishment.

3.6.2.0.5 PicoDomain 2020 The PicoDomain [52] simulation comprised a com-

pact Windows office setting encompassing five workstations, a domain controller, and

a gateway firewall/router. This setup is connected to a limited-scale internet hous-

ing websites and adversary infrastructure. The internal network featured a Windows

Active Directory environment with distinct Organizational Units (OUs): HR, R&D,

and a confidential supersecret OU. Scripts mimicking web browsing and SMB file
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sharing were utilized, and data collection spanned three days. The Mandiant Attack

Lifecycle (MAL) [19] was the framework for outlining the adversary’s campaign strat-

egy, mainly focusing on the recurring phases of hostile campaigns. The initial MAL

stages include Initial Reconnaissance, Initial Compromise, and Establish Foothold.

Subsequent phases, repeated as necessary, encompass Escalate Privileges, Internal

Reconnaissance, Move Laterally, and Maintain Presence. The MAL concludes with

the adversary accomplishing their mission. The dataset reveals prevalent attacker en-

gagement in multiple stages. Notably, lateral movement (LM) predominantly utilized

WMI and DCOM techniques with minimal diversity. The dataset comprises a single

LM scenario over a short three-day span lacking instances with an extended temporal

scope.

3.6.2.0.6 Pivoting Detection Dataset 2017 Within this dataset [3], network

traffic information takes shape as network flows observed within a large organization

throughout a day. These flows embody the interactions of internal hosts within the

observed network setting. Each flow sample in the dataset carries a binary label, indi-

cating its involvement in a pivoting activity. The labeling process underwent manual

execution and validation. The dataset’s size reaches about 6 GB, encompassing close

to 75 million network flows. The dataset predominantly records pivoting activities

where the ”pivoter” host controlled the ”terminal” host remotely using third-party

tools like the Windows Remote Desktop protocol. It’s important to note that these

actions are typical, non-malicious pivoting activities that occurred within the mon-

itored organization. As such, they depict infrequent and harmless occurrences. As

previously noted, this dataset was gathered within a brief timeframe of just one day.

This limited duration may not be an ideal representation of Lateral Movement, which

often occurs over an extended period. Upon creating a graph that visualizes all the

pivoting activities with their temporal progression within the dataset it becomes evi-

dent that there are only a few instances of Lateral Movement, all of which involve two

hops. The specific technique employed in these pivoting instances remains unclear.
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3.6.2.0.7 DAPT 2020 The DAPT2020 [62] dataset was developed as an Ad-

vanced Persistent Threat (APT) dataset with two primary objectives: to make attacks

indistinguishable from normal traffic and to include traffic across both the public-to-

private interface and the internal (private) network. The testbed used was minimal,

consisting of two virtual machines—one connected to a private network and the other

to a public network—along with a log server and a gateway router. This simplified

architecture represents a limitation, as it does not accurately reflect the complexity

of real-world environments. Data collection spanned five days, with the first day cap-

turing only normal traffic and the subsequent four days containing various stages of

an APT attack. On the fourth day, the lateral movement phase occurred, involving

reconnaissance and exploitation activities from the compromised public VM to gain

access to critical systems on the internal network. This phase employed tools and

techniques such as Nmap for network scanning, the vsftpd 2.3.4 vulnerability, weak

SSH authentication, a MySQL script for CVE-2012-2122, and Metasploit. However,

the dataset includes only a lateral movement instance executed over a 10-hour win-

dow—a significantly shorter timeframe than realistic LM attacks, which can span

weeks or even months.

3.6.2.0.8 Unraveled Dataset 2023 The Unraveled dataset [63] builds upon the

DAPT2020 dataset, introducing significant enhancements. The testbed architecture

has been substantially improved, emulating a realistic enterprise network environ-

ment. The system architecture separates corporate and production networks with

a firewall. The organization has 15 employees, using Snort as a Network Intrusion

Detection System (NIDS) monitored by a Blue Team. The corporate network con-

tains three subnets, each simulating a department with different operating systems.

Logs are sent to a centralized ELK server in the production network. The production

network consists of a public subnet with a web server and a honeypot and a private
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subnet hosting critical services like a database, internal application, and mail server.

A firewall regulates traffic, allowing only specific public-to-private connections, while

private servers can access the public network freely. An additional enhancement in

the Unraveled dataset was the extended execution of the APT attack over six weeks.

However, the lateral movement phase remained relatively simplistic, occurring within

a single day and consisting of internal reconnaissance and password cracking. In both

the DAPT2020 and Unraveled datasets, the attack execution and labeling processes

were conducted manually.

Through a deep and thorough qualitative analysis based on the properties of lateral

movement attacks discussed in the introduction section 3.1, several recurring limi-

tations across these datasets and others have been identified, which we elaborate on

below:

(1) Scarcity of Lateral Movement Instances:

A prevalent issue across the examined datasets is the limited availability of lat-

eral movement (LM) attack instances. This scarcity hampers the ability to compre-

hensively model and detect multi-stage attacks, as datasets must include numerous

instances to reflect the diversity and complexity of real-world attack scenarios.

(2) Outdated Attack Patterns: Most datasets analyzed need to be updated,

capturing older attack strategies that may no longer align with contemporary threat

landscapes. In an ever-evolving field, datasets must reflect recent attack patterns to

ensure that intrusion detection models remain relevant and effective against emerging

threats.

(3) Lack of Diversity in LM Techniques: The datasets offer limited vari-

ation in the techniques used to perform lateral movement. In practice, attackers

employ many methods, including credential theft, remote service exploitation, and

process injection. Capturing this diversity is essential for developing robust detection

models that generalize well across different LM techniques.

(4) Short Execution Timeframes: Many LM attacks in these datasets are
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executed over brief periods, failing to capture the prolonged nature of real-world

campaigns. LM activities often extend over hours or days, requiring datasets to

reflect these extended timelines to allow accurate modeling of such behaviors.

(5) Limited Number of Hops: Several datasets restrict LM activities to a

minimal number of hops, often just a few connections between systems. However,

realistic LM scenarios typically involve multiple hops across various hosts, user ac-

counts, and subnets, better mimicking real-world attack paths.

(6) Incomplete Data Sources: Some datasets provide only partial data, such

as focusing solely on network traffic or authentication logs. For a dataset to be truly

comprehensive, it must integrate multiple data sources, including network flow data

and system logs, to enable cross-layer correlation and accurate attack reconstruction.

(7) Insufficient Emphasis on Labeling Methodology: An additional chal-

lenge lies in clearer methodologies for accurately labeling attack-related events within

system and network logs. Proper labeling is critical to associate events with specific

attack steps and phases, ensuring that the dataset remains reliable for training and

evaluation purposes.

(8) Simple Testbed Architectures: Many datasets rely on simplistic testbed

architectures, limiting their ability to simulate realistic enterprise environments. To

improve the quality and applicability of datasets, it is crucial to develop testbeds

that reflect real-world complexities, including multiple network segments, diverse user

behaviors, and complex configurations.

It is worth mentioning that despite the growing shift towards cloud-based infras-

tructure, none of the reviewed datasets provide scenarios involving lateral movement

in cloud environments. The absence of such datasets creates a significant gap, as

cloud platforms introduce unique attack vectors and challenges that must be studied

to enhance cloud security practices.

To summarize, a dataset must include sufficient LM attack instances reflecting re-

cent patterns and diverse techniques to effectively support the training and evaluation

of lateral movement (LM), APT, or Multi-step attack detection models. The attacks

should span extended timeframes and involve multiple hops across hosts, users, and
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subnets. A comprehensive dataset requires system logs and network flows, accurate

labeling methods, and generation from realistic testbeds to ensure reliability.

3.7 Discussion

Our review of lateral movement detection reveals a need for a comprehensive def-

inition of Lateral Movement. While MITRE ATT&CK [59] defines it broadly as

techniques for accessing and controlling remote systems, this vague description limits

the effectiveness of detection models, highlighting the need for a more precise and

actionable definition.

We define two key types of adversary progression: horizontal progression and

vertical progression. Horizontal progression involves gaining independent access to

multiple hosts without interdependence, which does not qualify as lateral movement.

In contrast, vertical progression describes interconnected access, where controlling

one system enables access to others. We define lateral movement as vertical

progression across hosts, accounts, or privileges, where one access leads

to another . This includes movement between hosts, accounts with elevated privi-

leges, and privilege escalation. This refined definition is essential for creating effective

detection models.

In the cloud environment, lateral movement follows a similar concept with modi-

fications. Identities (user, application, and service accounts) correspond to accounts,

requiring authentication to access resources, while permissions or policies align with

privileges, defining access levels. A key distinction in the cloud is the services layer,

which includes resources like AWS EC2 and S3, providing computing and storage.

Thus, cloud lateral movement involves vertical progression across identities, permis-

sions/policies, services, and resources. For example, an attack detailed by Microsoft

Threat Intelligence [42] involved exploiting SQL injection to access an Azure database

server and using the Instance Metadata Service (IMDS) to obtain further access to

cloud resources.
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Regarding the threat model in the LMDG dataset, it emulates realistic APT-like

scenarios where adversaries perform stealthy, persistent attacks over an extended pe-

riod. These scenarios include initial access, privilege escalation, and multi-hop lateral

movement across hosts and network subnets, reflecting the sophisticated behaviors

of modern attackers targeting enterprise networks. By leveraging the CALDERA

platform for attack emulation, the framework enables flexible attack design, support-

ing a variety of lateral movement techniques and bypassing typical security defenses.

To enhance realism, these attacks occur within a backdrop of benign user activities

generated by the Benign Data Engine (BDE), providing a nuanced environment for

distinguishing between normal and malicious behavior. This threat model thus of-

fers a robust foundation for evaluating detection and response mechanisms against

complex and dynamic cyber threats.

3.8 Conclusions and Future Work

In this work, we have comprehensively examined current cybersecurity benchmark

datasets with a specific focus on evaluating the presence and characteristics of lateral

movement (LM) attacks. Our analysis, the first of its kind, assessed LM datasets

across multiple dimensions, including the quantity and variety of LM techniques,

attack duration, number of movement hops, data sources (e.g., authentication logs,

network flows), labeling methodologies, and testbed configurations. This investigation

has highlighted gaps and challenges within existing datasets, providing insight into

the strengths and limitations of current approaches to lateral movement detection.

We developed a benchmark dataset focused explicitly on lateral movement attacks

to address the identified limitations. This dataset, designed to overcome many exist-

ing issues in LM datasets, provides a valuable resource for the research community,

facilitating the training and evaluation of more effective LM detection models. Our

qualitative dataset analysis demonstrates its applicability for various lateral move-

ment scenarios. It ensures that the diversity and complexity of attacks are suitable

for testing advanced detection techniques.
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Additionally, we introduced the Lateral Movement Dataset Generator (LMDG)

framework, a reproducible toolset for generating high-quality LM and APT datasets.

The LMDG framework automates benign data generation, attack execution, and

—crucially— the labeling of attack-related events in system and network logs. Rec-

ognizing the challenges posed by automatic labeling in LM scenarios, where benign

hosts may perform malicious actions, we proposed a novel technique, process tree la-

beling. This method offers improved precision and accuracy over existing techniques

such as injection timing, behavior profiles, and network security tools. Overall, the

contributions of this work enhance the landscape of LM dataset generation and anal-

ysis, supporting further advancements in cybersecurity research and LM detection

capabilities.

Several limitations of our framework warrant consideration. First, using virtu-

alization to construct testbeds necessitates extensive domain expertise, making the

process time-consuming and highly case-dependent, as discussed in more detail in [50].

This requirement for specialized knowledge may hinder the framework’s scalability

and accessibility. Second, the client-server architecture employed in attack automa-

tion, as outlined in Sections 3.3.4.3 and 3.3.4.4, introduces traffic and log accuracy

challenges. Specifically, the traffic generated by client-server communication must be

filtered to avoid contaminating the dataset with automation-related signals, ensuring

that the resulting data remains realistic and reflective of actual attack behaviors.

Finally, our proposed labeling methodology, process tree labeling, the most accurate

automatic labeling technique, is inherently tied to the client-server automation model.

This dependency arises from the need to identify the process IDs of deployed agents,

creating a coupling between labeling and attack automation. This coupling is dis-

cussed in more detail in [33] and may limit the applicability of our labeling approach

in environments where such client-server structures are not feasible.

While this study includes a qualitative analysis of our dataset 3.5 and compar-

isons with existing datasets in the literature, further work is needed to incorporate

quantitative analysis methods. A systematic review of current quantitative assess-

ment techniques used in cybersecurity datasets will enable us to apply rigorous, data-
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driven evaluation metrics to our dataset, enhancing its reliability and usability. In

addition, future efforts may focus on producing a more comprehensive dataset that

encompasses the full spectrum of Advanced Persistent Threat (APT) attack stages

rather than concentrating solely on lateral movement. Such a dataset would capture

all phases of APT attacks, offering a richer resource for developing and benchmarking

holistic detection models that address the complete lifecycle of sophisticated attack

vectors. This extension will advance research into multi-stage threat detection, pro-

viding excellent value for the cybersecurity community.
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CHAPTER 4

Conclusion

In this work, we have addressed critical gaps in the existing datasets related to lateral

movement (LM) attacks within the context of advanced persistent threats (APTs).

Our analysis of current cybersecurity benchmark datasets revealed significant chal-

lenges, including the scarcity of LM instances, limited diversity in LM techniques, and

the inadequacy of attack paths, particularly those involving multiple hops. Addition-

ally, many existing datasets fail to capture the complexities of cloud-based lateral

movement scenarios or present outdated attack patterns, thus limiting their useful-

ness for training robust detection models. We identified the necessity for comprehen-

sive datasets that incorporate a wider range of lateral movement activities and more

varied attack vectors to improve detection accuracy and model generalization.

To address these challenges, we developed a new benchmark dataset focused ex-

clusively on lateral movement attacks. This dataset was designed to overcome many

of the limitations of existing datasets, offering a broader range of attack types, a more

varied time frame, and a comprehensive set of data sources. Our qualitative analysis

of this dataset confirms its value for training and evaluating LM detection models,

as it captures the complexity and diversity of attack behaviors seen in real-world

scenarios.

A key contribution of this work is the Lateral Movement Dataset Generator

(LMDG) framework, which provides a reproducible toolset for generating high-quality

LM and APT datasets. The LMDG framework automates the generation of benign

data, the execution of attack scenarios, and, crucially, the labeling of attack-related
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events in system and network logs. One of the most significant challenges in LM

dataset creation is the accurate labeling of benign hosts involved in malicious ac-

tions. To address this, we introduced the novel ”process tree labeling” technique,

which significantly improves the accuracy and precision of automatic labeling in com-

parison to existing methods.

While our framework represents a significant step forward, it is not without its

limitations. The complexity of testbed construction, the challenges of automating

attack execution, and the dependency of our labeling approach on client-server archi-

tectures present barriers to scalability and broader applicability. These limitations

are acknowledged and discussed in the context of future work, which will focus on

extending the framework to support more diverse environments and incorporating

more rigorous quantitative evaluation metrics to ensure the dataset’s reliability.

Ultimately, this work contributes to the advancement of lateral movement detec-

tion by providing a more robust and realistic dataset for research and model training.

It also opens the door to developing more comprehensive datasets that encompass the

full lifecycle of APT attacks. Such datasets will be invaluable for the cybersecurity

community, supporting the development of more effective, holistic threat detection

systems capable of defending against increasingly sophisticated attack strategies.
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