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ABSTRACT

Advanced Persistent Threats (APTs) pose a significant cybersecurity risk by lever-
aging sophisticated techniques, with lateral movement (LM) playing a central role in
these attacks. Lateral movement allows adversaries to navigate through compro-
mised networks, escalating privileges, and gaining access to critical resources over
extended periods. However, the detection of lateral movement has been hindered by
a lack of comprehensive, high-quality datasets that accurately reflect the diverse and
evolving tactics used in such attacks. Existing datasets suffer from several limita-
tions, including a scarcity of lateral movement instances, outdated attack patterns,
and insufficient diversity in techniques and attack paths, especially in cloud-based
environments. Moreover, automatic labeling methods for dataset creation are often
imprecise, complicating the training of effective detection models.

This work addresses these challenges by proposing a new benchmark dataset
specifically tailored for lateral movement attacks. We conduct a comprehensive anal-
ysis of existing lateral movement attack datasets, highlighting gaps and providing
insights into the strengths and weaknesses of current approaches. In response, we in-
troduce the Lateral Movement Dataset Generator (LMDG), a framework designed to
generate high-quality datasets for lateral movement and APT detection. The LMDG
framework automates the generation of benign network traffic, simulates realistic at-
tack scenarios, and incorporates an innovative labeling technique called process tree
labeling, which improves the accuracy of automatic labeling compared to existing
methods.

Our contributions offer significant advancements in the development of lateral
movement detection systems. The new dataset provides a valuable resource for train-
ing and evaluating machine learning models, while the LMDG framework offers a
reproducible toolset for generating datasets that accurately represent real-world at-
tack behaviors. This work lays the foundation for future research into multi-stage
APT detection, enabling the development of holistic systems that can better defend

against the evolving landscape of sophisticated cyber threats.
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CHAPTER 1

Introduction

In the ever-evolving landscape of cybersecurity, the threat landscape is characterized
by increasingly sophisticated and persistent attacks. Advanced Persistent Threats
(APTs) are among the most formidable, representing a class of cyberattacks that
employ stealthy and prolonged strategies to infiltrate, control, and exfiltrate sensitive
information from targeted networks. These attacks often exploit vulnerabilities to
gain an initial foothold and, through a series of meticulous and interconnected steps,
expand control within the compromised environment. Lateral movement, a pivotal
tactic within APT campaigns, allows attackers to pivot across networked systems,
escalating privileges and accessing critical resources that were initially out of reach. As
cyber adversaries continue to refine their techniques, lateral movement has emerged
as a key strategy for evading detection, maintaining access, and progressing toward
their ultimate goals |1, |9, 19, |17].

The concept of lateral movement has been explored extensively in cybersecurity
literature, with various definitions emphasizing its importance in the progression of
cyberattacks. As defined by the MITRE ATT&CK framework, lateral movement
involves the use of techniques that enable adversaries to enter and control remote
systems within a network, with the end goal of gaining further access and discovering
valuable targets [17]. However, the literature reveals a significant gap in the clarity
and precision of this definition. While the general concept is widely acknowledged,
there is a lack of a comprehensive and universally accepted framework to characterize

lateral movement in its entirety. Existing definitions often provide a broad overview,
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but they fail to capture the nuances and complexities that define this critical phase
of an attack [12, 2, |15 |1§]. This thesis aims to address this gap by providing a
clear, precise, and comprehensive definition of lateral movement that can serve as the
foundation for more effective detection models and strategies.

The challenge in detecting lateral movement is compounded by several factors.
These attacks are often prolonged, with threat actors moving through networks over
extended periods while blending in with normal network activity. Additionally, the
sheer volume of data generated by enterprise networks makes it difficult to identify
malicious activity amidst the noise. Attackers frequently exploit legitimate authenti-
cation credentials and system tools, further obscuring their actions. The complexity
of detecting lateral movement is also heightened by the use of novel malware variants,
zero-day exploits, and evasion techniques that allow attackers to bypass conventional
detection mechanisms , , , . The growing sophistication of lateral movement
tactics has made it a critical focus for cybersecurity research, with numerous efforts
aimed at developing models for its early detection and mitigation [6].

Despite the importance of lateral movement detection, current research is hin-
dered by challenges related to data quality. The effectiveness of machine learning
(ML) models for detecting lateral movement depends heavily on the quality and ac-
curacy of the datasets used for training and evaluation. Many existing datasets suffer
from issues such as noisy labels, class imbalances, and insufficient diversity in attack
patterns, limiting their usefulness for developing robust detection models [8} [13]. Fur-
thermore, most datasets lack sufficient instances of lateral movement attacks, making
it difficult to train models that can generalize across a wide range of attack scenarios
[20, |10]. This thesis contributes to the field by addressing these challenges through
the introduction of the Lateral Movement Datasets Generator (LMDG) framework, a
comprehensive solution designed to generate high-quality lateral movement datasets.
By automating the generation of benign and attack data, as well as the labeling
process, the LMDG framework enables the creation of datasets that more accurately
reflect real-world attack scenarios |10} |14].

The contributions of this thesis are threefold. First, we conduct a thorough anal-
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ysis of existing cybersecurity benchmark datasets to assess their effectiveness in rep-
resenting lateral movement attacks. Second, we introduce a novel lateral movement
dataset that addresses many of the quality issues observed in current datasets, pro-
viding a valuable resource for training and evaluating detection models. Finally,
we propose a new automatic labeling technique, process tree labeling, which offers a
more accurate and scalable solution for labeling lateral movement activities in system
and network logs. By providing a comprehensive framework for dataset generation,
this research aims to advance the state of the art in lateral movement detection and

improve the effectiveness of cybersecurity defense mechanisms against APT's |10, |16].
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2.1 Introduction

In Cybersecurity, the persistent evolution of cyber threats poses an ongoing challenge
for organizations and individuals. Among the array of sophisticated tactics employed
by threat actors, the concept of ”lateral movement” has emerged as a pivotal strategy
for adversaries seeking to maneuver within compromised network environments. As
elucidated by the exposition in [12], Lateral Movement embodies an array of method-
ologies engaged by malevolent entities to infiltrate and orchestrate control over remote
network systems. The attainment of their intended goals is frequently characterized
by the imperative act of pivoting across an assortment of interconnected systems and
accounts. Corresponding definitions mirroring this conception of Lateral Movement
are also extant within the literature, as expounded upon in [5], [1], [10], and [15],
delineating the concept as the orchestrated movement of an attacker from a primary
host to successive nodes within a compromised network, culminating in the pursuit

of a designated target.

Our investigation into lateral movement detection through a comprehensive lit-

erature review has revealed a lack of a precise and comprehensive definition for this

concept. As an illustration, consider the definition provided by MITRE ATT&CK
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[12], which characterizes lateral movement as follows: ”Lateral Movement consists of
techniques that adversaries use to enter and control remote systems on a network.
Following through on their primary objective often requires exploring the network to
find their target and subsequently gaining access to it. Reaching their objective of-
ten involves pivoting through multiple systems and accounts.” This definition, while
informative, offers an overview of the lateral movement concept without a profound,
detailed explanation. Similarly, other literature sources showed comparable defini-
tions as mentioned above. Cybersecurity literature offers a wide array of models
designed for detecting lateral movement, APTs, anomalies, and threat hunting. It is
a reasonable expectation for these models to identify instances of lateral movement
whenever they occur. However, it’s essential to recognize that we cannot detect or
effectively combat something that remains vague and unclear. As such, it becomes
crucial to establish a precise and clear definition of lateral movement. This precision
is necessary for developing models that can accurately detect it and for evaluating

the effectiveness of existing models in identifying this particular threat.

Let’s begin by establishing two fundamental concepts: horizontal progression and
vertical progression. Horizontal progression entails obtaining an initial foothold on
one or multiple hosts within a network, with each initial access executed indepen-
dently of the others. For instance, consider a scenario where a network scan reveals
ten hosts within a segment. Among these, three have distinct vulnerabilities that
can be exploited for access. It’s important to note that each of these initial accesses
occurs in isolation. This form of horizontal progression, while significant for gaining
initial access, does not qualify as lateral movement. On the contrary, vertical pro-
gression involves accessing multiple systems where these accesses are interdependent.
To illustrate, an adversary might secure an initial foothold within network segment
A, proceed to segment B, and then advance to segment C. Importantly, these initial
accesses are not isolated but instead rely on one another. For instance, the adver-
sary gains control over a host in segment A, providing remote access to a machine in

segment B. From a machine in segment B, further access is obtained to a machine
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in segment C. Lateral movement, therefore, can be defined as the vertical
progression between hosts, accounts, or the transition from one set of priv-
ileges to another. Lateral movement across hosts occurs when an adversary gains
the ability to access host B from host A. Hosts A and B may exist within the same
subnet or across different network segments. Lateral movement between accounts,
on the other hand, transpires when an adversary secures access to account B after
having initially accessed account A. Account B may either possess higher privileges
than account A or provide access to specific resources that account A lacks access
to. Additionally, we can extend our perspective to encompass situations where an
adversary, through privilege escalation, attains access to a specific set of resources.
This can be regarded as a form of lateral movement, as the adversary transitions from

one set of resources (privileges) to another.

An illustrative instance of lateral movement, as per the defined concept, is pre-
sented in Figure in the form of a directed graph. In this scenario, an adversary
initially secures access to host H1 using account Al, along with a set of privileges
denoted as P1. The adversary then undertakes privilege escalation, transitioning
to a distinct privilege set, P2. Subsequently, the intruder accesses a new host, H3,
employing a fresh account, A7, and privileges designated as P5. Finally, access is
extended to host H5 using the same account and associated privilege set. This ex-
ample demonstrates three intermediate steps or "hops” between distinct states or
nodes within the graph. It’s important to note that each atomic lateral movement
represents a single hop within such a graph, which can be aggregated to form more
intricate pivoting behaviors. Consequently, lateral movement scenarios can be decon-
structed into these atomic movements, representing the fundamental building blocks

of lateral movement.
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(Host H1, Account A1, Privileges P1) (Host H1, Account A1, Privileges P2)

(Host H5, Account A7, Privileges P5) (Host H3, Account A7, Privileges P5)

I

Fig. 2.1.1: A Lateral Movement Example.

When discussing the cloud environment, we can apply a similar concept with a
slight adjustment. In the cloud, we encounter Identities and permissions (or policies),
which can be likened to the Accounts and Privileges mentioned in our previous defini-
tion. Identities encompass user accounts, as well as application and service accounts,
as they require authentication, similar to users when accessing resources. Permissions
or policies, on the other hand, correspond to the privileges in our earlier definition,
essentially outlining the permissions associated with each identity.

One key distinction is that, instead of having hosts or resources directly, there
exists an additional layer known as the services layer. These services, like AWS
EC2 or S3 buckets, offer resources such as compute instances and object storage.
Consequently, in the context of lateral movement in the cloud, we observe a vertical
progression encompassing identities, permissions/policies, services, and resources. A
recent example highlighted by the Microsoft Threat Intelligence team [6] involved
adversaries gaining initial access to an Azure-based database server through SQL
injection. Subsequently, they attempted to obtain a cloud identity token using the

IMDS (Instance Metadata Service) to access other cloud resources.

2.2 Datasets Analysis

Commencing with our analysis, we will examine the extant open-source datasets that
have been employed within the scholarly discourse encompassing the domains of Lat-

eral Movement detection, Advanced Persistent Threat (APT) detection, Intrusion

10
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Detection, and Threat hunting. The objective of this scrutiny is to ascertain the

presence of instances pertaining to lateral movement within these datasets.

2.2.1 LANL Datasets (2015, 2018)

Two datasets originating from Los Alamos National Laboratory’s corporate (LANL),
namely, the ”"Unified Host and Network Data Set” [17] and the ”Comprehensive,
Multi-Source Cyber-Security Events” (LANL 2015) [7]. The LANL 2018 dataset
constitutes a subset of network and host events procured from the LANL enterprise
network during an approximately 90-day timeframe; notably, this dataset does not
encompass any annotated instances of malicious events, thereby precluding its utility
in the evaluation of models for Lateral Movement detection. Conversely, the LANL
2015 dataset comprises a collection of Windows-based authentication events origi-
nating from individual computing nodes and centralized Active Directory domain
controller servers spanning a 58-day duration. Additionally, it encapsulates process
initiation and termination events sourced from individual Windows-based machines,
Domain Name Service (DNS) query activities as observed on internal DNS servers,
network flow data originating from various key router locations, and an explicitly de-
lineated array of red teaming exercises designed to exemplify malicious authentication
behaviors.

Upon meticulous examination of the malicious authentication incidents, it be-
comes evident that the manifestation of lateral movement is absent, substantiated
by the absence of the pivotal traversal between disparate hosts, as stipulated by the
aforementioned definitional parameters. To expound further, a directed graph can be
meticulously crafted to depict the interplay of these authentication activities among
hosts. An anticipated outcome within this contextualized representation would be
the emergence of pathways embodying a compositional magnitude of two or beyond.
Regrettably, the empirical observation reveals that the most protracted trajectory

within this directed graph remains confined to a singular step. The graphical illus-
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tration of the entire gamut of red teaming authentication instances is encompassed

within Figure

Fig. 2.2.1: LANL 2015 malicious authentications as directed graph.

12
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2.2.2 DARPA Transparent Computing Engagement 3 (DARPA
2018)

In this engagement’s scope, six hosts running diverse platforms, notably Nginx on
FreeBSD, Ubuntu 14.04, Ubuntu 12.04, Windows 10, and Android 6.0.1. The com-
mencement of the engagement transpired with an initial phase characterized by the
generation of benign data, where a meticulously scripted sequence of operations was
executed on each host. Following the benign data generation phase, control over the
testing environment was relinquished to the offensive team, who subsequently initi-
ated a sequence of maneuvers aimed at emulating the behaviors exhibited by both
novel and pre-existing Advanced Persistent Threats (APTs) across the entirety of the
test range. Throughout this period, a continuous stream of benign background traffic
was sustained. At the same time, activities of a malicious nature were exclusively
carried out between 9 am and 5 pm on weekdays, and the engagement lasted for five
days. Upon examining the attack scenarios within this dataset, it becomes evident
that various tactics have been employed. These encompass reconnaissance, privilege
escalation, command-and-control communication, and data exfiltration. Notably, the

dataset does not manifest any instances of lateral movement.

2.2.3 DARPA Transparent Computing Engagement 5 (DARPA
2019)

The configuration within this dataset closely resembled that of Engagement 3, albeit
encompassing a larger group of hosts. The assembly consisted of 16 distinct hosts
that operated on diverse operating systems, namely Windows, Ubuntu, and Android,
mirroring the compositional framework of the preceding dataset. Before and during
the engagement, There was a phase of benign data generation. All instances of
attack materialized exclusively between 9 a.m. and 5 p.m. on weekdays across eight
days. In contradistinction to the third engagement, the present one comprises two
lateral movement scenarios. The first scenario is characterized by a sequence wherein

attackers successfully compromise a host within the targeted network, configuring it
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to function as their command and control hub. After this, they pivoted to another
Linux-based host using stolen authentication credentials. The second scenario closely
parallels the first one, involving a similar strategy wherein attackers initially gained
a foothold on the network, subsequently pivoting onto multiple intermediary hosts
through SSH and stolen credentials. Within this dataset, these two instances are
the exclusive manifestations of lateral movement. These instances diverge from the
protracted temporal characteristics commonly associated with lateral movements as
they transpire over a short interval. Both instances share a commonality in their

approach, employing an identical technique to accomplish lateral maneuvering.

2.2.4 DARPA Operationally Transparent Cyber 2019 (OpTC)

Compared to Engagement 3 and 5, this dataset has many hosts, a thousand hosts in
a Windows network, and the data from five hundred hosts was collected rather than
from the complete set of hosts due to space constraints. The evaluation started with
benign record generation, followed by the red team attacks, which were performed
in three days. Benign traffic ran continuously during red team activity. Kafka, an
open-source stream-processing server, facilitates information sharing among system
components. Windows 10 endpoints employ sensors to monitor host events, packag-
ing them into JSON records sent to Kafka. These records are then translated into
eCAR format by a server and reinserted into Kafka. A data analytics component
further processes the eCAR records, converting them into a graph structure for anal-
ysis and visualization. Within this dataset, two occurrences of lateral movement are
identifiable. The initial incident occurred on the first day, involving a sequence of four
intermediary transitions across five distinct hosts, with one of these hosts designated
the domain controller. The attacker employed Windows Management Instrumenta-
tion (WMI) to effectuate the traversal between hosts, augmenting the process by
integrating additional techniques. The subsequent occurrence unfolded the next day,
likewise leveraging WMI; however, it exhibited greater complexity than its prede-
cessor, characterized by a larger number of intermediary transitions. Similar to the

circumstances in Engagement 5, this dataset exhibits a limited number of instances of
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lateral movement occurring within a concise timeframe, underscored by a deficiency

in the array of strategies employed for accomplishment.

2.2.5 |CERT Insider Threat Test Dataset (2020)

The CERT Insider Threat Dataset [9] is a valuable resource in cybersecurity, offering
a comprehensive collection of real-world instances and data related to insider threats.
Insider threats, which involve malicious or negligent actions taken by individuals
within an organization, pose a substantial risk to data security, intellectual property,
and operational integrity. The CERT Insider Threat Dataset significantly enhances
our ability to identify, prevent, and mitigate insider-driven security breaches by pro-
viding access to a diverse array of documented cases and associated data points. The
dataset contains five scenarios of insider threats. An example for these scenarios is as
follows: an individual previously unaccustomed to utilizing removable storage devices
or engaging in post-business hours activities initiates a pattern of logging into the sys-
tem after operational hours, employing removable storage media for data interaction,
and subsequently transmitting data to the domain ”wikileaks.org.” Following these
actions, this individual promptly disengages from organizational affiliations. This
dataset does not contain any instances of lateral movement [12], as stated in the

malicious scenarios description.

2.2.6 PicoDomain Dataset (2020)

The PicoDomain [8] simulation comprised a compact Windows office setting encom-
passing five workstations, a domain controller, and a gateway firewall /router. This
setup is connected to a limited-scale internet housing websites and adversary infras-
tructure. The internal network featured a Windows Active Directory environment
with distinct Organizational Units (OUs): HR, R&D, and a confidential supersecret
OU. Scripts mimicking web browsing and SMB file sharing were utilized, and data
collection spanned three days. The Mandiant Attack Lifecycle (MAL) [3] was the

framework for outlining the adversary’s campaign strategy, mainly focusing on the
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recurring phases of hostile campaigns. The initial MAL stages include Initial Recon-
naissance, Initial Compromise, and Establish Foothold. Subsequent phases, repeated
as necessary, encompass Escalate Privileges, Internal Reconnaissance, Move Later-
ally, and Maintain Presence. The MAL concludes with the adversary accomplishing
their mission. The dataset reveals prevalent attacker engagement in multiple stages.
Notably, lateral movement (LM) predominantly utilized WMI and DCOM techniques
with minimal diversity. The dataset comprises a single LM scenario, shown in figure

2.2.2| over a short three-day span, lacking instances with an extended temporal scope.

(1) Watering Hole Attack
(2) DCOM Lateral Movement
(3) WMIC Remote Process Creation
E E (4) WMIC Remote Process Creation
(5) Meterpreter Deployment
Staging c2 (6) WMIC Remote Process Creation

&

S0 Sensor
_Xeca

bc @ |

:m

R&D Department

HR Department
'8
IEHe-j e s e
) @ ) PR
HR-Win7-1 HR-Win7-2 RnD-Win10-1 RnD-Win10-2
Re

SuperSecretXP

Fig. 2.2.2: Lateral Movement in PicoDomain Dataset. |§|

2.2.7 DARPA Intrusion Detection Datasets (1998, 1999, 2000)

MIT Lincoln Laboratory has generated a six-week training dataset along with two-
weeks testing dataset for the 1998 DARPA Intrusion Detection Evaluation [4]. The
training data spans six weeks, with the initial two weeks seeing gradual additions of
background traffic and attacks, reaching a steady state. The subsequent four weeks
remain consistent in terms of attack types and background traffic. Data collection
occurs from 8 AM to 6 AM the next day on weekdays, giving 22 hours of daily

data. This involves continuous data collection on a network simulating over 1000
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virtual hosts and 700 users, split into inside and outside segments. There are 2
routers, 2 hubs, fewer than 40 inside hosts, and approximately 13 outside hosts.
After a thorough examination of the dataset, we’ve observed the absence of Lateral
Movement instances. In total, the dataset encompasses more than 100 instances of
20 distinct attack types, encompassing activities such as denial of service, remote
unauthorized access, local privilege escalation, surveillance, probing, and anomalous
user behavior. It’s noteworthy to point out that there is a single type of attack
labeled "multihop,” which, despite its name, could be argued as not fitting the lateral
movement category since it lacks the pivotal traversal between disparate hosts, as

defined in the introduction.

2.2.8 NDSec-1 Dataset (2017)

The authors created the dataset [2] by setting up a network with two parts: a private
network (used by a company or organization) and a simulated Internet. These parts
were divided by a router that acted as a NAT gateway and firewall for the private
network. The private side had various workstations and machines running different
Windows and Linux versions. A tcpdump sensor captured traffic within the private
network. Log event data were collected on each host. The dataset contains three
attack scenarios, in which we can consider the first two as demonstration of lateral
movement. In the first attack, a machine simulated a compromised BYOD host within
a secure network. Attack methods such as brute-forcing, ARP, and DNS spoofing
were employed against SSH, email, and web servers. The second scenario involved a
brute-force attack on a web server, resulting in an SQL injection that accessed login
details and password hashes from the database. This impacted a small user group,
where customized malware was utilized to encrypt files on two hosts and report to an
external server. It’s noticeable that this dataset comprises just two scenarios, both
executed within a single day. The lateral movement path’s extent can be seen as

encompassing two hops.
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2.2.9 Pivoting Detection Dataset (2017)

Within this dataset |1], network traffic information takes shape as network flows
observed within a large organization throughout a day. These flows embody the
interactions of internal hosts within the observed network setting. Each flow sample
in the dataset carries a binary label, indicating its involvement in a pivoting activity.
The labeling process underwent manual execution and validation. The dataset’s size
reaches about 6 GB, encompassing close to 75 million network flows. The dataset
predominantly records pivoting activities where the ”pivoter” host controlled the
"terminal” host remotely using third-party tools like the Windows Remote Desktop
protocol. It’s important to note that these actions are typical, non-malicious pivoting
activities that occurred within the monitored organization. As such, they depict
infrequent and harmless occurrences. As previously noted, this dataset was gathered
within a brief timeframe of just one day. This limited duration may not be an ideal
representation of Lateral Movement, which often occurs over an extended period.
Upon creating a graph that visualizes all the pivoting activities with their temporal

progression within the dataset in figures [2.2.3|[2.2.4][2.2.5[[2.2.6 it becomes evident

that there are only a few instances of Lateral Movement, all of which involve two
hops. The specific technique employed in these pivoting instances remains unclear;

however, it is noteworthy that all of them were executed over TCP.
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2.2.10 StreamSpot Dataset (2016)

The creation of this dataset |11] aimed to address the challenge of identifying anoma-
lies within a continuous flow of heterogeneous graphs that consist of various node
and edge types. The goal was to achieve real-time detection using limited memory
resources. This problem finds its roots in security applications, particularly in de-
tecting advanced persistent threats (APTs) at the host level. The dataset comprises
flow-graphs originating from one attack and five benign scenarios, all executed on a
single host. The benign scenarios encompass routine online activities such as brows-
ing YouTube, downloading files, visiting cnn.com, using Gmail, and playing a video
game. The attack scenario involves a drive-by download through a malicious URL,
exploiting a Flash vulnerability to gain root access on the host. To capture these
scenarios, Selenium Remote Control automated the execution of 100 tasks. The flow
graphs for each task were constructed using traced system calls from the task’s initi-
ation until completion. As explained this dataset does not contain any instances of

lateral movement.

2.2.11 [ISCX Intrusion Detection Evaluation Dataset (2012)

The experimental network setup in [16] comprises 21 interconnected Windows work-
stations that are operating on different versions of the Windows OS, namely Windows
XP and 7. These workstations have been distributed among four separate LANSs,
while a fifth LAN has been designated for servers offering essential services such as
web hosting, email communication, DNS (Domain Name System), and Network Ad-
dress Translation (NAT). The NAT server has a dual role: it serves as the gateway
for the network’s connection to the Internet. It concurrently functions as a firewall,
permitting legitimate communication and obstructing unauthorized access attempts.
Positioned as the network’s primary hub, the main server undertakes responsibilities,
including hosting the network’s website, managing email services, and serving as the
internal name resolver. Additionally, a secondary server is dedicated to handling

internal ASP.NET applications. The main server and the NAT server run a Linux
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operating system. The paper’s description of the attack scenarios reveals four distinct
attacks spanning a week. Upon analyzing these attacks, it becomes apparent that
each case involved a series of lateral movements, encompassing two successive hops,
passing through three hosts. The sequence of lateral movements consistently began
with the targeted hosts receiving a deceptive email containing a malicious PDF file
harboring a reverse TCP shell. Subsequently, both the initial and secondary hops
followed a uniform approach, exploiting hosts operating Windows XP and utilizing
a vulnerable SMB authentication protocol. Notably, there was only a single occur-
rence where the second hop was executed through a brute force method to ascertain
user credentials. It is evident from the dataset that there needs to be more varied
methodologies for executing lateral movement. Additionally, all instances of lateral
movement follow a consistent pattern, consisting of a predetermined sequence span-

ning two hops. These movements occur briefly, confined explicitly to a single day.

2.2.12 DAPT (2020)

The DAPT2020 |13] dataset was developed as an Advanced Persistent Threat (APT)
dataset with two primary objectives: to make attacks indistinguishable from normal
traffic and to include traffic across both the public-to-private interface and the inter-
nal (private) network. The testbed used was minimal, consisting of two virtual ma-
chines—one connected to a private network and the other to a public network—along
with a log server and a gateway router. This simplified architecture represents a lim-
itation, as it does not accurately reflect the complexity of real-world environments.
Data collection spanned five days, with the first day capturing only normal traffic and
the subsequent four days containing various stages of an APT attack. On the fourth
day, the lateral movement phase occurred, involving reconnaissance and exploitation
activities from the compromised public VM to gain access to critical systems on the
internal network. This phase employed tools and techniques such as Nmap for net-
work scanning, the vsftpd 2.3.4 vulnerability, weak SSH authentication, a MySQL
script for CVE-2012-2122, and Metasploit. However, the dataset includes only a

lateral movement instance executed over a 10-hour window—a significantly shorter
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timeframe than realistic LM attacks, which can span weeks or even months.

2.2.13 |Unraveled (2023)

The Unraveled dataset [14] builds upon the DAPT2020 dataset, introducing sig-
nificant enhancements. The testbed architecture has been substantially improved,
emulating a realistic enterprise network environment. The system architecture sep-
arates corporate and production networks with a firewall. The organization has 15
employees, using Snort as a Network Intrusion Detection System (NIDS) monitored
by a Blue Team. The corporate network contains three subnets, each simulating
a department with different operating systems. Logs are sent to a centralized ELK
server in the production network. The production network consists of a public subnet
with a web server and a honeypot and a private subnet hosting critical services like
a database, internal application, and mail server. A firewall regulates traffic, allow-
ing only specific public-to-private connections, while private servers can access the
public network freely. An additional enhancement in the Unraveled dataset was the
extended execution of the APT attack over six weeks. However, the lateral movement
phase remained relatively simplistic, occurring within a single day and consisting of
internal reconnaissance and password cracking. In both the DAPT2020 and Unrav-

eled datasets, the attack execution and labeling processes were conducted manually.

2.3 Conclusion

In summary, the current datasets face significant challenges, highlighting the need
to develop a new dataset that effectively addresses these issues. These challenges
encompass a shortage of Lateral Movement instances in existing datasets, which hin-
ders model training and generalization. Furthermore, the limited diversity in Lateral
Movement techniques and the often short timeframes associated with these activi-

ties present additional obstacles in creating robust detection models. Moreover, the
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prevalence of Lateral Movement paths comprising only a few hops limits the cur-
rent datasets’ scope and symbolic value. The absence of dedicated datasets tailored
for Cloud-based Lateral Movement scenarios further underscores the need for com-
prehensive and up-to-date resources in this domain. Another critical concern is the
obsolescence of existing datasets, rendering them inadequate for capturing recent at-
tack patterns and trends. Lastly, some datasets offer only a partial view of the overall
threat landscape, focusing solely on network flow data, thus emphasizing the neces-
sity for more comprehensive datasets encompassing a broader spectrum of Lateral
Movement activities. Addressing these challenges in dataset creation is paramount

to advancing the efficacy of Lateral Movement detection models in cybersecurity.
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CHAPTER 3
LMDG: A FPramework for Lateral

Movement Datasets Generation

ANAS MABROUK, MOHAMED HATEM, SHERIF SAAD, AND MOHAM-
MAD MAMUN

In Press

3.1 Introduction

Advanced Persistent Threats (APTs) represent a sophisticated category of cyberat-
tacks characterized by their prolonged and stealthy presence within a targeted com-
puter system or network, aimed at ultimately exfiltrating sensitive data or causing
significant harm [1, |31} [76]. APTs employ a diverse array of techniques and tactics
meticulously crafted to circumvent the defensive mechanisms of the victim’s security
infrastructure [59].

Among the array of sophisticated techniques employed by advanced threat actors,
the concept of ”Lateral Movement” has emerged as a critical strategy for adversaries
seeking to maneuver within compromised network environments. As elucidated by the
exposition in [59], Lateral Movement embodies an array of methodologies engaged by
malevolent entities to infiltrate and orchestrate control over remote network systems.
The attainment of their intended goals is frequently characterized by the imperative
act of pivoting across an assortment of interconnected systems and accounts. Corre-
sponding definitions mirroring this conception of Lateral Movement are also extant
within the literature, as expounded upon in [41], [3], [54], and [65], delineating the

concept as the orchestrated movement of an attacker from a primary host to succes-
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sive nodes within a compromised network, culminating in the pursuit of a valuable
target.

Lateral movement-based attacks are becoming a growing threat to large private
and government networks, frequently causing information exfiltration and service dis-
ruptions [12]. Analyzing various APT campaigns reveals that nearly all employ lateral
movement to navigate networks. The purpose of lateral movement is to transition
from one system to another, infiltrating additional resources and gaining higher priv-
ileges. This process enables attackers to discover and collect valuable data, expand
their control over the targeted organization, and maintain long-term access to the
compromised IT infrastructure |81} |1, 31, [71]. Since lateral movement is a crucial
phase in an APT attack, early detection is vital to minimize losses and prevent at-
tackers from gaining further access to the network [10].

Detecting Lateral Movement attacks poses a significant challenge, primarily due
to several factors; firstly, the prolonged duration of these attacks, which can extend
over months, significantly complicates their detection. Additionally, the sheer vol-
ume of enterprise traffic provides adversaries ample opportunities to blend in and
seamlessly remain undetected amidst regular network activity. Various tactics and
techniques exist for executing Lateral Movement attacks, often leaving traces within
network and system logs [59]. Attackers can effectively evade detection mechanisms
by leveraging legitimate authentication credentials, system tools, and other evasion
techniques. Furthermore, the prevalence of false security alerts further adds to the
difficulty of distinguishing genuine threats from benign anomalies. Moreover, the in-
corporation of zero-day exploits or novel malware variants as part of these attacks
further amplifies the complexity of detection [10, 37, |14} 6} 4].

Current research endeavors for lateral movement detection rely on machine learn-
ing [74, (12, 53| |77, 55]. The machine learning paradigm depends heavily on datasets
to train and evaluate detection models, and the quality of these datasets directly
impacts model performance and evaluation accuracy. Without high-quality training
data, models can exhibit performance discrepancies, reducing accuracy and increas-

ing false positives [25] [45] (see section [3.2). A growing body of literature explores
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the evidence supporting that neglecting the fundamental importance of data has led
to inaccuracies and bias in ML models [57]. For instance, researchers in [16] demon-
strated that even minor modifications to a benchmark dataset significantly impact
model performance more than the specific machine learning technique. Therefore,
better data quality is essential to improve generalization and avoid bias in machine
learning models [5, 69].

Most cybersecurity datasets suffer from quality issues, particularly those contain-
ing lateral movement attacks. Common data quality problems include noisy labels,
insufficient labeling, class imbalance, limited diversity of attack patterns, outdated
attack types, simplistic synthetic generation environments, and short generation pe-
riods (see section . Additionally many existing datasets either lack instances of
lateral movement attacks altogether or contain only a limited number of such in-
stances|79, |45, 135}, [17]. Consequently, developing a comprehensive dataset, or ideally
a framework, that addresses these challenges and others is essential for advancing
research in lateral movement detection.

To this end, our paper introduces a framework called LMDG (Lateral Movement
Datasets Generator), which addresses most of the issues discussed in sections and

3.6l Our contributions can be summarized as follows:

e Conducting a thorough analysis of current cybersecurity benchmark datasets
to assess the presence of lateral movement attacks. For datasets containing LM
attacks, we analyze the properties of these attacks, including the number of
LM attacks, diversity of techniques used, the time frame of the attacks, num-
ber of hops or LM movements, data sources collected from these attacks (e.g.,
authentication logs, network flows), labeling methods employed, and testbed
architecture used [3.6] To the best of our knowledge, this study presents the

first analysis specifically tailored for evaluating lateral movement datasets.

e Creating a benchmark dataset focused on lateral movement attacks that address

many of the existing issues in current LM datasets and conducting a qualitative
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analysis of it This dataset will be valuable for the research community

in training and evaluating LM detection models.

e Developing the LMDG framework used to generate the dataset, providing a re-
producible framework for creating lateral movement/APT datasets (see section
. The framework automates the generation of benign data (i.e., normal em-
ployees behavior) , the execution of attack scenarios and, crucially,
the labeling process (i.e., labeling the records in the system and network logs
associated with the attacks). Automatic labeling is particularly challenging in
lateral movement datasets due to benign internal hosts performing malicious
activities. In the literature on cybersecurity dataset generation, three primary
automatic labeling techniques are discussed: Injection Timing, Behavior Pro-
files, and Network Security Tools [35, 47]. We propose a new automatic labeling
technique, process tree labeling, which we argue is better and more accurate than

all other automatic labeling techniques [3.3.5|

3.2 Challenges of Cybersecurity Datasets Creation

As indicated by [45] |75}, 78], the lack of high-quality public datasets significantly hin-
ders the experimentation and evaluation of Intrusion Detection Systems (IDS), es-
pecially anomaly-based detectors. This scarcity arises from several challenges, which
can be categorized into four groups: general challenges and those specific to realistic,

synthetic, and semi-synthetic datasets.

3.2.1 General Challenges

Complex attacks, e.g., Advanced Persistent Threats (APTs), do not follow a uniform
path and continually evolve, exploiting new vulnerabilities and tools to stay effective
and are performed over prolonged periods. Hence, datasets need to cover extensive

periods, often several months, which presents significant challenges in data storage
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and processing [76]. Moreover, accurately labeling such large datasets requires ex-
pert knowledge, adding to the burden [76]. Despite these challenges, more research
is needed to develop consistent metrics to assess the realism of datasets in terms of
live network performance and the distribution of anomalies and threats [45]. Further-
more, data quality issues such as inconsistency, duplication, incompleteness, lack of
comprehension, absence of variety, and imprecise timestamps can compromise the ef-
fectiveness of machine learning models [79]. The difficulty in obtaining representative
and accurately labeled datasets is compounded by the rapid evolution of malicious

behaviors, which quickly renders existing datasets obsolete [35].

3.2.2 Realistic Datasets

Experimentation and data collection on live networks are typically infeasible, es-
pecially for systems with business or mission-critical functions or where the data
contains sensitive information [45]. In addition, specialized malware generators and
well-insulated network infrastructure are required to limit the damage from any mal-
ware or threat simulations [45]. The primary challenge arises from the sensitive
nature of the data: inspecting network traffic can reveal highly sensitive informa-
tion, including confidential or personal communications, an organization’s business
secrets, or its users’ network access patterns. Any breach of such information can
be catastrophic for the organization and affected third parties, leading researchers
to face insurmountable organizational and legal barriers when attempting to provide
datasets to the community [75]. Organizations capable of producing and publishing
representative and accurate data are often reluctant due to the risk of exposing sensi-
tive information, while efforts to anonymize data are considered prohibitively costly
[35]. Although sanitizing captured data by removing or anonymizing sensitive infor-
mation has been tried, these efforts have seen limited success due to the persistent
fear that information can still leak, a well justified concern; additionally, maintaining

such datasets can be prohibitively expensive [75].
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3.2.3 Synthetic Datasets

Creating representative environments for IDS datasets requires a skillful design that
includes numerous network assets such as simulated servers, clients, routers, and
switches, making these datasets challenging to create and maintain [45]. Existing
datasets often represent only a synthetic subset of infrastructure, and network repre-
sentation is a critical issue identified in analyzing several major public labeled datasets
[45]. Due to the scarcity of public data, researchers frequently need to assemble their
datasets. However, this is challenging as most researchers lack access to appropriately
sized networks. The activity in a small laboratory network fundamentally differs from
the aggregate traffic seen in larger networks where NIDSs are deployed, making it dif-
ficult to generalize conclusions from small environments to more extensive settings
[75,|17]. While synthetic datasets can be free of sensitivity concerns, realistically, sim-
ulating Internet traffic is difficult. Anomaly detection systems evaluated using only
simulated activity often lack realism and relevance [75, 17]. Additionally, synthetic
datasets have several drawbacks, including the absence of noise, leading to unrealis-
tically good detection results, a limited range of threat event types, a lack of label
accuracy, and potential biases from following an insufficiently accurate synthetic user
model |76, 45]. The absence of a systematic approach for dataset generation that can
be frequently updated further complicates the creation of high-quality datasets 35|
17].

3.2.4 Semi-synthetic Datasets

Semi-synthetic datasets combine realistic data, often collected from network traffic
or system logs, with synthetic data. This fusion offers advantages but also inherits
challenges from both sources. As noted in [73], semi-synthetic datasets can suffer
from limitations in both real and synthetic data. Integration between the two data
types can be complex, ensuring they reflect real-world relationships. Additionally,
the synthetic component can introduce bias if not carefully constructed [76]. This ne-

cessitates techniques that ensure the synthetic data accurately reflects the statistical
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properties of the real data, preventing the model from learning unrealistic patterns.

3.3 LMDG Framework

3.3.1 Overview

The LMDG framework leverages virtualization technologies, specifically using Virtu-
alBox, to simulate organizational networks. As discussed in Section synthetically
generated datasets offer several advantages, such as the ability to create controlled
and repeatable experimental conditions and the flexibility to simulate a wide range
of attack scenarios and network configurations. However, they also come with limi-
tations, such as a potential lack of realism and the challenge of accurately mimicking
real-world traffic patterns and user behaviors. The LMDG framework addresses these
downsides by incorporating advanced virtualization techniques and realistic scenario
generation, thereby enhancing the fidelity and utility of the synthetic datasets for
research in lateral movement detection. One of the key features of VirtualBox is its
ability to configure virtual machines to join various types of virtual networks, includ-
ing NAT networks, Bridged networks, Internal networks, and Host-Only networks,
among others. This capability provides significant flexibility in simulating diverse
organizational network environments. Each type of virtual network serves distinct
purposes: NAT networks facilitate internet access for virtual machines while isolating
them from the host network; Bridged networks allow virtual machines to appear as
separate entities on the physical network, enabling direct communication with other
physical and virtual devices; Internal networks restrict communication to virtual ma-
chines within the same network, enhancing security and isolation for specific test
environments; and Host-Only networks enable communication solely between the vir-
tual machines and the host system, without external network access. These diverse
networking options empower researchers to accurately emulate the unique topologies
and structures of different organizational networks, thereby enhancing the realism

and applicability of the simulations for research in lateral movement detection and
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other cybersecurity studies.

Active Directory (AD), Microsoft’s directory service, is widely recognized as the
most popular solution for managing and organizing I'T profiles within organizations,
facilitating essential functions such as authentication, authorization, and account-
ing. Its extensive adoption stems from its robust capabilities in centralized user
and resource management, policy enforcement, and security administration across
Windows-based environments [61, 58]. The recent CrowdStrike incident underscored
the profound dependence of businesses and organizations on Windows-based systems.
The large-scale outage disrupted critical IT operations across numerous industries,
halting business activities and leading to substantial financial losses |64} 46].

Building on the virtualization technology, the LMDG framework leverages Win-
dows Domains and Active Directory to simulate comprehensive network software
configurations within organizational settings. This integration enables the creation
of realistic and dynamic network environments that closely mimic real-world orga-
nizational infrastructures, enhancing the accuracy and relevance of the generated
datasets for research in lateral movement detection and other cybersecurity applica-
tions. By utilizing these technologies, the LMDG framework provides a valuable tool
for studying and mitigating advanced persistent threats (APTs) and other complex
cyber-attacks in environments that reflect the actual operational scenarios of many
enterprises.

For log collection, the LMDG framework employs packet-capturing technology,
such as Wireshark, to acquire network traffic traces that can subsequently be pro-
cessed to create network flow records. This method ensures detailed and granular
capture of network interactions, providing a rich dataset for analysis. A continuously
running service is deployed on every host and gateway within the simulated envi-
ronment to ensure robustness. This service is designed to capture and store network
traffic persistently, even in the event of system crashes, thereby providing the integrity
and continuity of the traffic data. Due to its comprehensive and robust logging capa-
bilities, the LMDG framework leverages Windows Event Logs regarding system log

collection. Windows Event Logs offer detailed system and application event records,
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including security events, system performance data, and operational diagnostics. This
extensive logging is critical for creating accurate and reliable datasets, as it captures
various events and activities within the Windows environment. By integrating these
technologies, the LMDG framework ensures the collection of high-fidelity data essen-
tial for developing and evaluating advanced cybersecurity detection models, particu-
larly in the context of lateral movement and other sophisticated attack vectors.

In the following subsections, we will provide a detailed discussion of our network
topology [3.3.2] which can be easily extended and tailored to various topologies based
on the target enterprise network. We will also elaborate on the Benign Data En-
gine (BDE) crucial in generating realistic benign user behavior essential for
any credible dataset. Furthermore, we will describe the Attack Engine [3.3.4] which
automates adversary emulation to facilitate flexible and efficient execution of attacks.
Finally, we will focus on the most significant and innovative component of the LMDG
framework, the Labelling Engine (LE) [3.3.5l The LE can automatically and accu-
rately extract records associated with attacks from network and system logs with
minimal noise, utilizing process tree labeling method. This capability is particularly

challenging yet essential, as internal hosts often execute lateral movement attacks.

3.3.2 Testbed Infrastructure

This network, showed in figure [3.3.1], simulates a small-sized company with five de-
partments, each residing in a distinct network segment with its dedicated Windows do-
main. For instance, the Sales department operates within the domain of sales.Imt.com
and is situated in the subnet 192.168.59.0/24 with its dedicated domain controller
DC' 3. Three additional subnets are present in the network configuration: one signi-
fies the root Windows domain [mt.com, another accommodates the company’s servers,
and a third denotes a DMZ, i.e., 192.168.0.0/2 which is part of the IT Windows
domain. Routers facilitate connections between these diverse subnets. Naturally, the
structure of this network can be adjusted and expanded as needed.

In our experimental setup, VirtualBox networking was utilized to configure net-

work segmentation. All subnets were established as internal networks, isolating them
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Fig. 3.3.1: The network topology used to generate LMDG dataset.

from external traffic, except the Demilitarized Zone (DMZ), which was configured
as a NAT network. This NAT configuration allows the DMZ to communicate with
external networks while maintaining the isolation of internal subnets, supporting a
realistic simulation of enterprise network structures.

The experimental environment was configured with all Windows 10 and Windows
11 operating systems hosts, while servers operated on Windows Server 2022. This
selection reflects commonly deployed systems in modern enterprise networks, ensuring
the realism and relevance of the simulated environment for cybersecurity research.

This topology is realistic and superior to many commonly used topologies in the
literature for several reasons. Firstly, it mirrors the complex, segmented network
structure of a typical small to medium-sized enterprise, incorporating multiple sub-
nets and dedicated Windows domains for different departments. This segmentation

enhances security and reflects real-world organizational practices. Additionally, the
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inclusion of a Demilitarized Zone (DMZ) for public-facing services and separate sub-
nets for critical infrastructure such as company servers and root domains provide
a more accurate and comprehensive environment for generating datasets. These el-
ements contribute to a higher fidelity simulation of enterprise network traffic and
potential security threats, making the datasets derived from this topology more ap-

plicable and valuable for the research community.

3.3.3 Benign Data Engine (BDE)

In the context of the LMDG framework, the Benign Data Engine (BDE) is tasked
with generating normal network behavior, effectively simulating employee activities.
Figure provides an overview of the BDE engine, which comprises two primary
components: the Sessions Scheduler and the Sessions Executor [3.3.3.2]

The engine operates based on four key inputs:

e User Credentials and Hosts: This includes the credentials of employees and

the specific hosts (workstations or devices) they use within the network.

e Sessions Scheduler Configuration File: This file defines the parameters for
the Sessions Scheduler, dictating how it should generate and manage sessions

timing for each user or employee.

e Behavioral Scripts: These scripts detail the activities of employees, it can
operate on both individual level and a departmental level, such as those specific
to the I'T department. They encapsulate routine tasks and behaviors expected

in a typical workday.

The Sessions Scheduler orchestrates generating session behaviors (i.e., login and
logout times), ensuring the simulated activities align with realistic standard user be-
havior patterns. Concurrently, the Sessions Executor enables the efficient simulation

of multiple user sessions, reflecting the concurrent activities of various employees
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within the network. This design enhances the generated data’s realism and ensures
scalability and performance in simulating complex network environments.

These blocks will be
repeatedly executed hased
on the times created by the
sessions controller in sets
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Fig. 3.3.2: Benign Data Engine (BDE) overview.

3.3.3.1 Sessions Scheduler

The role of the Sessions Scheduler is to generate a list of tuples

Si = [(t1,t2), (t3,ta), ..., (tan;—1, Lok, )]

for each employee i, representing their session behavior. Each tuple (t2j_1, t2;) denotes
the login and logout times of a session, where ?5;_; is the login time and t,; is the
logout time. The duration of a session is given by ty; — t2;_1. The final output of
the Sessions Scheduler is a list of lists 7 = [S1,Sa, . . ., Sy, where T encapsulates the
session behaviors for all n employees in the network. Each S; in T provides a detailed
account of an individual employee’s login and logout activities throughout the day.
The process by which the Sessions Scheduler generates the lists S; for an employee
1 is outlined as follows. Initially, the Sessions Scheduler determines whether employee

i is absent based on probability values specified in the configuration file (third input,
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Figure defined by the dataset creators. For instance, the dataset creators can
define a probability interval [pi,ps], where 0 < py,ps < 1. The Sessions Scheduler
then selects a random value from this interval to represent the probability of employee
1 being absent on a given day. This approach ensures that each employee ¢ has a
distinct probability of being absent. If employee ¢ is absent, then the list §; = @.
Additionally, there is a separate probability interval [p}, py| for determining absences
during weekends, which typically corresponds to a higher probability of absence. The
Sessions Scheduler selects a random value from this interval for weekends, reflecting
the increased likelihood of employees being absent on non-working days.

If employee i is not absent, the Sessions Scheduler will proceed to generate the list
S;. Initially, it determines the starting time (first login) for employee i. To facilitate
this, the dataset creators define four time intervals representing various starting times:
abnormally early, abnormally late, late, and on time. These intervals are denoted as
[te1, tea], [ta1,ta2], [tin,ti2], and [te1,ts2] respectively. To determine the four possible
starting times for the current employee i, the Sessions Scheduler randomly selects a
value from each of the four corresponding intervals. Thus, for employee i, there ex-
ist four distinct candidate starting times denoted as tstart_abnormal_carlys Tstart_abnormal lates
tstart ate, aNd Ttart_on time- 1N the configuration file, operators can define different prob-
ability intervals for each possible starting time, namely [pe1, Deas [Pa1, Pa2)s [Pi1, Pi2],
and [po1,Po2]. It is noteworthy that the probability intervals [pe1, pes] and [pa1, Pa2]
are typically very small, reflecting the rarity of abnormally early and abnormally
late starting times. Conversely, the interval [py1, pos] is usually assigned the highest
probabilities, indicating the likelihood of employees starting on time. Consequently,
the Sessions Scheduler assigns a random probability value to each candidate starting
time, drawn from their respective probability intervals. This process can be likened
to tossing an unfair tetrahedron (a die with four faces), where each face represents
a starting time option. The resulting face corresponds to the actual starting time of
employee i, denoted as tq.r¢, Which constitutes the first value of the first tuple in the
list S;, i.e., t;. Thus, the Sessions Scheduler effectively determines the starting time

for employee ¢ using this probabilistic method, ensuring that each potential starting
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time is considered.

Selecting the end time t.,q for each employee ¢, denoted as the second time in the
last tuple of the list S; (i.e., last logout time t, ), undergoes a process akin to deter-
mining the start time ¢g.,¢. Similarly, the Sessions Scheduler employs a probabilistic
approach, mirroring the methodology used for selecting t...¢. Dataset creators define
intervals representing various end times, such as abnormally early, abnormally late,
late, and on time, each associated with corresponding probability intervals.

This probabilistic approach to determining employee starting and ending times
offers flexibility and realism by modeling diverse punctuality behaviors. By assigning
higher probabilities to on-time arrivals and accommodating randomness, it captures
the dynamic nature of workplace scenarios. This method ensures the creation of
diverse datasets, preventing predictable patterns and simulating unexpected occur-
rences. Ultimately, it enables the Sessions Scheduler to generate session behavior
lists that closely resemble real-world employee activities, facilitating the creation of
valuable network traffic datasets for applications such as security analysis, anomaly
detection, and performance optimization.

The Sessions Scheduler is not limited to drawing values from the defined time
and probability intervals using a uniform distribution; it can also utilize exponential
and normal distributions. For instance, consider Figure |3.3.3] which illustrates the
Sessions Scheduler’s process of selecting the value for tgart abnormalearly over 20,000
iterations. In this example, the Sessions Scheduler is configured to draw a time value
t within the interval [3:30 AM - 7:29 AM] according to an exponential distribution
with a lambda A = 0.00037, where A is the distribution parameter. By plotting the
frequency of each minute between 3:30 AM and 7:29 AM, Figure demonstrates
that the Sessions Scheduler successfully draws values in accordance with the spec-
ified exponential distribution. This capability allows for more realistic and varied
simulations of employee behavior.

Figure [3.3.4] presents a similar experiment in which the Sessions Scheduler draws
20,000 values for tg ..t 1ate Pased on a flipped exponential distribution. Conversely, Fig-

ure depicts the Sessions Scheduler drawing 20,000 trials for gt on_time according
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to a normal distribution with a confidence interval of 2.58.
When conducting a large number of trials with the Sessions Scheduler, interesting

patterns emerge in the selection of fg. times as an example. Each of the four

potentlal start 13Hnesitstart,aLbnormal,early7 tstart,abnormal,late, tstart,latea and tstart,on,timeiis

drawn from distinct time intervals using different distributions. Specifically:

® ttart_abnormal early 18 drawn from the interval [3:30 AM - 7:29 AM] following an
exponential distribution with A = 0.00028.

® fstart_abnormal late 18 drawn from the interval [10:01 AM - 4:00 PM] following a
flipped exponential distribution with A = 0.00020.

® fstartlate 1S drawn from the interval [8:31 AM - 10:00 AM] following a flipped
exponential distribution with A = 0.00050.

® fstarton_time 1S drawn from the interval [7:30 AM - 8:30 AM] following a normal

distribution with a confidence interval of 2.58.
Each start time is then assigned a probability from predefined intervals:

® tstart_abnormal early 15 assigned a probability from the interval [0.025 - 0.05].
® {start_abnormal late 1S assigned a probability from the interval [0.025 - 0.05].
® fyiartlate 1S assigned a probability from the interval [0.05 - 0.2].

L tstart,on,time 1s aSSigﬂed a pl"Obablhty of 1_P<tstart,abnormal,early) _P(tstart,abnormal,late) -

P(tstartaate), which is at least 0.70.

The actual tg,,¢ is determined by a weighted random selection (unfair toss) among
these four times. Running the Sessions Scheduler for 20,000 trials and plotting the
histogram of t,, yields the distribution shown in Figure[3.3.6 As observed, the ma-
jority of occurrences fall within the 7:30 AM to 8:30 AM interval, following a normal
distribution, due to fgart ontime having the highest probability. The next most fre-
quent interval is 8:31 AM to 10:00 AM, following a flipped exponential distribution,
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attributed to fgart1ate having the second highest probability. Finally, values at the

extremes are rarely selected, reflecting their assigned low probabilities.

After defining ¢4+ and t.,q, the Sessions Scheduler will determine whether em-
ployee ¢ will have a lunch break using a similar probabilistic approach. If a lunch
break is scheduled, the controller will then specify tjuneh start a0d truneh_end, Which

denote the start and end times of the lunch break, respectively.

Algorithm 3.3.1 AllocatePoints

1: procedure ALLOCATEPOINTS(ts, to, P, i, Muin, Mmaz)
2 if i = |P| then

3 return (0, ()

4 end if

5: m < random(Min, Mmaz )

6 At < t, —2m — t4

7 if At < P[i] then

8 return ALLOCATEPOINTS(t,, te, P, i+ 1, Mpin, Minaz)
9: end if
10: breaker <+ «
11: repeat
12: t, < random(t; + m,t. —m)
13: Aty < t. — P[i] — t,
14: Aty « t, —t,
15: if breaker = 0 then
16: return (0, ()
17: end if
18: breaker < breaker — 1

19: until Aty > m A Aty >m
20: T <« (t., Pli])

21: (S1,T1) < ALLOCATEPOINTS(ts, t, P, @+ 1, Myin, Minaz)

22: (S2,T3) + ALLOCATEPOINTS(¢, + Pli], te, P, i+ 1, Mpmin, Mmaz)
23: if Sl > SQ then

24: return (1 + 5,7y U{T})

25: else

26: return (1 + Sy, Tob U{T})

27: end if

28: end procedure

The final task of the Sessions Scheduler is to schedule the random logouts and

logins occurring between tgqr¢ and tiuneh_start, as well as between t1,nehn end and teng.
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This task is divided into two stages. First, the controller randomly determines the
number of logouts before and after lunch and the duration of each logout. These values
are chosen from intervals defined by the dataset creators in the configuration file (see
Figure . Subsequently, the controller places these logouts on the timeline while
adhering to specific rules, such as maintaining a minimum time interval between
consecutive logouts and ensuring that logout times within the interval [tq,?5] are
proportional to the length of the interval. These constraints are also configurable
parameters. The ‘AllocateLogouts® algorithm is devised to allocate logout points
for employees within a designated time frame, with the aim of maintaining a minimum
time interval between consecutive logouts. Beginning with the specification of a start
time ¢, and an end time t., the algorithm proceeds to recursively iterate through
a list of predetermined periods P, each representing a duration for which a logout
needs to be allocated. At each iteration, the algorithm dynamically determines a
random minimum time between consecutive logouts, ensuring that this time does
not violate the prescribed minimum and maximum thresholds m,,,;, and M4z, @ is
a large number say 3000. By recursively branching into two segments—before and
after each chosen logout point—the algorithm evaluates potential logout allocations
while maximizing the number of allocated points. Through this recursive process,
the ‘AllocatePoints‘ algorithm optimally balances randomness with adherence to time

constraints, ensuring efficient and effective logout point allocation.

3.3.3.2 Sessions Executor

The second component of the Benign Data Engine (Figure is the Sessions
Executor. This component is responsible for creating a thread or job for each employee
7 in the list 7. Utilizing the employee’s credentials, the Sessions Executor executes
the corresponding behavioral script BS; on the specified host H, at the scheduled
session times listed in S;.

For the thread associated with employee 7, at the start time #5;_; from the tuple
(taj_1,12;) in the list S;, the Sessions Executor initiates a remote session on host H,

using the credentials of employee i. It then begins executing the behavioral script
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BS; linked to that employee. The script continues to run until the end time %5, at
which point the session is terminated. This process repeats for each subsequent tuple

(t2j+1,t2j42) in S; until the final tuple (fox,_1, tox,) is reached.

Experiment 15 - lambda = 0.00037
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Fig. 3.3.3: Frequency distribution of Zsart abnormalcarly from 03:30 AM to 07:29 AM
over 20,000 trials. The distribution follows an exponential distribution with a rate
parameter A = 0.00037, indicating higher frequencies of abnormal early start times
occurring at earlier minutes and tapering off towards later minutes.
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Experiment 26 - lambda = 0.0006
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Fig. 3.3.4: Frequency distribution of tart 1ate from 08:31 AM to 10:00 AM over 20,000
trials. The distribution follows a flipped exponential distribution with a rate pa-
rameter A = 0.0006, demonstrating lower frequencies at earlier times and gradually

increasing towards later times.
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Fig. 3.3.5: Frequency distribution of every minute from 07:30 AM to 08:30 AM of
tstart.on_time Over 20,000 trials drawn by the Sessions Scheduler based on a normal

distribution with confidence interval of 2.58.
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Histogram of Start Times
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Fig. 3.3.6: Frequency distribution of every minute from 03:30 AM to 04:00 PM of
tstart Over 20,000 trials drawn by the Sessions Scheduler.

Each department can have a single behavioral script that represents the general
behavior of its employees. Alternatively, there is an option for each user to have their
own individual behavioral script, configurable in the configuration file. For every exe-
cution block (Figure , a subset of the available behaviors in the behavioral script
will be executed at random using a probabilistic approach. These behaviors simulate
typical user actions during a normal working day, such as browsing, downloading from
the internet, running local programs, accessing internal servers (file server, database
server, web server). The behavioral scripts within the framework can be adapted to
align with various enterprise-specific use cases, allowing for a high degree of customiza-
tion to mirror distinct operational environments. These scripts can also be configured
to execute additional programs and activities that more accurately emulate realistic
user behaviors, enhancing the fidelity of the simulation.

The described approach offers a realistic and flexible method for simulating user
behavior in a network environment. By using customizable behavioral scripts for
departments or individual users, and employing a probabilistic approach to execute
a variety of typical user actions, the system ensures dynamic and varied simulations.

The approach’s scalability and adaptability make it suitable for simulating both small
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and large sized organizations. The source code for BDE has been made available on
our GitHub [56], providing researchers with access for purposes of dataset generation

or other academic and research pursuits.

3.3.4 Attack Engine (AE)

In this context, an "attack engine” refers to a method or framework that enables the
automated execution of cyberattacks. For example, automating DDoS attacks can
often be achieved by deploying specific scripts on the attacking hosts to initiate the
attack. However, as discussed in this section, automating lateral movement attacks
presents unique challenges that are more complex and less straightforward than those

associated with simpler scripted attacks.

3.3.4.1 Lateral Movement Attacks

According to the MITRE ATT&CK framework [59], nine tactics qualify as lat-
eral movement techniques. These include Ezploitation of Remote Services, Internal
Spearphishing, Lateral Tool Transfer, Remote Service Session Hijacking, Remote Ser-
vices, Replication through Removable Media, Software Deployment Tools, Taint Shared
Content, and the Use of Alternate Authentication Material. In the LMDG dataset,
multiple lateral movement tactics from this list—such as Exploitation of Remote Ser-
vices and the Use of Alternate Authentication Material—are employed, as discussed
further below 3.3.4.5

Each of these lateral movement tactics encompasses various techniques. For in-
stance, the " Use of Alternate Authentication Material” tactic can be executed through
techniques like ” Pass-the-Hash” or ” Pass-the-Ticket” attacks. To clarify the complex-
ity and unique nature of lateral movement attacks compared to more straightforward
attack types, we provide a detailed example of one of these attacks. This analysis
highlights the operational challenges and automation complexities inherent in imple-

menting these advanced tactics.
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One of the attack scenarios demonstrated in the LMDG dataset involves a pass-
the-hash (PtH) attack, a technique classified under the “Use of Alternate Authentica-
tion Material” tactic in the MITRE ATT&CK framework. An outline of the attack
sequence is depicted in Figure The scenario begins by assuming an attacker
has obtained the local administrator credentials for domain controller DC2 in subnet
1, potentially through techniques like phishing. Using these credentials, the attacker
initiates an SSH connection to an SSH server in subnet 7 (attack step 1 in Figure
and subsequently connects to DC2 (attack step 2 in Figure via SSH using
the same credentials. Once on DC2, the attacker downloads and executes Mimikatz
to extract credential hashes from the LSASS process, including those from recent
sessions. In this case, an enterprise administrator recently accessed DC2 (shown by
the green arrow in Figure , allowing the attacker to retrieve the administrator’s
credentials. The attacker gains an elevated shell with the enterprise admin hash (step
3 in Figure , enabling access to restricted directories on a file server in subnet
6 (step 4 in Figure . This elevated access allows sensitive information to be
exfiltrated from a folder accessible only to the enterprise administrator. Attack step
3 in figure represents a transition from one privilege level to another (privilege
escalation), which aligns with our proposed definition of lateral movement as out-
lined in the Discussion section We classify this privilege escalation as a form of

pivoting, categorizing it within lateral movement activities.
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Fig. 3.3.7: First Attack Scenario in LMDG dataset which is a Passing the Hash
attack (PtH). This figure also illustrates the traversal behavior (hops) in the Passing
the TGT attack scenario outlined in Subsection [3.3.4.5.1] providing a step-by-step
visualization of the movement through network nodes.
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3.3.4.2 Challenges in Automating Lateral Movement Attacks

As demonstrated in the preceding attack example [3.3.4.1] and further detailed in
subsection |3.3.4.5] obtaining elevated and reverse shells frequently occurs in executing
lateral movement attacks. This section addresses the unique challenges this poses for
automating lateral movement attacks.

Consider automating the Pass-the-Hash (PtH) attack described in subsection
and illustrated in Figure [3.3.7] Initial steps, such as SSH-ing into the SSH
server with stolen credentials, then SSH-ing again to the domain controller DC2 to
execute commands like downloading and running Mimikatz, are feasible to automate
using conventional scripting methods. These represent Attack Steps 1 and 2 in Figure
B.3.7

However, challenges emerge when performing the PtH attack to obtain an ele-
vated shell via Mimikatz. The command for PtH, shown in Figure [3.3.8] involves
“sekurlsa::pth,” specifying Mimikatz to perform PtH, followed by required parame-
ters like user, domain, NTLM hash, and executable command (in this case, to spawn
an elevated shell). Even if the NTLM hash is known, running this command within an
automation script initiates a new cmd.exe process under elevated credentials, making
it difficult, if not impossible, to access or interact with this newly created shell. Iden-
tifying and interfacing with this elevated shell becomes highly challenging without
access to properties like process ID, particularly if the current credentials lack the
necessary permissions.

This issue is compounded when dealing with reverse shells, as the new shell may be
spawned on a different host. Furthermore, automation becomes more complex if the
NTLM hash is unknown and must be dynamically retrieved during attack execution.
Automating lateral movement thus requires adapting to dynamically derived informa-
tion, such as reusing information from previous attack steps—something traditional
automation scripts are not well-equipped to handle.

Two significant challenges arise in automating lateral movement attacks through

traditional methods: handling elevated and reverse shells and dynamically extracting
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and reusing information from prior attack steps for subsequent actions.

sekurlsa::pth /user:Administrator /domain:LMT
— /ntlm:cb8a428385459087a76793010d60f5dc /run:"cmd.exe"

Fig. 3.3.8: Example command for obtaining an elevated shell using the pass-the-hash
(PtH) technique via Mimikatz.

3.3.4.3 A Candidate Solution

A viable solution to the challenge of automating elevated and reverse shells in lateral
movement (LM) attacks, as discussed in section [3.3.4.2] is to implement a client-server
architecture to coordinate different attack steps. This approach utilizes an attack
controller, or orchestrator, that issues commands to agents deployed on various hosts.
These attack agents act as terminals, receiving instructions from the orchestrator. To
illustrate, we will revisit the attack scenario in section |3.3.4.1] and demonstrate how
this client-server architecture could be applied to streamline the automation of the
attack.

Consider an orchestrator or controller deployed in subnet 7, with an attack agent,
Ay, running on the SSH server—equivalent to the first attack step illustrated in
Figure [3.3.7, analogous to an external SSH connection to the SSH server. Instead
of establishing an SSH connection from agent A; to DC2, a new agent, Ay, can be
spawned on DC2 using the same credentials, representing the second attack step
in Figure 3.3.7 On DC2, agent A, can execute the same commands detailed in
subsection [3.3.4.1] such as downloading and running Mimikatz.

The third step in the attack sequence involves a pass-the-hash (PtH) operation
to obtain an elevated shell, or terminal, that will access the file server. Instead of
executing the PtH command (Figure on A, to spawn a new, isolated terminal,
we can modify the PtH command’s /run parameter to spawn an elevated agent As.
Instead of /run:"cmd.exe", the parameter would be configured as /run:"<code to
spawn agent Az>". After executing the modified PtH command, the elevated agent

As is created, completing the final attack step (step 4 in Figure [3.3.7) to access a
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restricted directory and exfiltrate data.

conhost.exe PID: 0x15c8 o
\22C:Windows\system32\conhost.exe OxIHiff -Fo... — T
splunkd_A2.exe PID: Oxcec _ —{_ Agent A )
"C:\WsersiAdministratonDownloads\Tools\splunkd_A2... - x\_ﬂ_‘_—___ -
conhost.exe PID: Oxaal —
\?7AC Windows\system32\conhost.exe Oxfiffiff -Fo...
powershell.exe PID: 0x298
powershell.exe -ExecutionPolicy Bypass -C Clear-Hi...
powershell.exe PID: OxdaQ
powershell.exe -ExecutionPolicy Bypass -C "wget ht...
powershell.exe PID: 0xf48
powershell.exe -ExecuiionPolicy Bypass -C "C:\User...
mim.exe PID: Oxb64 P
“C:\Users\Administrator\Downloads\toolsimimimim. ex. — ——ﬁ_“““x\\
powershell.exe PID: 0x1268 ( A gent Aj )
powershell. exe -ExecutionPolicy Bypass -C "Set-Con.., x‘__h___—_ -
powershell.exe PID: Dx11e0 -
powershell.exe -ExecutionPolicy Bypass -C "C:\User...
mim.exe PID: 0x524
~C:\Users\Administratord doadaoolsnim\min.ex
cmd.exe PID: Ox14c8
Ci\Windows\system32icmd.exe /e C:\WserslAdministra...
conhost.exe PID: Oxde0
\?7C:Windowslsystem32\conhost.exe Oxfifffff -Fo...
powershell.exe PID: 0x179c
powershell -e JABZAGUACGBZAGUACgASACIAAABDAHQAGAA. .
splunkd_A3.exe PID: 0x1638
"CuserstAdministrator\Downloads\Tools\splunkd _A3...
conhost.exe PID: OxfOc
VPAC:\Windows\system32\conhast.exe Oxfififi -Fo..
powershell.exe PID: 0x1384
powershell.exe -ExecutionPolicy Bypass -C Clear-Hi
powershell.exe PID: 0x1128
powershell exe -ExecutionPolicy Bypass -C "Get-Co
powershell.exe PID: 0x91c

powershell.exe -ExecutionPolicy Bypass -C “wmic /n...

Fig. 3.3.9: Partial process tree illustrating the execution of the Pass-the-Hash (PtH)
attack on DC2, as discussed in subsection

Figure [3.3.9| illustrates a portion of the process tree generated during the exe-
cution of the Pass-the-Hash (PtH) attack using a client-server architecture for au-
tomation. In this configuration, we observe Agent A,, represented by the process
splunkd_A2.exe, which is the initial agent deployed on Domain Controller DC2.
Agent A is responsible for executing several preliminary commands. Subsequently,
it performs the PtH attack, leveraging elevated privileges to spawn a new, elevated
agent, Agent Az, identifiable by the process name splunkd A3.exe. After its creation,
Agent Az will start communicating with the controller to continue to execute the at-
tack sequence, ultimately accessing a restricted directory on the file server to retrieve

sensitive data. This process tree visualizes the hierarchical structure of process inter-
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actions, illustrating how the client-server model facilitates controlled privilege escala-
tion within the attack flow. This approach effectively addresses the challenge of man-
aging elevated and reverse shells. Any newly spawned agent—whether on the same
host as its parent agent or on a different host in the case of reverse shells—establishes
communication with the central controller, enabling it to receive and execute required
commands. We refer to this valuable feature as attack steps chaining, a capability
that can be achieved with any client-server-based attack orchestration tool, several

tools with this functionality, including CALDERA, are mentioned in [33].

3.3.4.4 CALDERA as an Attack Engine

Following the approach outlined in [33], we utilized Caldera to implement the client-
server architecture discussed in subsection [3.3.4.3|to automate attack execution steps.
As previously noted, Caldera, along with other tools referenced in [33], can be em-
ployed to facilitate this level of attack automation. We refer to such tools collectively
as "attack engines.”

Caldera” [60] is an adversary emulation platform developed by MITRE for au-
tonomous breach-and-attack simulations, manual red-team operations, and auto-
mated incident response. Based on the MITRE ATT&CK" [59] framework, Caldera
includes a core system consisting of the main framework code, an asynchronous
command-and-control (C2) server, a REST API, and a web interface. It also supports
plugins—separate repositories that extend the core functionality by adding agents,
graphical interfaces, and collections of Tactics, Techniques, and Procedures (TTPs),
enabling a flexible and comprehensive approach to adversary emulation.

We now examine the various components of Caldera and demonstrate how it
can be leveraged to automate attack execution for the generation of cybersecurity
datasets, using examples from the attack scenario described in subsection [3.3.4.1]

The primary component of Caldera is the Caldera Server, an asynchronous
command-and-control (C2) server equipped with a REST API and a web interface.
Upon deployment, each agent communicates with the Caldera Server to report its sta-

tus (e.g., alive or inactive) and to receive and execute commands. Most automation
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tasks are managed through the Caldera Server’s web interface. It is essential to clarify
that, in this context, the Caldera Server is employed exclusively as a tool for automat-
ing attack execution specifically for cybersecurity dataset creation rather than as an
actual C2 server. Ideally, the Caldera Server should operate without leaving any
trace of its communication with the agents or other artifacts that could influence the
dataset. The server should remain transparent and invisible to avoid contaminating
the dataset with automation-related traces. Attack scenarios that involve an actual
C2 server should be hosted on a separate machine from the Caldera Server, and all
Caldera Server artifacts should be removed from the dataset to maintain its integrity.

The second key component of the Caldera framework is the Agents deployed
on various hosts to perform specific attack steps. These Caldera agents function as
terminals or shells, receiving preconfigured commands—known as "abilities” within
the Caldera framework—and executing them on the target host. The Caldera server
can generate agent code that establishes initial access when executed on a target host
with specific credentials and marks the beginning of an attack sequence. This agent
code contains essential information, including the Caldera server’s IP address and the
group to which the agent belongs, which plays a critical role in attack steps chaining
(as will be detailed in the discussion of Caldera Operations below). In the context
of the Caldera framework, it is assumed that an initial compromise has already been
achieved. For instance, in the attack detailed in Subsection [3.3.4.1| and illustrated in
Figure [3.3.7], we posit that the initial attack step—specifically, establishing an SSH
connection to the internal network—has been successfully executed. The first agent,
Agent Ay, is deployed on the SSH server in this scenario. Subsequently, Agent A;
autonomously executes the remaining attack steps as directed by the controller. This
process culminates in the spawning of a new agent, designated as Agent A,, on DC2.
Agent Ay will further advance the attack sequence and facilitate the creation of an
elevated agent, Agent A3. Both agents are depicted in Figure[3.3.9] This sequence of
actions is what we refer to as attack steps chaining in Subsection [3.3.4.3]

Next, we discuss the concepts of Abilities and Adversaries within the Caldera

framework. An Abzlity represents one or more commands designed to execute a
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specific action and serves as an atomic building block for attacks. For example, an
ability may execute a simple command, such as a 10-second sleep, or a more complex
command, such as Mimikatz execution. Each ability is defined by a name, description,
and associated MITRE ATT&CK tactic and technique, which will help in the labeling
process as discussed in section [3.3.5] An Adversary, on the other hand, comprises
a sequence of abilities that together model a specific behavior, often emulating the
attack patterns of well-known APT groups. Figure [3.3.10] illustrates an example of
an adversary along with its associated abilities, where each row represents a specific
ability. We can now construct our attack steps as adversaries, as depicted in Figure
3.3.10 where this particular adversary models attack step 3 from the scenarios out-
lined in Section |3.3.4.1] and visualized in Figure |3.3.7. The Caldera framework offers
substantial flexibility in designing and executing custom attack scenarios, enabling

precise representation of complex adversarial behaviors.

Ordering Name Tactic Technique Executors Requires Unlocks Payload Cleanup

LMT_SC1-3_Download execution Command and Scripting Interpreter: g
Mimikatz PowerShell -

Command and Scripting Interpreter:
PowerShell

LMT_SC1-4_Mimikatz execution =

LMT_SC1-5 Create

Command and Scripting Interpreter: g
agent.bat file PowerShell -

execution

lateral- Use Alternate Authentication

LMT_SC1-6_Pass the Hash movement Material: Pass the Hash

Fig. 3.3.10: Caldera Adversary representing attack step 3 from figure m . Each
row corresponds to an ability, detailing the command name and associated MITRE
ATT&CK tactics and techniques.

Next, we discuss Caldera Operations, which involves assigning specific adversary
profiles to active agents and prompting them to execute these profiles. In our context,
these profiles correspond to distinct attack steps, such as the adversary shown in
Figure [3.3.10, representing the third attack step illustrated in Figure Each
agent is assigned a group designation, and execution begins for adversaries within
selected groups; thus, any agent within the specified group will initiate the assigned
adversary profile, even if only a single agent is present.

Finally, we examine Caldera Parsers and Facts, essential features that ad-

dress the second challenge outlined in Subsection [3.3.4.2} dynamically extracting and
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reusing information from prior attack steps for subsequent actions. When an agent
executes a command—such as dumping NTLM hashes—parsers extract relevant infor-
mation from the command output, such as usernames and associated NTLM hashes.
This data is then transmitted back to the Caldera server, where it is stored as *Facts™*
for subsequent attack steps, enabling actions like pass-the-hash attacks with stored
user credentials. Thus, Facts are live variables that carry information across different
attack stages. Facts are generated in two primary ways: dynamically from parsers
or manually, such as by saving a specific user’s NTLM hash to be used later in the

attack sequence.

3.3.4.5 Lateral Movement Attacks in LMDG Dataset

The LMDG dataset contains seven attack scenarios that achieve lateral movement
using various tactics and techniques. Of these, three attacks were successful, while
four were unsuccessful. We discuss possible reasons for each unsuccessful attack,
considering that our setup includes Windows 10, Windows 11, and Windows Server
2022—the latest Windows versions with advanced security mechanisms. This combi-
nation of successful and unsuccessful attacks is valuable for understanding attacker
behavior, as many attacks tend to fail due to robust defenses, with only some achiev-
ing success.

Our dataset includes multiple versions of each attack, targeting different hosts and
subnets. In some cases, attacks were executed repeatedly to enrich the dataset with
diverse instances of attack records; we refer to this repetition of the same scenario,
version pair, as a trial.

The attack steps depicted in the figures, e.g., figure [3.3.7, within the attack ex-
planations represent lateral movement hops, as defined in Section [3.7] All attack
scenarios share the first two steps: initial access to the SSH server from outside the
network using stolen credentials, followed by access to an additional internal machine.
Beyond these initial steps, each attack scenario diverges in tactics and execution.

More details about attacks execution are presented in (3.4}
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3.3.4.5.1 Second Attack Scenario The first attack scenario was introduced in
Subsection [3.3.4.1] In the second scenario of the LMDG dataset, a Pass-the-TGT
(Ticket Granting Ticket) attack is presented, corresponding to the ”Use of Alternate
Authentication Material” tactic in the MITRE ATT&CK framework. The attack
unfolds through several stages, as depicted in Figure [3.3.7]

The process begins with the attacker SSH-ing into the SSH server located in
subnet 7 using stolen credentials of the local administrator from the I'T department
in subnet 1 (Step 1). The attacker then proceeds to SSH into the domain controller
(DC2) in subnet 1 using the same credentials (Step 2). The enterprise administrator,
shown in Figure [3.3.7] with a green arrow, has recently authenticated to DC2. The
attacker then dumps the LSASS memory on DC2, exposing authentication tokens,
including the enterprise administrator’s TGT. In Step 3, the attacker injects this
TGT into memory, impersonating the enterprise administrator and obtaining elevated
privileges without requiring the administrator’s plaintext credentials. Finally, in Step
4, the attacker uses the injected TGT to access the restricted file server in subnet 6,
extracting sensitive information from directories that are typically only accessible to
the enterprise administrator.

The attack ultimately failed, and it may have failed due to several factors. Ker-
beros replay protection mechanisms could have blocked the reuse of the TGT, while
session constraints tied to specific network contexts may have prevented the attacker
from using the ticket across subdomains. Additionally, domain policies and advanced
auditing configurations might have detected and blocked unusual ticket requests. Al-
though the attack successfully obtained the TGT in Step 3, these barriers may have
prevented further progress to Step 4, where the attacker would have attempted to
access the restricted file server and exfiltrate data. This scenario highlights potential

challenges in lateral movement through authentication token manipulation.

3.3.4.5.2 Third Attack Scenario In another scenario within the LMDG dataset,
an AS-REP Roasting attack demonstrates a technique aligned with the Credential
Access tactic in the MITRE ATT&CK framework. As detailed in Figure [3.3.11], the

o7



3. LMDG: A FRAMEWORK FOR LATERAL MOVEMENT DATASETS GENERATION

attack sequence begins with an attacker who initially gains access to the SSH server
using the credentials of an employee in the marketing department in subnet 3 (step
1). then the attacker moves to host seven within subnet three via SSH (step 2).
With access established, the attacker downloads necessary tools, including Rubeus,
to facilitate the AS-REP Roasting attack.

AS-REP Roasting (also known as ” ASREPRoast”) exploits a vulnerability in Ac-
tive Directory (AD) accounts configured without requiring Kerberos pre-authentication.
This lack of pre-authentication allows an attacker to request an encrypted Ticket
Granting Service (TGS) response directly, exposing the password hash, which can
then be extracted and cracked offline to reveal plaintext credentials.

In this scenario, the attacker identifies an AS-REP Roasting user within the do-
main, extracts the hash, and successfully cracks it offline. With the recovered cre-
dentials, the attacker moves laterally within the network using the newly obtained
user account (step 3). After establishing access under this new identity, the attacker
requests a Ticket Granting Ticket (TGT) with delegation rights. This TGT is saved
locally, and the attacker uses PowerShell to extract the Base64-encoded portion of
the ticket, storing it as ticket.base64. Leveraging Rubeus again, the attacker initiates
Service-for-User (S4U) impersonation to escalate privileges by impersonating the Ad-
ministrator user for a specific service (in this case, HT'TP /service within subnet 3).
This impersonation uses the S4U2Self and S4U2Proxy Kerberos extensions, allowing
the attacker to exploit Kerberos delegation mechanisms. By injecting this ticket into
memory, the attacker aims to achieve Pass-the-Ticket (PTT) authentication, gaining
unauthorized access to target resources with elevated privileges (step 4), an advanced
privilege escalation technique in Kerberos-enabled environments.

The attack has failed, and it may have failed due to several technical constraints,
including strict KDC and domain policies enforced by the Windows Server environ-
ment, which restrict TGT delegation and service account impersonation. For ex-
ample, if the Service-for-User-to-Proxy (S4U2Proxy) functionality were disabled, the
impersonation attempt would likely fail. Additionally, advanced domain monitoring

and auditing could detect and block abnormal Kerberos requests in real time. The
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network’s use of Kerberos Constrained Delegation (KCD) may have also limited the
attacker’s ability to delegate to the HT'TP service in subnet 3, preventing the imper-
sonation attempt. These protective measures might have halted the attack at step 4,
preventing further privilege escalation.

Sub Domain: Marketing LMT.COM
Subngt 3: 192, 1GE.G0.0/ 24

Network: [nternal Network - .’
Attack
SHW r » . @
=1 o .
dHOET T - ’
Attack
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|
Router 1 ‘ j
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Attack
step 1\ _€5_
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Fig. 3.3.11: Third Attack Scenario in LMDG dataset which is AS-REP Roasting
attack.

3.3.4.5.3 Fourth Attack Scenario In another scenario from the LMDG dataset,
an advanced delegation attack demonstrates multiple techniques spanning Credential
Access, Persistence, and Privilege Escalation tactics within the MITRE ATT&CK
framework. The sequence, detailed in Figure begins with an attacker who ini-

tially gains access to an SSH server using the credentials of a standard user (step 1).
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The attacker then transitions laterally to host nine within subnet four via SSH (step
2). With access to this host, the attacker downloads critical tools, such as Rubeus,
necessary to facilitate an AS-REP Roasting attack.

In this scenario, the attacker identifies a domain user vulnerable to AS-REP Roast-
ing, extracts the hash, and cracks it offline. With the recovered credentials, the at-
tacker conducts lateral movement by using this new user account to further their
access within the network (step 3).

Upon acquiring additional access, the attacker identifies a misconfiguration involv-
ing the AddSelf permission under the current user account. This permission enables
the attacker to assign themselves to AD groups with higher privileges. Exploiting
this, the attacker leverages the AddSelf permission to add their account to the Ex-
change Windows Permissions group, which has broad rights within AD (step 4). The
attacker now has a foothold to manipulate permissions further and moves to escalate
privileges.

With these elevated permissions, the attacker uses PowerView (from the Power-
Sploit toolkit) to modify AD object permissions. By executing the Add-DomainObjectAcl
command, the attacker assigns themselves DCSync rights over the Domain Admins
group by altering the Access Control List (ACL) (step 5). The DCSync right is a
highly privileged permission that allows the account to perform directory replication
activities, effectively emulating domain controller operations. This privilege enables
the attacker to request password hashes and other sensitive data directly from the
domain controller, granting access to high-privilege accounts, including domain ad-
ministrators. This escalation step gives the attacker control of the domain without
direct access to the domain controller.

Following this setup, the attacker performs a credential theft attack using Mimikatz,
invoking the Isadump::dcsync command to impersonate a domain controller and re-
trieve sensitive authentication data, precisely the NTLM hash of the domain ad-
ministrator within subnet 4. This process leverages the granted DCSync rights to
replicate AD data without compromising the domain controller. By capturing the

NTLM hash, the attacker can impersonate the administrator, potentially carrying

60



3. LMDG: A FRAMEWORK FOR LATERAL MOVEMENT DATASETS GENERATION

out Pass-the-Hash (PtH) attacks to gain unauthorised access across the domain.

In step 6, the attacker conducts the PtH attack to gain domain administrator
access. However, due to the security restrictions related to double-hop authentication,
the attack fails to propagate the administrator’s full rights across machines. To
overcome this, the attacker reinitiates the attack in step 6 within the same machine
context, renewing the Ticket Granting Ticket (TGT) to ensure persistence and full
administrator rights.

Finally, in step 7, with administrator privileges secured, the attacker can access
sensitive data on restricted file servers within subnet 6, demonstrating a complete
compromise and data exfiltration pathway within the network.This scenario high-
lights the critical risk posed by unauthorised delegation and improperly configured
permissions, especially when AddSelf and DCSync rights are combined to achieve

unauthorised privilege escalation and persistence within an AD environment.
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Fig. 3.3.12: Fourth Attack Scenario in LMDG dataset which is an Advanced Delega-
tion attack.
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3.3.4.5.4 fifth Attack Scenario In another scenario from the LMDG dataset,
a password spray attack demonstrates multiple techniques spanning Credential Ac-
cess, Persistence, Privilege Escalation, and Exfiltration tactics within the MITRE
ATT&CK framework. The sequence, detailed in Figurd3.3.13| begins with an at-
tacker who initially gains access to an SSH server using the credentials of a standard
user (step 1). The attacker then transitions laterally to host seven within subnet three
via SSH using the same credentials (step 2). With access to this host, the attacker
finds a zip file protected with a password. The attacker will then download a wordlist
that he will need to perform his brute attack, forcing the zip file using an automated
custom script, where he succeeds. The attacker identifies the users in the domain
and then performs a password-spraying attack where he finds a valid combination of
credentials to be the domain administrator on subnet 3.

In step 3, the attacker will log in with the found credentials, perform privilege
escalation, gaining all the rights on the subnet three domain with an administrator
account on the DC 4 machine. The attacker looks for writable shares where he
finds one owned by the enterprise administrator where a script is present and is
being executed by the enterprise administrator periodically. The attacker abuses the
privilege of the owned account to write into this script, adding a malicious payload to
take ownership of the enterprise admin with a reverse shell payload. A reverse shell
in cybersecurity is a network connection in which a compromised system initiates an
outbound connection to a remote attacker-controlled machine, creating a shell access
session. Unlike a standard shell, where an attacker attempts to connect directly to
the target system, a reverse shell "reverses” the connection flow. The compromised
system opens a specific port when the reverse shell is executed in step 4. It connects
to the attacker’s machine, typically via protocols like TCP or HTTP, gaining access
over the enterprise administrator account, compromising the whole domain. Finally,

in step 5, the attacker can now access the forbidden data in the file server in subnet

6.
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Fig. 3.3.13: Fifth Attack Scenario in LMDG dataset which is a Password Spray attack.

3.3.4.5.5 sixth Attack Scenario In another scenario within the LMDG dataset,
a silver ticket attack is demonstrated, which aligns with the Privilege Escalation and
Persistence tactics in the MITRE ATT&CK framework. The attack sequence is out-
lined in Figure The scenario initiates with an attacker who has access to the
SSH server with credentials of the local administrator of subnet 5 (step 1) and then
gains access to the DC 6 host within subnet five via SSH (step 2), where the enterprise
administrator presented in subnet 0 recently authenticated via SSH.

The attacker begins by downloading the tools that he will need in the attack, like
Mimikatz. The attacker starts by dumping the Local Security Authority Subsystem
Service (LSASS) memory on the compromised host using Mimikatz. This action
exposes recent authentication tokens, including the enterprise administrator’s NTLM
hash. In this attack, the attacker utilizes Mimikatz to perform a Silver Ticket attack
against a specific service within a Kerberos-enabled network.

The attacker forges a service ticket for a service on the target machine using the
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enterprise administrator’s credentials. The forged ticket is created by specifying the
user, domain, service, and the NTLM hash of the administrator’s hash. This service
ticket is injected into the current session using the (Pass-the-Ticket) option, allowing
the attacker to authenticate as the enterprise Administrator account to access the
service without needing a valid Ticket Granting Ticket (TGT) (step 3).

Unlike a Golden Ticket, which grants broad access across the domain, the Silver
Ticket is restricted to the targeted service but still allows the attacker to bypass
standard authentication mechanisms and gain unauthorized access to the service,
potentially enabling the exfiltration of sensitive data or further exploitation of the
network.

After performing this attack in step 3, the attacker will now move to step 4 to try
to access the forbidden data only accessible by the enterprise administrator on the
file server on subnet 6.

The attack was ultimately unsuccessful, likely due to several technical barriers.
If detected as a replay attempt, Kerberos replay protection mechanisms may have
blocked the reused TGT. Additionally, session and context constraints tied the TGT
to specific network contexts, potentially limiting its effectiveness across subdomains.
Strict domain policies and auditing features on the Windows Server may have flagged
or blocked suspicious ticket requests, especially from unexpected endpoints or high-
privilege accounts. Lastly, service ticket signature validation might have prevented
unauthorized access if the target server verified ticket integrity. Although the attacker
obtained the TGT by step 2, these constraints may have halted further progress,

preventing access to restricted resources in subnet 4.
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Fig. 3.3.14: Sixth Attack Scenario in LMDG dataset which is a Silver Ticket attack.
This figure also illustrates the traversal behavior (hops) in the Golden Ticket attack
scenario outlined in Subsection [3.3.4.5.6] providing a step-by-step visualization of the
movement through network nodes.

3.3.4.5.6 seventh Attack Scenario In another scenario within the LMDG
dataset, a Golden Ticket attack is demonstrated, aligning with the Privilege Es-
calation and Persistence tactics in the MITRE ATT&CK framework. The attack
sequence, as detailed in Figure initiates with an attacker who initially gains
access to the SSH server using the credentials of a local administrator in subnet 5

(step 1) and subsequently gains access to the DC 6 host within subnet five via SSH
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(step 2), where the enterprise administrator in subnet 0 recently authenticated to the
domain controller.

Upon accessing the domain controller, the attacker downloads tools such as Mimikatz.
Using Mimikatz, the attacker dumps the Local Security Authority Subsystem Service
(LSASS) memory, revealing cached authentication tokens, including the NTLM hash
and AES key of the enterprise administrator’s account. Leveraging this information,
the attacker generates a Golden Ticket—a forged Kerberos Ticket Granting Ticket
(TGT) for the domain administrator account, utilizing the /aes256 parameter to
specify the administrator’s AES key.

The attacker then forges the Golden Ticket with Mimikatz. This crafted ticket
allows the attacker to impersonate the enterprise administrator across the entire do-
main (step 3). Unlike a Silver Ticket, which limits access to a specific service, a
Golden Ticket provides domain-wide access to any Kerberos-enabled resource with-
out needing a valid initial TGT, enabling full administrative privileges and sustained
persistence within the network. After creating and injecting the Golden Ticket in
step 3, the attacker attempts to use it in step 4 to access sensitive files exclusive to
the enterprise administrator on a file server within subnet 6.

The attack was ultimately unsuccessful, possibly due to several security con-
straints. Kerberos replay protection may have flagged frequent Golden Ticket use
as a replay attempt, blocking access. Session and context constraints, which bind
sessions to specific subdomain contexts, could have limited the ticket’s effectiveness
across domains. Additionally, stringent domain policies and auditing on Windows
Server might have detected unusual ticket activity, especially high-privilege tickets
appearing in new subdomains. Finally, service ticket signature validation on the tar-
get server may have rejected unauthorized tickets despite the Golden Ticket’s privi-
lege escalation. These defenses likely hindered further steps, preventing access to the

protected file server in subnet six and data exfiltration.
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3.3.5 LMDG Labelling Engine (LE)

In cybersecurity datasets, labeling involves identifying and extracting records associ-
ated with attack activities from system logs and network traffic. The Labeling Engine
serves as the component responsible for automating this extraction process. This sub-
section will examine the challenges of achieving accurate labeling and introduce our

innovative labeling methodology.

3.3.5.1 Challenges in Attack Data Labeling

A thorough review of the literature on labeling techniques for cybersecurity dataset
generation reveals that there are primarily three approaches for automatically labeling
attack-related records, as outlined in [47]. These approaches are Injection Timing,
Behavioral Profiling, and Network Security Tools.

The Imgection Timing approach labels all system logs or network traffic within
a defined time window—precisely, the period in which the attack occurred—as ma-
licious. This technique is frequently employed in research, either on its own or in
combination with other labeling methods, to improve labeling accuracy [50, |9, [21} |32,
36]. However, Injection Timing operates on the strong assumption that no benign
events or traffic will occur within the attack timeframe; thus, all events within this
period are labeled as malicious. This assumption often proves inaccurate, particularly
for complex attacks, such as lateral movement, which can be interwoven with benign
activity or even exploit benign processes as part of their execution. Consequently,
using Injection Timing for labeling in cases of lateral movement or other sophisticated
attacks can lead to substantial mislabeling and fails to achieve the necessary accuracy.

The second approach for automatic labeling is the Behavioral Profiles method,
which relies on predefined behavioral profiles for malicious and benign actions to
facilitate labeling. This approach identifies attack-specific characteristics, such as
originating from specific machines, allowing records associated with those machines
to be easily labeled as malicious. Behavioral profiles thus capture unique attack

traits that streamline the labeling process and are widely utilized in the literature
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[15, [72, |68]. However, this method proves ineffective in lateral movement attacks,
where legitimate hosts and user accounts are leveraged to conduct malicious actions,
rendering behavioral profiles insufficient for accurate labeling.

The Network Security Tools approach for automatic data labeling utilizes in-
formation generated by network security tools, including packet sniffers, honeypots,
and intrusion detection systems (IDS), to classify records as malicious or benign [2,
68]. This method leverages the detection capabilities of these tools to label network
traffic or system events based on observed signatures or anomalous behavior pat-
terns. However, this approach can suffer from significant accuracy limitations due
to the inherent weaknesses of the tools, which are prone to generating false positives
(incorrectly labeling benign data as malicious) and false negatives (failing to identify
actual malicious activity). The tendency of IDSs, for instance, to produce excessive
alerts can lead to mislabeling, thus diminishing the reliability of this approach for
precise labeling in cybersecurity datasets.

As demonstrated, there is a critical need for a more accurate and precise automatic
labeling technique capable of generating high-quality datasets suitable for training
machine learning detection models. In response, we introduce a novel and robust
labeling methodology designed to address the limitations of existing approaches. Our
method significantly improves labeling accuracy, making it particularly well-suited for
scenarios involving lateral movement and advanced persistent threats (APTs), where

traditional methods often fall short.

3.3.5.2 LMDG Labeling Engine

Our labeling methodology builds upon and extends the labeling approach introduced
in [33], with specific enhancements and improvements outlined in the related work
section [3.6.1.1.2] We designate this approach as process tree labeling, which can
be considered an additional automatic labeling technique and, as we argue, the most

accurate among those reviewed. The effectiveness of process tree labeling relies on

the client-server architecture introduced in (3.3.4.3| and |3.3.4.4] for automating attack

execution, a dependency explored in greater detail in [33].
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Upon the completion of attack execution, the LMDG labeling engine, along with
its input—a descriptive file containing metadata on attack steps—operates from the
controller, depicted in Figure [3.3.1} The engine distributively performs the labeling
task across each affected host, using the defined attack steps from the input file to
extract the relevant subset of system logs and network connections associated with
each attack stage on every affected host. The LMDG labeling engine completes this
process in three primary phases: Attack Steps Forest Construction, System
Logs Labeling, and Network Traffic Labeling. Before detailing these stages, we
will first discuss the input to this engine, namely the descriptive file containing attack

steps metadata.

3.3.5.2.1 LMDG Labeling Engine Input The input to the labeling engine
consists of a set of hosts impacted by various attack steps, where each host includes
a collection of malicious processes with specific attributes. Let H represent the set
of all such hosts, i.e., H = {hy, ha, ..., h,, }, with each host h; € H uniquely identified
by a HostName. For each host h;, let P(h;) denote the set of processes associated
with the malicious agents deployed on that host during any attack step, i.e., P(h;) =
{p1,p2, ..., Pm}. Each process p; € P(h;) is described by the following tuple

p; = (7T7 t$7 t67 o, V, T, R, ¢)

In this tuple, m denotes the process identifier associated with a deployed Caldera
agent, i.e., PID. t, and t. define the time window during which a particular attack
step occurred (start time and end time). The specific step within the attack and the
overarching scenario are identified by the x and o fields in the tuple, with ¢ indicating
whether the step was completed successfully. Since an attack scenario can be executed
across various hosts or subnets, multiple versions of the same scenario may exist. For

example, in subsection [3.3.4.1) the pass-the-hash (PtH) attack can be executed on
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different subnets (e.g., subnet 4 instead of subnet 1). This versioning is captured
by the v field in the tuple. Additionally, we may execute the same scenario version
multiple times; thus, the 7 field is included to distinguish between these instances,
offering clear differentiation across repeated executions or trials.

Each host h; € H can be formally represented as a tuple containing its HostName
and the set of associated processes, P(h;), for each Caldera agent deployed on that
host. Formally, this is expressed as h; = (HostName;, P(h;)). The overall input
structure can then be denoted by Input = {h | h € H}, where each host h belongs
to the set H. This structured organization facilitates the grouping of processes by
host, enabling efficient distribution of the labeling process and correlation of process
executions with the various stages of distinct attack scenarios. For instance, for a
host h; with HostName as DCO1.it.1lmt.com, part of the set of processes associated

with it might look like:

(4712 , 2024-08-04T15:31:287 , 2024-08-04T17:12:07Z , 1,2, 1,2 , 1),
P(hy) =

(1604 , 2024-08-09T09:20:187 , 2024-08-11T13:26:20Z ,3 ,1,1,5,0)

For each host, the metadata attributes, such as m, t;, and others, are gathered
from Caldera reports generated post-attack execution. Within Caldera’s framework
, we define an Adversary (Figure for each attack step within a specific
scenario. An Operation is then executed using this Adversary, and it is within the
Operation’s execution report that all relevant metadata can be retrieved. It is impor-
tant to note that while Caldera does not natively provide components to define attack
steps, versions, or trials explicitly, we achieve this differentiation through our custom
naming conventions for Adversaries and their associated Abilities and the way we use
other Caldera components, effectively encoding these distinctions into the metadata
collected.

For a specific host h;, the set of associated malicious processes, P(h;), may contain
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multiple processes, e.g., p, and pg, with identical process ID value 7 within their
associated tuples. This duplication arises because the same Caldera agent, identified
by its process ID m, can execute multiple attack steps. The other fields within the
tuples of p, and ps, such as start time ¢, end time %., attack step x, and others, will
differ accordingly.

As shown in Figure [3.3.10, which provides an example of an adversary setup,
each defined ability (represented as a row) is specified with its corresponding MITRE
ATT&CK tactics and techniques, and even a descriptive label may be added. Con-
sequently, in our labeling process, system logs, and network traffic are labeled by
the attack step and the relevant tactics and techniques associated with each step,
enhancing the granularity and interpretability of the labeling outputs. Next, we will

move to the explanation of the three main steps of our labeling methodology.

3.3.5.2.2 Attack Steps Forest Construction The first essential step in our
labeling engine is the Attack Steps Forest Construction, upon which the subsequent
steps rely. In this phase, we construct attack process trees for each host h; based on
the set of processes P(h;) = {p1,p2, .., Pm}, where P(h;) represents the collection of
malicious processes associated with the host during any attack step. For each process
p; € P(h;), a process tree is constructed, rooted at the process identifier (PID) of
pj. This tree is further constrained within the start and end times, t; and ¢., of
pj, ensuring that all descendant processes of p;’s PID fall within this time interval.
This temporal constraint ensures that each process tree captures the causally and
temporally relevant events surrounding each attack step, laying the foundation for
accurate step-level labeling.

In this step, we construct the forest F, which is defined as a collection of m distinct
trees, each corresponding to a process p; € P(h;) = {p1,p2,...,pm}. Each tree
Ty, € F captures the hierarchical structure of all descendant processes initiated by the
root process p; and constrained with the interval [t,,t.], effectively representing the
malicious process tree for the specific attack step. This structured forest F therefore

serves as a comprehensive representation of attack-related process executions across
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different attack steps on host h;.

Algorithm 3.3.2 Attack Steps Forest Construction

1:
2
3
4
5:
6
7
8
9

10:

11:
12:
13:
14:
15:

17:
18:
19:
20:
21:
22:
23:
24:
25:

procedure ATTACKSTEPSFORESTCONSTRUCTION(H)

bj

> Initialize the forest of attack steps

for h; € H do
for p; € P(h;) do

T4 pjm, ts < pjts, te < pj.te

O Dj.0, V<4 Dj.V, T4 p;.T

K <= Ppj.K, @< D;.0 > Extract p;’s attributes
L0 > Initialize a list for process 1Ds
Ty, < GETPROCESSTREE(T, t,,t., L) > Build process tree of process

T' (_(7;73'7.[;8715670-’]/77—7’%;@5)

meta

pPj
F <+ FU {7;jmeta}

end for
end for
return F

end procedure
16: procedure GETPROCESSTREE(, 4, t., L)

L+ LU{r}
E—{ec&® lem=m Nt,<et <t}
for e € £ do

if e.r ¢ L then

L+ LU{er}
GETPROCESSTREE(e.7, tg, t., L)

end if
end for
return £

26: end procedure

The specifics of this step are outlined in Algorithm [3.3.2] where the set £,

represents all process creation events recorded in the Windows Security log for host

h;. These events correspond precisely to Windows Event ID 4688, which logs each

instance of process initiation. More formally, if &, is the set of all Windows events

in host h; then £,%% = {e | e.EventID = 4688 A e € &}

An example of the output generated by Algorithm is shown in Figure|3.3.15]

This output corresponds to the example previously detailed in Subsection [3.3.4.1],

which illustrates a Pass-the-Hash (PtH) attack scenario, as depicted in Figure [3.3.7

In Figure |3.3.15] the example demonstrates two process trees rooted at the same
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process ID 7 of p,.. The first tree is constructed within the constrained time interval

[t1, t2], encompassing all subprocesses that occurred within this interval and represents

attack step 3 from Figure |3.3.

The second tree is built under the time constraint

[t3, 14], including all subprocesses within this later interval, and represents attack step

4 from the same figure [3.3.7

________________________________________

. [ splunkd_AZ2 exe PID: Oxcee
|' conhost.exe PID: Oxaal
: \PAC Windows\system32\conhost.exe Oxfii -Fo...
I powershell.exe PID: 0x298
: powershell.exe -ExecutionPolicy Bypass -C Clear-Hi...
I powershell.exe PID: Oxda0
: powershell.exe -ExecutionPolicy Bypass -C “wget ht...
I powershell.exe PID: Oxf48
! powershell exe -ExecutionPolicy Bypass -C "CA\User.
i mim.exe PID: Oxb&4
: “C:\Users\AdministratorDownloads\ool s\mimimim, ex
| powershell.exe PID: 0x1268
' powershell exe -ExecutionPolicy Bypass -C "Set-Con...
]
i powershell.exe PID: Ox11e0
' powershell.exe -ExecutionPolicy Bypass -C "C\User...
: mim exe PID: 0x524
' “C\Users\Adminisirator\Downloads\ioolsimimimim.ex
: cmd.exe PID: Ox14c8
i CWindows\system32\cmd.exe /o C:\Wsers\Administra...
: conhost exe PID: Oxde0
' \PAC Windowslsystem32\conhost.exe Oxffifi -Fo...
" powershell.exe PID: 0x179¢
'\ powershell -e JABZAGUACQBZAGUACGASACIAAABOAHDALAA
vl splunkd_A3.exe PID: 0x1638 ’
Seemmmdeccecedesscccdessesedem———— C\UsersiAdminisuatonDownioads\Toolsisphunkd A3 | _ - ”
.~ | conhost.exe PID: OxfOc *
I \PACWindows\system32\conhost.exe OxHil -Fo.. :
I
- powershell exe PID: 0x1384 !
Subtree 7T, within the ! ) :
Subtree 7. within the time HOUEE Jp, /. powershell exe -ExecubonPolicy Bypass C Clear-H |
€ /p, ! time interval (¢, t3] ' [powershelexs R
interva [tl ’ t2] v | powershell.exe -ExecutionPolicy Bypass -C “Get-Ca,

-

Fig. 3.3.15: Output of algorithm m showing two process trees rooted at the same
malicious process p,. The first tree, representing attack step 3, and the second tree,

representing attack step 4 in Figure explained in subsection [3.3.4.1

We next move to the subsequent steps, System Logs Labeling and Network Traffic

Labeling, which depend on the constructed attack steps forest F.

3.3.5.2.3 System Logs Labeling In this step, for each host h;, we iterate over

the set L, which represents the collection of all Windows event logs on that host.

For each log [ € L;,, we further iterate over the trees in the constructed forest F,
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where each tree 7, € F corresponds to a specific attack step. The primary objective
here is to examine whether the current log [ contains any events with process IDs
matching those within the current tree 7, that occurred within the specified time
interval [t,,1.] associated with 7y, . If such events are found, they are extracted and
tagged with metadata inherited from 7, including details like the attack scenario,
version, step number, and step success status. This labeling process operates at
the step level, incorporating relevant MITRE ATT&CK tactics and techniques to
contextualize each event within the broader attack framework. The details of this

step is shown in algorithm |3.3.3|

Algorithm 3.3.3 Event Log Labeling

1: Elabeled — 0 > Initialize labeled events
2: for each [ € £}, do
3: for each 7,, € F do
T4 pj.T > Extract tree metadata
[ts, te] <= [pj-ts, pj-te]
(0,v,T,K, @) < (pj.0,pj.V,;.T, Dj.K, P;.P)
Ep{ecllemrcT, Nty<et <t} > Filter events matching 7= and
time interval

8: if &+ # () then

9: for each e € &, do

10: e« (e,0,V,T,K, Q) > Label with tree metadata
11: Elabeled < Elabeled U {€}

12: end for

13: end if

14: end for

15: end for

16: return Eppeled

3.3.5.2.4 Network Traffic Labeling. In this step, we construct the set £7'% =
{e | e.EventID = 5156 A e € &, }, which represents the collection of Windows events
with Event ID 5156, corresponding to the Windows Filtering Platform (WFP). The
WEP monitors and filters network traffic on Windows systems, and &, denotes the
set of all Windows event logs at host h;. Subsequently, we iterate over the trees in
the constructed forest F and examine whether any process ID in the current tree

Ty, matches a process ID from the events in £7'%°. If a match is found, we filter
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the relevant events and label them with the metadata of the corresponding tree 7,,,
including attack scenario, version, attack step, step success, and so on. Similar to the
System Logs Labeling step, we also consider MITRE ATT&CK tactics and techniques

for contextualizing the events within the attack framework.

Algorithm 3.3.4 Network Traffic Labeling

1: Elabeled < 0 > Initialize labeled events

2: Ep1%9 < {e | e.EventID = 5156 A e € &,,} > Construct the set of WFP events
for host h;

3: for each 7, € F do

4: T 4= p;.T > Extract tree metadata
5: [ts,te] < [pj-ts, p;-te]

6: (0,0, T, K, @) < (p;.0, .V, p;.T, Pj.K, Dj.Q)

7. for each e € £1°° do

8: if er=mandt, <e.t<t, then

9: e <+ (e,o,v,T, K, Q) > Label with tree metadata
10: Elabeled < Elabeled U {€}

11: end if

12: end for

13: end for

14: return Epeled

The process of network flow labeling can be effectively performed using the packet
capture (PCAP) files collected from each host, as mentioned in subsection [3.3.2] To
associate these flows with specific attack steps, the labeling process leverages the
labeled event set Eapeled, Which is constructed as described in Algorithm [3.3.4]

Based on the steps and algorithms presented, we argue that our automated la-
beling methodology, referred to as ”Process Tree Labeling,” offers superior accuracy
compared to other existing automatic labeling techniques. The approach’s effective-
ness stems from its ability to systematically associate process activities with precise
attack steps, leveraging temporal and contextual information from system logs and
network traffic data. This method enhances the fidelity of the labeling process, en-
suring that each event is accurately attributed to its corresponding stage within the
attack lifecycle, thereby improving the overall precision and reliability of the labeling

results.
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3.4 Dataset

The experimental environment comprises 25 virtual machines (VMs), including a Con-
troller, a Caldera server, domain controllers, application servers, hosts, and routers.
Over 22 valid user accounts were set up, but only 11 user credentials were leveraged
by the Benign Data Engine to generate benign data on 11 hosts. Windows Event
logs and PCAP files were collected from all Windows machines, excluding the Con-
troller; no system logs or PCAPs were collected from the Caldera server. Additionally,
PCAP files were captured from routers 1 and 2 to provide supplementary network
data, though this traffic is also captured in the PCAP files from the hosts.

The dataset was generated over 25 days, from October 10, 2024, to November 3,
2024. The Benign Data Engine continuously simulated employee behavior throughout
this time, producing benign data. Attack executions took place over 10 days, from
October 23, 2024, to November 1, 2024, resulting in a dataset containing both benign
and malicious activity during these days. The dataset exclusively contains benign
data for the initial 14 days before October 23, 2024.

We present some statistics and insights on attacks execution within the LMDG
dataset. Figure illustrates the Daily Distribution of Attack Steps, with a his-
togram depicting the frequency of attack steps executed over time; each bar represents
the count of steps occurring on a particular day, with the x-axis denoting individual
days and the y-axis showing the number of occurrences, total size of attacks in LMDG
dataset is less than 1%.

Figure displays the Timeline of Attack Step Occurrences by Scenario, using
a scatter plot to show the timing of attack steps across various days; each point
represents an occurrence at a specific day and time, with the x-axis indicating dates
and the y-axis showing the time of day to reveal daily distribution patterns. Distinct
color coding allows for quick differentiation among scenarios.

Figure [3.4.3] shows the Frequency Distribution of Scenario and Version Pairs,
where a bar plot represents the count of occurrences for each unique (Scenario, Ver-

sion) pair, with the x-axis listing scenario-version pairs and the y-axis showing occur-
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rence counts, facilitating an effective comparison of attack frequencies across different
scenario versions. The complete execution timeline is provided in tabular format and
is available on our GitHub repository [56].

The total compressed dataset size, encompassing benign and malicious data (ex-
cluding router data), is 253 GB; when router data is included, the dataset size in-
creases to 527 GB. Specifically, the compressed PCAP file from router 1 is 201 GB,
and that from router 2 is 72 GB. The total uncompressed dataset amounts to 944 GB,
with 900.93 GB comprising PCAP files and 43.38 GB for system log files. Additional
dataset statistics for the uncompressed data are presented in Table [3.4.1]

The presented numbers reflect the raw dataset characteristics, offering a foun-
dation for extensive feature extraction. Similar to the LANL 2015 dataset, which
includes a wealth of authentication data, our dataset allows for detailed extraction of
authentication-related features and patterns. These authentication records and addi-
tional contextual information provide valuable insights for developing models in areas
such as intrusion detection, behavioral analysis, and user activity monitoring. The
dataset’s richness in event data and associated metadata establishes a comprehensive

base for various cybersecurity research tasks.
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Histogram of Attacks Steps Occurrences by Day
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Fig. 3.4.1: Daily Distribution of Attack Steps: This histogram visualizes the
frequency of attack steps executed over time, with each bar representing the count
of attack steps occurring on a specific day. The x-axis denotes individual days, while
the y-axis represents the number of occurrences.
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Attacks Steps Occurrences with Scenario Details
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Fig. 3.4.2: Timeline of Attack Step Occurrences by Scenario: This scatter plot
illustrates the timing of attack steps across various days, with each point representing
the occurrence of an attack step on a specific day and time. The x-axis indicates
the occurrence dates, while the y-axis represents the time of day to highlight daily
distribution patterns. Each scenario is color-coded with a distinct hue, allowing for
quick differentiation of scenarios.
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Count of Each (Scenario, Version) pair
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Fig. 3.4.3: Frequency Distribution of Scenario and Version pairs: This bar
plot displays the count of occurrences for each distinct (Scenario, Version) pair. The

x-axis represents individual combinations of scenarios and their respective versions.
The y-axis shows the count of occurrences.

Table 3.4.1: Dataset Statistics

Statistic PCAP Size (GB) Log Size (GB)
Total Size 900.93 43.38
Average Size 37.54 2.17
Minimum Size 0.51 0.41
Maximum Size 451.00 4.97

3.5 Qualitative Analysis

The quality of a cybersecurity dataset can be regarded as a function of the distinct
phases outlined in Figure [3.6.1} specifically, the design of the testbed infrastructure
and services, the generation of benign data, the collection of logs and traffic, the

execution of attacks, and the labeling process. Each phase plays a critical role in
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determining the overall dataset quality, with improvements in the precision and rigor
of each phase contributing directly to the robustness and usability of the resulting
dataset.

In Section [3.3.2] we introduced the testbed infrastructure, which simulates a re-
alistic enterprise network environment. Within the LMDG framework, virtualization
plays a vital role in this phase, enabling the construction of highly realistic and com-
plex testbeds and network architectures. This approach allows for scalable, flexible,
and detailed emulation of enterprise networks, enhancing the authenticity and appli-
cability of the dataset for security research.

In the step of benign data generation, or user behavior simulation, we introduced
our Benign Data Engine (BDE) in Section [3.3.5.2 as depicted in Figure The
quality of the generated benign data using BDE can be seen as a function of the
behavioral scripts provided to it; the more realistic these scripts are, the higher the
quality of the resulting data. In our implementation, behavioral scripts were designed
based on departmental roles and included a degree of randomization to introduce in-
dividual variation within departments. These behaviors simulated activities typical
to employees, such as logging in and out, browsing the web, requesting services from
local servers, and executing local programs, authentically replicating employee inter-
actions within the network.

For the data collection phase, our dataset—as well as any dataset generated us-
ing our framework—is comprehensive, encompassing both system logs and network
traffic data, with labeling applied to each. This dual approach ensures the dataset’s
completeness, providing a thorough record of activities within the network that allows
for detailed analysis of benign and malicious behaviors.

As discussed in Section[3.6.2)on related work, existing datasets of lateral movement
(LM) attacks exhibit several limitations, including scarcity of LM instances, outdated
attack patterns, limited diversity in techniques, short execution timeframes, and a
restricted number of hops. In contrast, the LM attacks executed in our study, detailed
in Section |3.3.4.5] address these issues by incorporating numerous LM instances that

reflect recent patterns and a variety of techniques. These attacks were executed over
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an extended timeframe of 10 days and involved multiple hops across hosts, users,
and subnets, with specific scenarios reaching up to 7 hops. Using the CALDERA
platform or similar attack emulation tools further enhances flexibility in the design
and execution of such attacks, enabling a more realistic and comprehensive dataset.

Section discusses our automated labeling methodology, specifically process
tree labeling, and outlines how it achieves a higher level of accuracy compared to
other automated labeling methods. This approach is particularly well-suited for la-
beling lateral movement and advanced persistent threat (APT) attacks, as it allows
for precise tracking of process hierarchies and relationships essential in these attack
scenarios.

The LMDG framework is designed to support the generation of high-quality
datasets through its various integrated components. The LMDG dataset serves as an
exemplar of this capability, demonstrating the framework’s effectiveness in producing
datasets that are comprehensive, well-structured, and suitable for advanced research

and analysis.

3.6 Related Work

This section examines the related work pertinent to our problem from two perspec-
tives. First, [3.6.1] we review existing research on the datasets generation process
within intrusion detection and Advanced Persistent Threats (APTs) domains. This
review covers the various components of dataset generation, including testbeds infras-
tructure, dataset collection, benign data generation, attacks execution, and labeling.
Particular emphasis is placed on the available frameworks designed to facilitate this
process. In the second perspective [3.6.2] we analyze the available datasets in the
intrusion detection and APT domains, evaluating the representation of lateral move-
ment (LM) attacks within these datasets. We present our analysis of selected datasets
and propose a refined definition of lateral movement based on our findings and con-

clusions.
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3.6.1 Cybersecurity Datasets Generation

In this subsection, we review the available literature on the datasets generation pro-
cess within intrusion detection and advanced persistent threat (APT) detection, as
datasets in these domains can have instances of lateral movement attacks.

An examination of the literature reveals the existence of several frameworks specif-
ically designed for this purpose. By ”frameworks,” we refer to systems that incor-
porate varying degrees of automation in the dataset generation process, such as the
automation of testbeds, attack simulations, or labeling. In cases where a real network
environment is not used, user behavior is typically automated.

As we will discuss, not all frameworks are comprehensive in their collection of
both network traffic and system logs. Some focus exclusively on system logs [50],
while others are limited to network traffic [22, 9} |43], resulting in incomplete datasets
for a holistic analysis.

Our criteria for selecting or filtering frameworks from the literature are based
on the framework’s ability to handle lateral movement (LM) attacks, particularly
regarding attack automation and labeling.

Many frameworks, by design, are not equipped to address lateral movement (LM)
attacks [20, 38, |70l |26} [15], as their primary focus is on other attack types, such as
scanning, probing, denial-of-service (DoS), or distributed denial-of-service (DDoS) or
their labeling techniques are insufficient for accurately handling the complexities of
LM attacks. These frameworks are often tailored to detect and label attacks based
on specific characteristics, such as network traffic patterns or the identification of at-
tacker IP addresses, which are unsuitable for capturing the complexities and unique
behaviors associated with LM attacks [3.1} Consequently, these frameworks fall short
in handling the stealthy, multi-stage nature of lateral movement, which typically
involves unauthorized internal network traversal and evasion techniques that differ
significantly from the more straightforward attack types these frameworks are de-

signed to address.
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3.6.1.1 Frameworks

3.6.1.1.1 AIT Framework The AIT framework refers to the notable trilogy of
research papers [50, 49, 51] presented by Landauer et al. at the Austrian Institute of
Technology (AIT), which we regard as one of the significant contributions for dataset
generation. Landauer et al. approached the dataset creation problem from a model-
driven engineering perspective [30, 50|, which addresses the issue at an abstract level,
independent of implementation specifics. This abstraction is crucial for frameworks
intended for cybersecurity dataset generation, as it provides the necessary flexibility
and scalability expected in such frameworks.

The authors presented a figure (Figure that encapsulates the critical steps in
generating a cybersecurity dataset. To create such a dataset, a testbed must first be
established, with the necessary infrastructure deployed. If a real testbed is being used,
this step may already be in place. Next, appropriate data collection mechanisms must
be implemented to capture benign and malicious behaviors. In the case of synthetic
or semi-synthetic dataset generation, A robust user behavior simulation mechanism
is also required to generate or define normal user activity within the testbed. Finally,
attacks must be executed, and the relevant records associated with these attacks
must be accurately labeled. A level of abstraction and automation is required for a
framework to be practical for one or more of these steps shown in figure [3.6.1, with
particular emphasis on attack automation and labeling—two of the most challenging

aspects, as discussed in Sections [3.3.4] and [3.3.5]

Generate Deploy Start
testbed testbed user
from models /infrastructure/ simulation

Launch Collect Label
attacks log datasets /log datasets

Fig. 3.6.1: Abstracting the problem of cybersecurity datasets generation [51].

We argue that their work offers two primary contributions. The first is their
significant advancement in the automation of testbed infrastructure generation [50,

49], encompassing steps 1 and 2 in Figure m The second contribution is the
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labeling methodology they introduced, which addresses the final step in Figure |3.6.1
[49].

The authors have made significant strides in testbed infrastructure automa-
tion, leveraging tools like Terraform[f, Ansible?, and OpenStaclf]| to implement their
Kyoush platformlﬂ. This platform is designed to automate the creation of testbeds,
allowing researchers to bypass the need to start from scratch for each new use case.
Instead, Kyoush enables the reuse of existing components and supports the iterative
development of testbeds, making the process more efficient and scalable [50]. This
contribution represents one of the few notable advancements in testbed automation,
where such tools are crucial for facilitating complex experimentation in cybersecurity
research. However, as the authors acknowledge, their approach has some limitations.

A key aspect of Kyoush’s design is its model-driven approach, which, while offering
flexibility and reusability, introduces additional complexity. Unlike a static testbed
that is set up once and used as-is, a model-driven testbed requires the formalization of
installation procedures and the separation of fixed and variable components. These
components are subject to change as different use cases arise, and the framework
must be regularly maintained to ensure its relevance and functionality. This adds to
the overall effort required during the initial setup, making the process more resource-

intensive than straightforward, static testbeds.

{
"line": 1860,
"labels": ["attacker_change_user", "escalate"],
"rules": {
"attacker_change_user": ["attacker.escalate.audit.su.login"],
"escalate": ["attacker.escalate.audit.su.login"]
}
}

Fig. 3.6.2: labelling methodology in AIT.

Thttps://www.terraform.io/
https://www.ansible.com/

3https:/ /www.openstack.org/
4https://github.com/ait-aecid /kyoushi-environment
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The current implementation of the Kyoush platform is also limited in terms of its
capabilities. It supports the creation of only three subnets and is restricted to de-
ploying Linux-based virtual machines (VMs). This narrow scope inherently limits the
range of testbeds that can be generated, particularly for scenarios that require more
diverse environments. For instance, the inability to create Windows VMs constrains
the types of user behaviors and attack simulations that can be performed.

Despite these limitations, the authors argue that the increased upfront effort re-
quired for model-driven testbed design is offset by the long-term benefits, particu-
larly when testbeds are reused across multiple scenarios. In cases where application
requirements evolve, or multiple testbed instances with slight variations are needed,
Kyoush’s iterative approach offers considerable advantages. The ability to reuse and
adapt testbeds without having to recreate them from scratch not only saves time but
also provides greater flexibility in experimental design [50]. While Kyoush presents a
promising approach to testbed automation, further development is needed to enhance
its flexibility and broaden its applicability.

The second significant contribution of the authors, as outlined in [49], is their
labeling methodology. This methodology is divided into two primary components.
The first component can be characterized as injection timing labeling [47) 35|, which
operates under the assumption that all traffic or events occurring within a specified
time interval are considered malicious. To enhance the accuracy of the generated
labels, the authors complement the injection timing technique with an additional
approach that evaluates the impact of each attack step on the state of the system
logs.

This complementary approach involves crafting tailored queries to extract relevant
events from the system logs, thereby allowing for a more precise identification of
malicious activities. Through this labeling strategy, the authors successfully pinpoint
the logs associated with each specific attack step.

For instance, Figure illustrates a JSON object that assigns specific labels to
an individual log entry within the associated log file. The field "line” in the JSON

object indicates the line number of the relevant event in the original log file, while the
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"labels” field contains the corresponding classifications. In this case, line 1860 in the
log file is labeled with ”attacker_change_user” and ”escalate,” corresponding to the
attack step wherein the attacker attains elevated privileges. A detailed examination of
this line and other entries in the original log file reveals that these entries correspond
to the user authenticating as the root.

However, as the authors acknowledge, two significant limitations are associated
with their labeling technique. The first drawback is that this method does not guaran-
tee accurate results and should, therefore, be regarded as a complementary approach
to the injection timing labeling method, serving to increase confidence in the labels.
This limitation arises because the technique relies on string similarity, i.e., query
matching, and thus cannot differentiate between messages that are not sufficiently
distinct in the system logs, potentially leading to incorrect labeling [50, |49]. Further-
more, determining the appropriate similarity threshold is challenging, as it depends
on the structural characteristics of all potential log events [50, |49].

The second drawback pertains to the manual nature of gathering the expected
log entries for each attack step, which involves constructing queries by executing
the attacks individually to build the attack dictionary. Any introduction of new
attack steps or changes to the logging infrastructure necessitates repeating this labor-
intensive process [50, 49]. Consequently, the authors could only perform a single
attack in their evaluation [51].

Regarding attack execution, the authors designed scripts to automate this pro-
cess. Still, they did not provide much detail on how the framework handles the
automation of more complex attacks, such as lateral movement (LM) attacks [3.3.4]
In terms of dataset collection, the framework primarily focuses on capturing Linux
system logs. The authors developed a User State Machine for benign data gener-

ation to simulate normal user behavior within the system.

3.6.1.1.2 LADEMU Framework LADEMU, developed by Gjerstad et al. in
[33], is a framework designed to generate APT datasets with automatic labeling. Af-
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ter thoroughly investigating the available frameworks for lateral movement dataset
generation, we recognize LADEMU as one of the most promising approaches for this
task. The framework introduces a new direction in the accurate labeling of cyberse-
curity datasets. This novel approach leverages adversary emulation platforms, such
as Caldera, to automate attack execution and utilize the information these platforms
provide to enhance labeling precision. This contribution marks a significant advance-
ment in dataset generation for cybersecurity research.

Our framework, LMDG, builds upon and advances prior efforts in cybersecurity
dataset generation, particularly following a similar approach to that of Gjerstad et al.
[33]. However, LMDG introduces several enhancements and improvements, specifi-
cally in labeling accuracy and benign data generation, further refining the process to
address better the complexities of lateral movement and other sophisticated attack
behaviors.

Regarding testbed infrastructure generation and associated services, LADEMU
operates within a virtualization environment, requiring users to build the testbed
using tools such as VirtualBox or VMware. This same approach is employed in our
framework, LMDG.

Concerning dataset collection, LADEMU primarily captures network data via
pcap files and utilizes Sysmon logs for host-based data. Our framework, LMDG,
expands upon this by collecting all Windows event logs, not limited to Sysmon (if
configured), and performs labeling across the entire set of Windows event logs, en-
hancing the comprehensiveness of the collected data.

For benign data generation, the authors of LADEMU utilize a GHOST tool
to automate the generation of realistic user behaviors. In contrast, LMDG introduces
a more general approach through its Benign Data Engine (BDE) (section x), which
decomposes the problem into two distinct phases: session scheduling for each user and
executing behavioral scripts during those sessions. These behavioral scripts can be
any script or program, including GHOST, thus offering greater flexibility in simulating
user behaviors.

Regarding attack execution, LADEMU leverages Caldera with all its capabil-
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ities, as discussed in section [3.3.4 This same platform has also been adopted in
LMDG to facilitate and automate attack execution.

In terms of labeling, LADEMU adopts a similar approach to our method (Section
Y), utilizing process IDs of agents to construct malicious process trees corresponding
to attack steps. Then, it searches for these processes within the Sysmon log. However,
four critical distinctions exist between our approach and LADEMU’s.

Firstly, after constructing malicious process trees—where the root is the Caldera
agent—LADEMU considers interactions between processes in these malicious trees
and any benign processes. Events associated with benign processes during the inter-
action window are labeled as malicious, and the interaction typically occurs over a
very brief period (in milliseconds), as noted by the authors. This approach presents
challenges. To illustrate, consider a scenario in which a process from the malicious
tree injects code into a benign process and continues interacting with it over an ex-
tended period. The benign process may then carry out both benign and malicious
activities, but the malicious effects can manifest long after the interaction [50]. Thus,
it is inaccurate to assume that malicious activity only occurs during the interaction
window. Moreover, LADEMU labels all events associated with a benign process as
malicious if they occur during the interaction interval [¢1,t5]. However, the benign
process might simultaneously perform legitimate benign events, leading to mislabel-
ing. To mitigate this issue, LMDG only labels events directly associated with the
malicious process trees, avoiding the complexities and inaccuracies of labeling benign
processes based on interaction intervals.

Secondly, in constructing malicious process trees, LADEMU relies on the root
process 1D, which is the Caldera agent, along with Caldera’s start and finish times-
tamps. While using the start time is a valid approach, as process IDs may repeat
over time, relying on the finish time can result in incomplete or ”trimmed” trees. As
previously discussed, the effects of malicious activities may not manifest immediately
and could take an extended period to appear [50]. To address this limitation, LMDG
improves upon this by using the root process ID and start time while extending the

finish time beyond Caldera’s provided value. This ensures that the process trees are
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fully constructed, capturing all relevant activity that might occur after the initial
finish time set by Caldera.

Thirdly, LADEMU does not remove the command and control (C&C) signals
exchanged between the Caldera server and its agents from the dataset. However,
retaining these signals may reduce the realism of the dataset, as in real-world scenar-
ios, C&C traffic may be either encrypted, disguised, or absent in logs available for
analysis. To improve the authenticity of the dataset and more accurately simulate
real-world environments, LMDG addresses this issue by filtering out C&C signals
from the final dataset. This approach ensures that the resulting logs and events are
focused on system and network behaviors that would realistically be observed with-
out revealing the underlying orchestration of the attacks, thereby providing a more
genuine reflection of an adversarial environment.

Lastly, LMDG introduces a significant enhancement over LADEMU and other
existing frameworks by offering the ability to link labeled events with individual at-
tack steps and their corresponding attack scenarios. In complex environments, it is
typical for the same attack step to appear across multiple distinct attack scenarios.
LMDG enables a more nuanced and context-aware dataset by associating labeled
events with their specific scenarios. This added level of detail is crucial for developing
and training models aimed at detecting multi-step attacks or constructing advanced
threat detection systems. The ability to differentiate between the same attack step
occurring in various scenarios aids in understanding the broader attack context. It
provides deeper insights into adversarial behaviors, thus improving the fidelity of

machine-learning models designed for cybersecurity applications.

3.6.1.1.3 CREME Framework The CREME framework, developed by Bui et
al. [15], is designed to generate labeled datasets specifically for training intrusion
detection models. In addition to dataset generation, CREME offers a mechanism for
evaluating the quality and effectiveness of the datasets it produces. As with other

frameworks reviewed, we will analyze CREME’s methodology for each cybersecurity
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dataset generation process stage.

Concerning the testbed infrastructure, the CREME framework similarly relies
on virtualization technologies for constructing its testbeds, a methodology consistent
with other frameworks, including LMDG [3.3.2] Additionally, CREME offers a certain
level of automation in the initial configuration and service initialization of the testbed
once it has been established. This automation reduces manual intervention and en-
sures that the testbed is properly configured to support subsequent cybersecurity
dataset generation and evaluation stages.

Regarding dataset collection, the CREME framework captures network traffic
in pcap format using tcpdump, collects system logs via rsyslog E], and gathers system
resource usage information with Atop [} However, due to the reliance on rsyslog and
Atop, the framework is inherently restricted to Linux and Unix-based environments,
limiting its applicability to Windows-based systems.

In terms of benign data generation, the framework includes a component called
the "Reproduction Module,” which handles both the generation of benign data and
the execution of attack scripts. This module simulates normal user behavior within
the testbed by running benign programs that represent typical activities. However,
the authors provide limited details on these scripts’ specific nature or contents and
do not elaborate on the types of user behaviors simulated through them. This lack of
clarity leaves questions regarding the scope and diversity of the behaviors incorporated
into the benign data generation process.

Regarding attack execution, the "Reproduction Module” is tasked with run-
ning the attack scripts and managing various attack phases. The authors conducted
five specific attack scenarios: Mirai botnet, ransomware, disk wipe, resource hijack-
ing, and endpoint denial-of-service (DoS) attacks. While these attacks are relatively
straightforward and can be automated using pre-defined scripts, the authors do not
address more complex attack patterns, such as lateral movement. It remains unclear

whether the ”Reproduction Module” possesses the maturity or capabilities to man-

Shttps:/ /www.rsyslog.com/
Shttps://linux.die.net /man/1/atop
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age these sophisticated attacks, as platforms like Caldera do effectively This
limitation raises questions about the framework’s extensibility for more advanced
adversarial techniques.

The labeling approach used in the CREME framework can be categorized as Be-
havioral Profiles-based [47) 35|, where labeling is derived from a prior understanding
of the attack programs or compromised machines defined during the configuration
phase. For instance, network traffic is labeled malicious if it originates from pre-
defined attack machines. The framework assumes that benign programs running on
vulnerable clients or injected devices will not access the target server during the attack
period. However, as previously discussed [3.3.5] Behavioral Profiles-based labeling is
less effective for lateral movement attacks, where both benign and malicious events

are generated by the same machine, leading to potential mislabeling.

3.6.2 Available Lateral Movement Datasets

A thorough analysis of publicly available cybersecurity datasets, particularly in in-
trusion detection, reveals a significant gap: most datasets lack examples of lateral
movement (LM) attacks. Prominent datasets such as DARPA, KDD, NSL-KDD, CI-
CIDS2017, and CICIDS2018 exemplify this limitation. Although these datasets have
been widely used in research, they focus primarily on other attacks, leaving a critical
void for modeling complex, multi-stage attacks like lateral movement.

The existing body of literature offers extensive evaluations and comparisons of
these datasets and discussions on the models developed using them. Given the depth
of research in this area, we will not reanalyze these datasets here but instead direct
readers to relevant references that provide comprehensive overviews [76, 62, 67, |39,
40, 8, |28].

Our study will identify the few datasets that explicitly incorporate LM attacks.
We will examine these datasets in detail, analyzing the attack scenarios they contain,
the structure of the LM attacks, and the relevance of these datasets for training

intrusion detection models capable of detecting multi-stage attacks. This deeper
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exploration will help address the critical need for realistic LM data in cybersecurity
research, contributing to developing more robust detection systems.

The datasets selected for detailed examination in our study are LANL [44], DARPA
Engagement 5 [24), DARPA OpTC [29], PicoDomain [52|, Pivoting Detection Dataset
[4], DAPT 62|, Unraveled [63].

3.6.2.0.1 LANL Dataset 2015 We will devote particular attention to this
dataset, as it is the most widely used for training and evaluating lateral movement
detection models. A review of the literature reveals numerous studies that utilize this
dataset for such purposes [34, [66, |13}, |7, 27, |48, |11} |18].

Two datasets originating from Los Alamos National Laboratory’s corporate (LANL),
namely, the ”Unified Host and Network Data Set” [80] and the ”Comprehensive,
Multi-Source Cyber-Security Events” (LANL 2015) [44]. The LANL 2018 dataset
constitutes a subset of network and host events procured from the LANL enterprise
network during an approximately 90-day timeframe; notably, this dataset does not
encompass any annotated instances of malicious events, thereby precluding its utility
in the evaluation of models for Lateral Movement detection. Conversely, the LANL
2015 dataset comprises a collection of Windows-based authentication events orig-
inating from individual computing nodes and centralized Active Directory domain
controller servers spanning a 58-day duration. Additionally, it encapsulates process
initiation and termination events sourced from individual Windows-based machines,
Domain Name Service (DNS) query activities as observed on internal DNS servers,
network flow data originating from various key router locations, and an explicitly de-
lineated array of red teaming exercises designed to exemplify malicious authentication
behaviors.

Upon meticulous examination of the malicious authentication incidents, it be-
comes evident that the manifestation of lateral movement is absent, substantiated by
the absence of the pivotal traversal between disparate hosts, as outlined in our pro-

posed definition of lateral movement in section[3.7] To expound further, the malicious
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data generated by the red team consists of successful authentication events character-
ized by the following attributes: time, source user, source computer, and destination
computer, as illustrated in Table [3.6.2 To analyze potential lateral movement, we
construct a directed graph using these attributes. In this graph, an edge is created
from the user to the source computer, and another is formed from the source computer
to the destination computer. By examining the paths within this directed graph, we
aimed to identify lateral movement instances. However, upon analysis, we observed
that the longest path in the graph has a length of two, meaning that the sequence
"user — source computer — destination computer” is the longest path present. This
suggests that no true lateral movement instances were captured in the dataset. Since
the dataset lacks a ”destination user” attribute, it is impossible to observe any user
switching, as confirmed by our analysis. We can omit the user attribute for visualiza-
tion purposes and focus on representing the graph solely with source and destination
computers. In this simplified directed graph, the longest path is of length one, in-
dicating direct connections between source and destination computers. Figure
illustrates this directed graph, which includes all malicious events identified in the

dataset.
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Fig. 3.6.3: LANL 2015 malicious authentications as directed graph.
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Table 3.6.1: Examples of Malicious Authentications in LANL 2015 Dataset

Time Source User Source Computer Destination Computer

151036  U748@DOM1 C17693 C305
151648 U748@DOM1 C17693 C728
151993 U6115@DOM1 C17693 C1173

3.6.2.0.2 LANL Dataset 2015 We will devote particular attention to this
dataset, as it is the most widely used for training and evaluating lateral movement
detection models. A review of the literature reveals numerous studies that utilize this
dataset for such purposes [34, [66, |13}, |7, 27, |48, |11} [18].

Two datasets originating from Los Alamos National Laboratory’s corporate (LANL),
namely, the ”Unified Host and Network Data Set” [80] and the ”Comprehensive,
Multi-Source Cyber-Security Events” (LANL 2015) [44]. The LANL 2018 dataset
constitutes a subset of network and host events procured from the LANL enterprise
network during an approximately 90-day timeframe; notably, this dataset does not
encompass any annotated instances of malicious events, thereby precluding its utility
in the evaluation of models for Lateral Movement detection. Conversely, the LANL
2015 dataset comprises a collection of Windows-based authentication events orig-
inating from individual computing nodes and centralized Active Directory domain
controller servers spanning a 58-day duration. Additionally, it encapsulates process
initiation and termination events sourced from individual Windows-based machines,
Domain Name Service (DNS) query activities as observed on internal DNS servers,
network flow data originating from various key router locations, and an explicitly de-
lineated array of red teaming exercises designed to exemplify malicious authentication
behaviors.

Upon meticulous examination of the malicious authentication incidents, it be-
comes evident that the manifestation of lateral movement is absent, substantiated by

the absence of the pivotal traversal between disparate hosts, as outlined in our pro-
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posed definition of lateral movement in section|3.7. To expound further, the malicious
data generated by the red team consists of successful authentication events character-
ized by the following attributes: time, source user, source computer, and destination
computer, as illustrated in Table [3.6.2 To analyze potential lateral movement, we
construct a directed graph using these attributes. In this graph, an edge is created
from the user to the source computer, and another is formed from the source computer
to the destination computer. By examining the paths within this directed graph, we
aimed to identify lateral movement instances. However, upon analysis, we observed
that the longest path in the graph has a length of two, meaning that the sequence
"user — source computer — destination computer” is the longest path present. This
suggests that no true lateral movement instances were captured in the dataset. Since
the dataset lacks a ”destination user” attribute, it is impossible to observe any user
switching, as confirmed by our analysis. We can omit the user attribute for visualiza-
tion purposes and focus on representing the graph solely with source and destination
computers. In this simplified directed graph, the longest path is of length one, in-
dicating direct connections between source and destination computers. Figure |3.6.4
illustrates this directed graph, which includes all malicious events identified in the

dataset.
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Fig. 3.6.4: LANL 2015 malicious authentications as directed graph.
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Table 3.6.2: Examples of Malicious Authentications in LANL 2015 Dataset

Time Source User Source Computer Destination Computer

151036  U748@DOM1 C17693 C305
151648 U748@DOM1 C17693 C728
151993 U6115@DOM1 C17693 C1173

3.6.2.0.3 DARPA Transparent Computing Engagement 5 (DARPA 2019)
The configuration within this dataset closely resembled that of Engagement 3 [23],
albeit encompassing a larger group of hosts. The assembly consisted of 16 distinct
hosts that operated on diverse operating systems, namely Windows, Ubuntu, and
Android, mirroring the compositional framework of the preceding dataset. Before
and during the engagement, There was a phase of benign data generation. All in-
stances of attack materialized exclusively between 9 a.m. and 5 p.m. on weekdays
across eight days. In contradistinction to the third engagement, which doesn’t contain
lateral movement attacks, the present one comprises two lateral movement scenar-
ios. The first scenario is characterized by a sequence wherein attackers successfully
compromise a host within the targeted network, configuring it to function as their
command and control hub. After this, they pivoted to another Linux-based host us-
ing stolen authentication credentials. The second scenario closely parallels the first
one, involving a similar strategy wherein attackers initially gained a foothold on the
network, subsequently pivoting onto multiple intermediary hosts through SSH and
stolen credentials. Within this dataset, these two instances are the exclusive manifes-
tations of lateral movement. These instances diverge from the protracted temporal
characteristics commonly associated with lateral movements as they transpire over a
short interval. Both instances share a commonality in their approach, employing an

identical technique to accomplish lateral maneuvering.
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3.6.2.0.4 DARPA Operationally Transparent Cyber 2019 (OpTC) Com-
pared to Engagement 3 |23] and 5 [24], this dataset has many hosts, a thousand hosts
in a Windows network, and the data from five hundred hosts was collected rather than
from the complete set of hosts due to space constraints. The evaluation started with
benign record generation, followed by the red team attacks, which were performed
in three days. Benign traffic ran continuously during red team activity. Kafka, an
open-source stream-processing server, facilitates information sharing among system
components. Windows 10 endpoints employ sensors to monitor host events, packag-
ing them into JSON records sent to Kafka. These records are then translated into
eCAR format by a server and reinserted into Kafka. A data analytics component
further processes the eCAR records, converting them into a graph structure for anal-
ysis and visualization. Within this dataset, two occurrences of lateral movement are
identifiable. The initial incident occurred on the first day, involving a sequence of four
intermediary transitions across five distinct hosts, with one of these hosts designated
the domain controller. The attacker employed Windows Management Instrumenta-
tion (WMI) to effectuate the traversal between hosts, augmenting the process by
integrating additional techniques. The subsequent occurrence unfolded the next day,
likewise leveraging WMI; however, it exhibited greater complexity than its prede-
cessor, characterized by a larger number of intermediary transitions. Similar to the
circumstances in Engagement 5, this dataset exhibits a limited number of instances of
lateral movement occurring within a concise timeframe, underscored by a deficiency

in the array of strategies employed for accomplishment.

3.6.2.0.5 PicoDomain 2020 The PicoDomain [52] simulation comprised a com-
pact Windows office setting encompassing five workstations, a domain controller, and
a gateway firewall /router. This setup is connected to a limited-scale internet hous-
ing websites and adversary infrastructure. The internal network featured a Windows
Active Directory environment with distinct Organizational Units (OUs): HR, R&D,

and a confidential supersecret OU. Scripts mimicking web browsing and SMB file
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sharing were utilized, and data collection spanned three days. The Mandiant Attack
Lifecycle (MAL) [19] was the framework for outlining the adversary’s campaign strat-
egy, mainly focusing on the recurring phases of hostile campaigns. The initial MAL
stages include Initial Reconnaissance, Initial Compromise, and Establish Foothold.
Subsequent phases, repeated as necessary, encompass Escalate Privileges, Internal
Reconnaissance, Move Laterally, and Maintain Presence. The MAL concludes with
the adversary accomplishing their mission. The dataset reveals prevalent attacker en-
gagement in multiple stages. Notably, lateral movement (LM) predominantly utilized
WMI and DCOM techniques with minimal diversity. The dataset comprises a single
LM scenario over a short three-day span lacking instances with an extended temporal

scope.

3.6.2.0.6 Pivoting Detection Dataset 2017 Within this dataset |3], network
traffic information takes shape as network flows observed within a large organization
throughout a day. These flows embody the interactions of internal hosts within the
observed network setting. Each flow sample in the dataset carries a binary label, indi-
cating its involvement in a pivoting activity. The labeling process underwent manual
execution and validation. The dataset’s size reaches about 6 GB, encompassing close
to 75 million network flows. The dataset predominantly records pivoting activities
where the "pivoter” host controlled the ”terminal” host remotely using third-party
tools like the Windows Remote Desktop protocol. It’s important to note that these
actions are typical, non-malicious pivoting activities that occurred within the mon-
itored organization. As such, they depict infrequent and harmless occurrences. As
previously noted, this dataset was gathered within a brief timeframe of just one day.
This limited duration may not be an ideal representation of Lateral Movement, which
often occurs over an extended period. Upon creating a graph that visualizes all the
pivoting activities with their temporal progression within the dataset it becomes evi-
dent that there are only a few instances of Lateral Movement, all of which involve two

hops. The specific technique employed in these pivoting instances remains unclear.
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3.6.2.0.7 DAPT 2020 The DAPT2020 [62] dataset was developed as an Ad-
vanced Persistent Threat (APT) dataset with two primary objectives: to make attacks
indistinguishable from normal traffic and to include traffic across both the public-to-
private interface and the internal (private) network. The testbed used was minimal,
consisting of two virtual machines—one connected to a private network and the other
to a public network—along with a log server and a gateway router. This simplified
architecture represents a limitation, as it does not accurately reflect the complexity
of real-world environments. Data collection spanned five days, with the first day cap-
turing only normal traffic and the subsequent four days containing various stages of
an APT attack. On the fourth day, the lateral movement phase occurred, involving
reconnaissance and exploitation activities from the compromised public VM to gain
access to critical systems on the internal network. This phase employed tools and
techniques such as Nmap for network scanning, the vsftpd 2.3.4 vulnerability, weak
SSH authentication, a MySQL script for CVE-2012-2122, and Metasploit. However,
the dataset includes only a lateral movement instance executed over a 10-hour win-
dow—a significantly shorter timeframe than realistic LM attacks, which can span

weeks or even months.

3.6.2.0.8 Unraveled Dataset 2023 The Unraveled dataset [63] builds upon the
DAPT2020 dataset, introducing significant enhancements. The testbed architecture
has been substantially improved, emulating a realistic enterprise network environ-
ment. The system architecture separates corporate and production networks with
a firewall. The organization has 15 employees, using Snort as a Network Intrusion
Detection System (NIDS) monitored by a Blue Team. The corporate network con-
tains three subnets, each simulating a department with different operating systems.
Logs are sent to a centralized ELK server in the production network. The production

network consists of a public subnet with a web server and a honeypot and a private
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subnet hosting critical services like a database, internal application, and mail server.
A firewall regulates traffic, allowing only specific public-to-private connections, while
private servers can access the public network freely. An additional enhancement in
the Unraveled dataset was the extended execution of the APT attack over six weeks.
However, the lateral movement phase remained relatively simplistic, occurring within
a single day and consisting of internal reconnaissance and password cracking. In both
the DAPT2020 and Unraveled datasets, the attack execution and labeling processes

were conducted manually.

Through a deep and thorough qualitative analysis based on the properties of lateral
movement attacks discussed in the introduction section several recurring limi-
tations across these datasets and others have been identified, which we elaborate on

below:

(1) Scarcity of Lateral Movement Instances:

A prevalent issue across the examined datasets is the limited availability of lat-
eral movement (LM) attack instances. This scarcity hampers the ability to compre-
hensively model and detect multi-stage attacks, as datasets must include numerous
instances to reflect the diversity and complexity of real-world attack scenarios.

(2) Owutdated Attack Patterns: Most datasets analyzed need to be updated,
capturing older attack strategies that may no longer align with contemporary threat
landscapes. In an ever-evolving field, datasets must reflect recent attack patterns to
ensure that intrusion detection models remain relevant and effective against emerging
threats.

(3) Lack of Diversity in LM Techniques: The datasets offer limited vari-
ation in the techniques used to perform lateral movement. In practice, attackers
employ many methods, including credential theft, remote service exploitation, and
process injection. Capturing this diversity is essential for developing robust detection
models that generalize well across different LM techniques.

(4) Short Execution Timeframes: Many LM attacks in these datasets are

103



3. LMDG: A FRAMEWORK FOR LATERAL MOVEMENT DATASETS GENERATION

executed over brief periods, failing to capture the prolonged nature of real-world
campaigns. LM activities often extend over hours or days, requiring datasets to
reflect these extended timelines to allow accurate modeling of such behaviors.

(5) Limited Number of Hops: Several datasets restrict LM activities to a
minimal number of hops, often just a few connections between systems. However,
realistic LM scenarios typically involve multiple hops across various hosts, user ac-
counts, and subnets, better mimicking real-world attack paths.

(6) Incomplete Data Sources: Some datasets provide only partial data, such
as focusing solely on network traffic or authentication logs. For a dataset to be truly
comprehensive, it must integrate multiple data sources, including network flow data
and system logs, to enable cross-layer correlation and accurate attack reconstruction.

(7) Insufficient Emphasis on Labeling Methodology: An additional chal-
lenge lies in clearer methodologies for accurately labeling attack-related events within
system and network logs. Proper labeling is critical to associate events with specific
attack steps and phases, ensuring that the dataset remains reliable for training and
evaluation purposes.

(8) Simple Testbed Architectures: Many datasets rely on simplistic testbed
architectures, limiting their ability to simulate realistic enterprise environments. To
improve the quality and applicability of datasets, it is crucial to develop testbeds
that reflect real-world complexities, including multiple network segments, diverse user
behaviors, and complex configurations.

It is worth mentioning that despite the growing shift towards cloud-based infras-
tructure, none of the reviewed datasets provide scenarios involving lateral movement
in cloud environments. The absence of such datasets creates a significant gap, as
cloud platforms introduce unique attack vectors and challenges that must be studied
to enhance cloud security practices.

To summarize, a dataset must include sufficient LM attack instances reflecting re-
cent patterns and diverse techniques to effectively support the training and evaluation
of lateral movement (LM), APT, or Multi-step attack detection models. The attacks

should span extended timeframes and involve multiple hops across hosts, users, and
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subnets. A comprehensive dataset requires system logs and network flows, accurate

labeling methods, and generation from realistic testbeds to ensure reliability.

3.7 Discussion

Our review of lateral movement detection reveals a need for a comprehensive def-
inition of Lateral Movement. While MITRE ATT&CK [59] defines it broadly as
techniques for accessing and controlling remote systems, this vague description limits
the effectiveness of detection models, highlighting the need for a more precise and
actionable definition.

We define two key types of adversary progression: horizontal progression and
vertical progression. Horizontal progression involves gaining independent access to
multiple hosts without interdependence, which does not qualify as lateral movement.
In contrast, wvertical progression describes interconnected access, where controlling
one system enables access to others. We define lateral movement as vertical
progression across hosts, accounts, or privileges, where one access leads
to another. This includes movement between hosts, accounts with elevated privi-
leges, and privilege escalation. This refined definition is essential for creating effective
detection models.

In the cloud environment, lateral movement follows a similar concept with modi-
fications. Identities (user, application, and service accounts) correspond to accounts,
requiring authentication to access resources, while permissions or policies align with
privileges, defining access levels. A key distinction in the cloud is the services layer,
which includes resources like AWS EC2 and S3, providing computing and storage.
Thus, cloud lateral movement involves vertical progression across identities, permais-
sions/policies, services, and resources. For example, an attack detailed by Microsoft
Threat Intelligence [42] involved exploiting SQL injection to access an Azure database
server and using the Instance Metadata Service (IMDS) to obtain further access to

cloud resources.
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Regarding the threat model in the LMDG dataset, it emulates realistic APT-like
scenarios where adversaries perform stealthy, persistent attacks over an extended pe-
riod. These scenarios include initial access, privilege escalation, and multi-hop lateral
movement across hosts and network subnets, reflecting the sophisticated behaviors
of modern attackers targeting enterprise networks. By leveraging the CALDERA
platform for attack emulation, the framework enables flexible attack design, support-
ing a variety of lateral movement techniques and bypassing typical security defenses.
To enhance realism, these attacks occur within a backdrop of benign user activities
generated by the Benign Data Engine (BDE), providing a nuanced environment for
distinguishing between normal and malicious behavior. This threat model thus of-
fers a robust foundation for evaluating detection and response mechanisms against

complex and dynamic cyber threats.

3.8 Conclusions and Future Work

In this work, we have comprehensively examined current cybersecurity benchmark
datasets with a specific focus on evaluating the presence and characteristics of lateral
movement (LM) attacks. Our analysis, the first of its kind, assessed LM datasets
across multiple dimensions, including the quantity and variety of LM techniques,
attack duration, number of movement hops, data sources (e.g., authentication logs,
network flows), labeling methodologies, and testbed configurations. This investigation
has highlighted gaps and challenges within existing datasets, providing insight into
the strengths and limitations of current approaches to lateral movement detection.
We developed a benchmark dataset focused explicitly on lateral movement attacks
to address the identified limitations. This dataset, designed to overcome many exist-
ing issues in LM datasets, provides a valuable resource for the research community,
facilitating the training and evaluation of more effective LM detection models. Our
qualitative dataset analysis demonstrates its applicability for various lateral move-
ment scenarios. It ensures that the diversity and complexity of attacks are suitable

for testing advanced detection techniques.
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Additionally, we introduced the Lateral Movement Dataset Generator (LMDG)
framework, a reproducible toolset for generating high-quality LM and APT datasets.
The LMDG framework automates benign data generation, attack execution, and
—crucially— the labeling of attack-related events in system and network logs. Rec-
ognizing the challenges posed by automatic labeling in LM scenarios, where benign
hosts may perform malicious actions, we proposed a novel technique, process tree la-
beling. This method offers improved precision and accuracy over existing techniques
such as injection timing, behavior profiles, and network security tools. Overall, the
contributions of this work enhance the landscape of LM dataset generation and anal-
ysis, supporting further advancements in cybersecurity research and LM detection
capabilities.

Several limitations of our framework warrant consideration. First, using virtu-
alization to construct testbeds necessitates extensive domain expertise, making the
process time-consuming and highly case-dependent, as discussed in more detail in [50].
This requirement for specialized knowledge may hinder the framework’s scalability

and accessibility. Second, the client-server architecture employed in attack automa-

tion, as outlined in Sections [3.3.4.3] and [3.3.4.4] introduces traffic and log accuracy

challenges. Specifically, the traffic generated by client-server communication must be
filtered to avoid contaminating the dataset with automation-related signals, ensuring
that the resulting data remains realistic and reflective of actual attack behaviors.
Finally, our proposed labeling methodology, process tree labeling, the most accurate
automatic labeling technique, is inherently tied to the client-server automation model.
This dependency arises from the need to identify the process IDs of deployed agents,
creating a coupling between labeling and attack automation. This coupling is dis-
cussed in more detail in [33] and may limit the applicability of our labeling approach
in environments where such client-server structures are not feasible.

While this study includes a qualitative analysis of our dataset and compar-
isons with existing datasets in the literature, further work is needed to incorporate
quantitative analysis methods. A systematic review of current quantitative assess-

ment techniques used in cybersecurity datasets will enable us to apply rigorous, data-
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driven evaluation metrics to our dataset, enhancing its reliability and usability. In

addition, future efforts may focus on producing a more comprehensive dataset that

encompasses the full spectrum of Advanced Persistent Threat (APT) attack stages

rather than concentrating solely on lateral movement. Such a dataset would capture

all phases of APT attacks, offering a richer resource for developing and benchmarking

holistic detection models that address the complete lifecycle of sophisticated attack

vectors. This extension will advance research into multi-stage threat detection, pro-

viding excellent value for the cybersecurity community.
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CHAPTER 4

Conclusion

In this work, we have addressed critical gaps in the existing datasets related to lateral
movement (LM) attacks within the context of advanced persistent threats (APTSs).
Our analysis of current cybersecurity benchmark datasets revealed significant chal-
lenges, including the scarcity of LM instances, limited diversity in LM techniques, and
the inadequacy of attack paths, particularly those involving multiple hops. Addition-
ally, many existing datasets fail to capture the complexities of cloud-based lateral
movement scenarios or present outdated attack patterns, thus limiting their useful-
ness for training robust detection models. We identified the necessity for comprehen-
sive datasets that incorporate a wider range of lateral movement activities and more
varied attack vectors to improve detection accuracy and model generalization.

To address these challenges, we developed a new benchmark dataset focused ex-
clusively on lateral movement attacks. This dataset was designed to overcome many
of the limitations of existing datasets, offering a broader range of attack types, a more
varied time frame, and a comprehensive set of data sources. Our qualitative analysis
of this dataset confirms its value for training and evaluating LM detection models,
as it captures the complexity and diversity of attack behaviors seen in real-world
scenarios.

A key contribution of this work is the Lateral Movement Dataset Generator
(LMDG) framework, which provides a reproducible toolset for generating high-quality
LM and APT datasets. The LMDG framework automates the generation of benign

data, the execution of attack scenarios, and, crucially, the labeling of attack-related
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events in system and network logs. One of the most significant challenges in LM
dataset creation is the accurate labeling of benign hosts involved in malicious ac-
tions. To address this, we introduced the novel "process tree labeling” technique,
which significantly improves the accuracy and precision of automatic labeling in com-
parison to existing methods.

While our framework represents a significant step forward, it is not without its
limitations. The complexity of testbed construction, the challenges of automating
attack execution, and the dependency of our labeling approach on client-server archi-
tectures present barriers to scalability and broader applicability. These limitations
are acknowledged and discussed in the context of future work, which will focus on
extending the framework to support more diverse environments and incorporating
more rigorous quantitative evaluation metrics to ensure the dataset’s reliability.

Ultimately, this work contributes to the advancement of lateral movement detec-
tion by providing a more robust and realistic dataset for research and model training.
It also opens the door to developing more comprehensive datasets that encompass the
full lifecycle of APT attacks. Such datasets will be invaluable for the cybersecurity
community, supporting the development of more effective, holistic threat detection

systems capable of defending against increasingly sophisticated attack strategies.
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