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Abstract—Lateral movement, a crucial phase in the Advanced
Persistent Threat (APT) life cycle, refers to a strategy employed
by adversaries to traverse horizontally within a network. The
aim is to gain access to various systems or resources, thereby
expanding their control and potential access to valuable targets.
Detecting these attacks becomes challenging for conventional
detection systems due to various factors, including the complexity
of pathways, the mimicking of legitimate user behavior by attack-
ers, and limited network visibility. To address these challenges,
advanced detection techniques are required to effectively and
dynamically analyze multiple features within the interconnected
structure of the network. This paper introduces an innovative
approach to detect malicious lateral movement paths by lever-
aging authentication events and graph learning techniques. The
proposed method involves constructing a heterogeneous graph,
and employing DeepWalk for node embedding. By combining
node embedding features with the temporal information of
authentication events, feature vectors are generated for each
authentication request. These features are then used to train
multiple machine learning-based classifiers to detect malicious
lateral movement paths. Furthermore, to assess the model’s
performance in a more realistic scenario, a series of additional
experiments were conducted. These experiments provided further
validation of the model’s robustness and its capability for forward
prediction.

Index Terms—Graph learning, machine learning, lateral
movement detection, advanced persistent threat.

I. INTRODUCTION

LATERAL movement is a tactic used by cyber attackers
to traverse horizontally within a network. They use this

method to gain access to valuable targets by escalating priv-
ileges while mimicking the behavior of legitimate users [1].
The consequences of undetected lateral movement can be
severe, including unauthorized access to sensitive systems
and theft of data. Therefore, it is crucial to have robust
detection mechanisms in place. Traditional techniques for
detecting lateral movement are inefficient due to their limited
visibility and inability to handle the complexity of modern
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network architectures [2]. They also generate a high rate of
false positives or false negatives. These techniques rely on
signature-based or rule-based systems, which need to be more
adaptable enough to keep up with evolving attack methods.

The way that graphs are represented often starts with
an adjacency matrix, which shows the connections between
adjacent vertices in the graph. However, this method becomes
less effective when dealing with complex and irregular graphs,
especially those that come from heterogeneous networks.
Additionally, traditional graph representations can be difficult
to work with and time-consuming to use in real-world sit-
uations [3]. Therefore, there is a need for a strong graph
representation method that can extract and transform various
types of graph-related data (including vertex-centric, edge-
centric, and subgraph-centric data) while also revealing hidden
relationships within the dataset [4]. Moreover, while graph
theory provides the basic principles for comprehending com-
plex network structures, it does not possess the inherent ability
to utilize information (features) and make decisions based on
the features embedded in the graph structure. To practically
apply these principles, especially in problem-solving within a
network, additional methodologies such as graph learning are
required.

Graph learning involves employing machine learning tech-
niques to facilitate a more dynamic and feature-driven decision
making process and discover the relationships among various
elements within a network. The essential nature of graph learn-
ing is its capability to transform complex graph properties into
feature vectors. These vectors serve as a foundation for train-
ing machine learning models. Unlike conventional approaches
that requires projecting graphs into low-dimensional spaces,
graph learning techniques adeptly convert graph-based data
elements (like nodes, edges, weights, etc.) into corresponding
outputs, known as graph embeddings [5]. This transformative
process enhances downstream tasks such as node classifi-
cation and link prediction without the need for a separate
embedding step [6]. There are various graph learning methods,
including Matrix Factorization, Graph Signal Processing, Deep
Learning, and Deep Walk-based techniques [7]. Out of the
graph embedding methods, the DeepWalk technique stands
out as a compelling choice for graph embedding. It generates
sequences of nodes by carefully preserving inter-node rela-
tionships, thereby revealing detailed network information and
transforming it into a more compact, lower-dimensional space.
The DeepWalk technique mainly works by traversing neigh-
boring nodes (first-order proximity) and collecting relevant
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information about the source node (the origin of the walk). The
walk then progresses to more distant neighbors (second-order
proximity) and keeps acquiring relevant insights. Eventually,
this accumulated information becomes embedded within the
source node, creating a comprehensive feature vector for the
node [8], [9].

Practically, lateral movement occurs within a networked
environment (such as an Intranet or an industry network),
where all computers are interconnected [10]. In this scenario,
a cybercriminal attempts to breach a host, infecting it with
malicious software to gain remote control. This insidious
control serves as a conduit for the host to traverse laterally,
infiltrating other nodes and seeking valuable assets [11]. To
identify lateral movements in such environments, it is crucial
to accurately comprehend the structure of these interconnected
hosts, considering the relationship between every pair of
them [10]. We believe that the graph learning technique can
effectively address these challenges through the following
two phases. In the initial phase, graph learning facilitates the
representation of the network’s structure as a heterogeneous
directed graph, utilizing node embedding to generate efficient
feature vectors. Moving into the second phase, these generated
feature vectors are employed to train a machine learning-based
classifier, ultimately establishing an effective and efficient
detection system for identifying malicious lateral movement
paths among benign activities. The paper’s main contributions
are outlined as follows:

• We have developed an innovative approach for identifying
malicious lateral movement paths based on network
authentication logs. Our approach involves constructing
a heterogeneous graph structure that traces the authen-
tication sequences and creates a comprehensive feature
vector. This feature vector includes both embedded fea-
tures extracted through DeepWalk and non-embedding
attributes. We then train various machine learning models
to detect and identify these malicious lateral movement
paths.

• We expanded the original dataset with additional
information, incorporating both embedding and non-
embedding features to enrich feature representation.
Utilizing these enhanced features, we conducted a
series of additional experiments to evaluate the model’s
performance in more realistic scenarios. This provided
further validation of its robustness and its capability for
forward prediction.

• We have created and made available the proposed
approach, which can be accessed through a Python ana-
lytics interface. This contribution allows users to easily
apply the method to their own datasets and scenarios in
a practical and user-friendly way.

The rest of the paper is organized as follows. Section II
provides an overview of existing studies on lateral movement
detection using graph learning techniques. In Section III, we
discuss the details of the proposed approach. The experi-
mental analyses and corresponding results are presented in
Section IV. Finally, Section V concludes the paper, providing
final reflections and remarks.

II. LITERATURE REVIEW

In this section, we review and discuss recent approaches
in the literature for lateral movement detection using graph
learning techniques. The collaborative integration of graph
embedding and machine learning techniques enhances the
process of feature extraction by generating supplementary
information, achieved through node embedding. The features
generated through node embedding provide additional insight
into the characteristics of path samples, effectively assisting
the classifier in differentiating between malicious and normal
paths.

Zhao et al. [12] introduced the Continuous-Temporal Lateral
Movement Detection (CTLMD) technique, employing graph
learning for lateral movement identification. Authentication
events, both remote and local, were transformed into a directed
homogeneous graph with timestamp attributes. This graph-
based mapping effectively captures temporal lateral movement
paths within complex network structures, resulting in the
creation of a temporal path connection graph. The authors
constructed a bipartite heterogeneous graph to extract implicit
information from users and hosts (GB = (U ,H ,EB ), (EB ⊆
U × H )). The graph structure indicates directed connections
between users and hosts, as well as mutual connections from
hosts to users. This study explores lateral movement paths
by assessing similarity among elements along those paths,
computing both the cosine similarity of edge features within
the path and the features of login entities independently.

Fang et al. [13] proposed LMTracker, a lateral movement
path detection method grounded in graph embedding tech-
niques. In this study, the authors modeled the network
topology as a heterogeneous graph encompassing various
nodes such as computers, users, processes, and files. The
graph also incorporated multiple employee activities like
logon, use, and create, representing the edges connecting these
nodes. Authentication events and process start/stop events
were utilized to construct the graph, effectively capturing
both authentication and process activities. LMTracker’s key
components include the structure of the heterogeneous graph,
node embedding, path vector representation, and the attack
path AutoEncoder. After the graph embedding phase, each
path within the graph was transformed into a feature vector
consisting of 128 features. These path vectors were then used
as input for an attack path detector based on the AutoEncoder
algorithm. While LMTracker explored a broader scope of
users’ activities compared to our approach, it omitted the
crucial temporal aspect, which is a pivotal feature in the
progression of lateral movements. Additionally, their approach
was evaluated using the LANL dataset, achieving an accuracy
rate of 0.91.

Similarly, Bian et al. [14] utilized machine learning methods
for lateral movement detection. They employed the graph
representation of authentication events within the LANL
dataset (the authentication graph G = (U, V, E)), extracting
29 features primarily based on the in/out-degree characteristics
of distinct hosts (nodes). Following the feature extraction
process, the authentication events within the initial 30-day
period of the LANL dataset were used for training and
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evaluating various machine learning classifiers. Due to the
dataset’s inherent imbalance, with a larger number of nor-
mal authentication paths compared to malicious paths, the
authors applied a combination of under-sampling and over-
sampling techniques. This approach aimed to create a balanced
version of the LANL dataset, enhancing the model’s abil-
ity to handle both classes effectively. Compared to our
work, our proposed model demonstrates superior performance
in both accuracy and processing time, achieving a higher
F1 score.

Zhao et al. [12] proposed a continuous-temporal lateral
movement detection model (CTLMD) using graph embedding
techniques. The CTLMD architecture consists of two primary
phases: the graph pre-processing unit and the anomaly detec-
tion unit. In the pre-processing phase, the remote and local
authentication events from the LANL dataset are transformed
into distinct graph structures: the Path Connection Graph
and the Bipartite Graph. Two graph embedding techniques,
CTDNE and BiNE, are introduced to measure the familiarity
of lateral movement paths and map nodes into d-dimensional
vectors. Subsequently, these feature vectors are then used
for model training and calculating path similarity to identify
normal or malicious paths. The authors also extract additional
features by leveraging user and host embeddings, representing
a path within the graph. These features include path edge
features, computed through the vector of the login entity v
derived from the path connection graph, as well as login entity
features indicating the normality of the login entity within
the path l. Additionally, user features and host features were
also incorporated. The authors utilized a logistic regression
technique for model training, using 80 percent of the path
data, and testing is conducted on the remaining 20 percent. An
interesting aspect of this study is the exploration of different
hyperparameters, with a special focus on the (Δt) parameter.
The performance results indicate that Δt = 3h outperformed
Δt = 1h . The authors argue that with Δt = 3h , longer
intervals between login events are generated, providing more
accurate extraction of normal path patterns and encapsulating
the familiarity of lateral movements among normal users. In a
recent study by King and Huang [15], they introduced a lateral
movement detection framework comprising a model-agnostic
graph neural network and a model-agnostic sequence encoding
layer, such as a recurrent neural network. They approached
lateral movement detection as a temporal graph link prediction
task, where discrete-time interactions in a network are treated
as a series of graphs. Using a temporal link prediction
model, the framework captures typical behavior patterns from
historical snapshots and assigns probability scores to edges in
subsequent instances. Edges with lower probability scores are
representative of anomalous connections within the network.
These anomalous connections are often indicative of lateral
movement [16].

Kushwaha et al. [17] proposed a lateral movement detection
approach based on user behavioral analysis. They combined
user behavioral analysis and machine learning to develop
domain-specific features for identifying such behavior at
the individual user level. Utilizing the LANL dataset, they
employed supervised machine learning algorithms to uncover

Lateral Movement behaviors within enterprise networks. Their
approach involves analyzing user-based behavior related to
authentication and process events, utilizing domain-specific
features that represent indicators commonly used in lateral
movement activities. During the model training phase, they
employed the XGBoost classifier, achieving an average recall
score of 86.51%. Comparatively, our proposed XGBoost
model, based on node embedding features, demonstrates
superior performance. Liu et al. [18] proposed Latte, a graph-
based system designed to detect malicious lateral movement
paths using network connection graphs from Windows security
events. They demonstrated the effectiveness of graph-based
algorithms in detecting lateral movement and incorporated
a forensic analysis module to identify confirmed malicious
entities. Furthermore, they integrated a general detection
module to filter out benign paths to improve the detection
accuracy. To assess Latte’s scalability for general detection
tasks, they conducted experiments on the penetration test
dataset obtained from a large-scale network penetration test.
They evaluated Latte’s performance by ranking the graph’s 2-
hop paths using path-rate scores and a remote file execution
detector individually. Notably, their detection system does
not rely on machine learning and differs from our proposed
model in terms of its capability for forward prediction. To
summarize, our proposed work differs from previous studies
in the following ways:

• Rather than dealing with complex graphs, our approach
focuses on creating a lightweight graph structure that can
convey the essential information obtained from authenti-
cation activities in enterprise networks. This is useful for
detecting lateral movement.

• While using the DeepWalk technique to conduct node
embedding features, we only explore first-order, second-
order, and third-order proximate nodes. This approach
has proven to be more effective than other methods that
involve long walks, such as [13].

• Unlike previous works that aim to embed all attributes
from authentication events, our model combines temporal
non-embedding and embedding features to provide better
feature representation and extraction. This helps to dis-
tinguish between normal and malicious paths, especially
for forward prediction.

• When compared to previous methods, our model has
demonstrated superior performance in terms of accuracy,
processing time, and F1 score. This highlights its effec-
tiveness in detecting lateral movement.

III. PROPOSED APPROACH

In this section, we utilize a subset of the LANL
dataset [19], [20] focused on authentication events, which
includes logs recorded by the Windows Active Directory. This
dataset serves as the basis for the analysis and experimentation
presented in this paper. Each row of the dataset, containing
benign authentication events, can be represented as the fol-
lowing tuple.

(time,Csrc ,U ,Cdst ,T ,A)
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Fig. 1. Workflow of the proposed methodology for lateral movement detection.

In this tuple, the variable time denotes the timestamp at
which the authentication request was submitted, while Csrc

and Cdst respectively represent the source and destination
computers involved in the authentication event. Moreover,
within the tuple, U signifies the user, T denotes the event
type (including login, logout, process creation, file creation,
etc.), and A represents the authentication attributes (such as
login type, authentication type, and login result). Due to
the absence of information for T and A in the malicious
authentication records (redteam records) within the dataset, we
could not utilize this data for analysis. As a result, the dataset
comprises a restricted set of features for each authentication
request. Upon closer inspection, certain authentication records
exhibit exactly similar attributes (Computer(A) −→ User(1) −→
Computer(B)), yet are associated with distinct labels. Indeed,
such scenarios are reflective of real-world lateral movement
situations. For instance, in a compromised network within
a company, a legitimate user (U1) might regularly use a
computer (Csrc) to connect to workstation (Cdst ) during
normal working hours. In this case, since the movement is
benign, it would be labeled as 0. However, if the same path is
utilized for a malicious activity, especially during non-working
hours like midnight, the path is labeled as 1 to signify its
malicious nature.

Utilizing such features for training a machine learning
classifier could introduce ambiguity and negatively impact
the model’s detection performance. Graph learning offers
a promising solution to tackle this challenge. Given the
involvement of three entities (source, destination, and user)
in each authentication request, it is possible to construct a
graph based on these authentication requests. Subsequently,
this graph can be utilized to generate an array of features for
each entity by using graph embedding.

A. Graph Structure

To create a graph learning-based model, the first step
involves constructing a topological structure, which is essen-
tially a graph made up of interconnected nodes. The purpose
of this graph is to represent the relationships between the
various elements of the network in a coherent and meaningful
way. A graph structure is capable of retaining the structural
information of the network while also incorporating relevant
details from complex and semantic data sources. In this step,
we convert the information related to each authentication

Fig. 2. A part of the graph comprising the edges that represent the requests
outlined in Table I.

TABLE I
THE PROVIDED INFORMATION PERTAINS TO A SUBSET OF REQUESTS

AIMING TO ACCESS HOST C305 WITHIN THE LANL DATASET

request, including the source and destination hosts and the
user, into a directed heterogeneous graph representation.

The graph depicted in Figure 2 is a directed heterogeneous
graph created from the authentication records listed in Table I.
In this figure, C305 serves as the common host destination
in four distinct authentication records. Among these, three
records indicate benign activity (depicted in blue), while one
record signifies lateral movement (highlighted in red). It is
important to note that the illustrated figure represents only
a very small subset of our proposed directed heterogeneous
graph.

As explained in the previous section, the authentication
records including source computer (Csrc), user (U), destina-
tion computer (Cdst ), and timestamp provide us with crucial
insights into an authentication path. This path originates from
a designated source host, is executed by a specific user, and
concludes at a destination host. In the subsequent step, we
map each authentication record into a path within the directed
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Fig. 3. The proposed directed heterogeneous graph representing an extremely
limited subset of authentication events extracted from the dataset.

heterogeneous graph. In the context of directed graphs, a path
comprises multiple directed edges, illustrated as follows:

Time
occur/Second−−−−−−−−−→ Computer

Use−−−→ User
Login−−−−→ Computer

Utilizing the above-mentioned path structure, we proceeded
to construct a directed heterogeneous graph. A larger portion
of the original graph based on real records in the LANL
dataset is represented in Figure 3. As depicted in the provided
figure, a significant number of normal paths are concentrated
at the center (depicted in blue). These paths signify the
usual connections between nodes within an organization or an
Intranet. In addition to the centralized blue paths, there are
also sprawling red paths that carry a significant implication
regarding lateral movement paths. When a computer within
an intranet becomes infected with malware for the purpose
of executing malicious lateral movements, the subsequent
movements from the compromised host to other hosts do not
follow any predefined pattern. These movements occur blindly,
with the purpose of inspecting each successive computer
for significant assets or valuable information. Algorithm 1
provides the key steps used to convert authentication events
from the dataset into a heterogeneous graph structure. The
output of this algorithm enhances our ability to visualize the
relationships among various network elements within a graph-
based topology.

Two primary phases are involved in the proposed method-
ology for lateral movement detection: graph embedding and
classification, as shown in Figure 1. We will provide detailed
insights into each individual component’s internal architecture
in the following sections.

Algorithm 1: Graph Generation and Visualization
Input: Authentication events from the LANL dataset
Result: The equivalent graph representation

1 Extract authentication events from the dataset and
assign labels;

2 Data Preprocessing the concatenate dataframes;
3 Create a directed heterogeneous graph using the

preprocessed data;
4 Define node shapes for visualization;
5 for each row in the preprocessed data do
6 if the label indicates malicious activity then
7 set the node color to red;
8 else
9 set it to blue.

10 end
11 end
12 end
13 Add nodes to the graph for source, destination, and

intermediary nodes;
14 Add edges between source-destination and

destination-intermediary nodes with appropriate
color and weight;

15 Layout the graph and draw edge labels and edges
with arrowheads;

16 Set arrow style, arrow size, width, and edge colors
based on their attributes;

17 Draw node labels and nodes;
18 Set node font color and weight for labels;
19 for each defined node shape do
20 draw nodes with specified sizes and colors;
21 end

B. Authentication Graph Embedding and Feature Vector
Generation

Graph Embedding refers to a mathematical function that
transforms a high-dimensional representation of a node in a
graph into a lower-dimensional space. The primary goal is
to generate appropriate feature vectors that can be employed
as input to train machine learning models for the objec-
tive of anomaly detection. Indeed, there are various graph
embedding algorithms, including DeepWalk [8], node2vec [9],
structure2vec [21], and LINE [22]. Many of these algorithms
draw inspiration from the word2vec concept [13]. Among
these, DeepWalk is particularly well-suited for heterogeneous
graphs. Therefore, in our approach, we employ Random Walk
with a predetermined walk length. Additionally, for node
representation, we utilize the Skip-Gram method to sample
the sequence set of random walks. This technique not only
captures the structural information within the graph but also
preserves its semantic attributes [13].

Continuous Bag Of Words (CBOW) and Skip-Gram [23]
are two different architectures employed for generating word
embedding. CBOW receives context as input to predict words,
while skip-gram receives input words to predict context [23].
In our proposed node embedding model, the goal is to extract
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Algorithm 2: Node Embedding Method
Input: Graph G, Walk length L, Number of walks R, Number of workers, dimension of the embedded vector d,

Learning rate α
Result: Node embeddings dictionary

1 sequences ← [];
2 Function DeepWalk(G ,L,R,workers):

// Generate random walk sequences;
3 foreach node in G .nodes do
4 for r in range(R) do
5 walk ← [node];
6 while len(walk) < L and currentNode has neighbors do
7 cur← walk[− 1];
8 currentNode← a random neighbor of cur;
9 append currentNode to walk;

10 append walk to sequences;

// Training the Node2Vec model using Skip-Gram;
11 node_embeddings ← random_init(G .num_nodes, d);
12 foreach sequence in sequences do
13 for i in range(len(sequence)) do
14 center_node← sequence[i ];
15 context_nodes← sequence[ max(0, i − L) : i ] + sequence[i + 1 : min(i + L+ 1, len(sequence))];
16 foreach context_node in context_nodes do
17 center_embedding← node_embeddings[center_node];
18 context_embedding← node_embeddings[context_node];
19 dot_product← dot(center_embedding, context_embedding);
20 predicted_prob← softmax(dot_product);
21 error← predicted_prob− actual_prob;
22 node_embeddings[center_node]− = α× error× context_embedding;
23 node_embeddings[context_node]− = α× error× center_embedding;

24 return Node_embeddings

additional information from both the first-order proximity and
the second-order proximity of graph’s nodes. This information
is then converted into a normalized numerical feature vector.
Subsequently, these feature vectors will be employed to train
the proposed machine learning-based classifier model.

The Skip-Gram model is constructed with a neural network
architecture that includes a single hidden layer, which is
utilized to train the weights associated with this hidden layer.
The Skip-Gram model aims to maximize the conditional
probability of a node v (Nt (v), t ∈ TV ) and obtain the
probability distribution of nodes that are likely to appear
together with it within a context window of a specified size
in the proposed heterogeneous graph G = < V, E, T > [13].

The objective function of SkipGram, also known as the neg-
ative log likelihood ((Fsg )), aims to maximize the likelihood
of predicting context nodes given a center node. This function
is expressed in Eq. (1).

Fsg = max
∑

v∈V

∑

t∈TV

∑

ct∈Nt (v)

logP(ct |v , θ), (1)

Here, V represents the set of all nodes in the graph, TV is
the set of types associated with nodes in V. Nt (v) is the set
of nodes in the context of node v associated with type t. The

probability P(ct |v , θ) is the Softmax activation function and
is calculated using Eq. (2). θ represents the parameters to be
learned.

P(ct |v , θ) = eXctXv

∑
(ut∈Nt (v))

eXutXv
, (2)

where Xct is the embedding of context node ct , and Xv is the
embedding of center node v.

∑
(ut ∈ Nt (v)) represents the

sum over all context nodes in the context of node v associated
with type t.

As illustrated in Figure 4, the output features have been
extracted as a feature vector for each authentication path,
comprising 128 features for each node. Consequently, a total of
385 features have been extracted for each authentication path.
This includes 384 features corresponding to the three nodes
in the path (Computer(A) −→ User(1) −→ Computer(B)),
along with an additional feature indicating the request time.
Algorithm 2 outlines the essential steps for generating node
embeddings using the DeepWalk method. The pseudocode
includes a function, random_walk, responsible for executing
a random walk of length L starting from a given node in the
graph G. The Skip-Gram algorithm is then applied to learn
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Fig. 4. Illustration of the node embedding process.

node embeddings based on the sequences generated by these
random walks.

C. A Machine Learning-Based Classifier for Detecting
Lateral Movements

In the previous section, we explained how node embedding
works and how it generates features through graph embedding
techniques. We used node embedding to create 385 normalized
features for each authentication record in our dataset. We then
used these features to train a machine learning-based classifier.
This classifier is a critical part of our lateral movement detec-
tion system as it serves as the detection engine. It carefully
identifies malicious paths among a significant number of
normal paths.

To establish an efficient and resilient classifier model
through supervised learning methods, we incorporated a
range of techniques such as Support Vector Machine
(SVM), K-Nearest Neighbors (K-NN), logistic regression,
gradient boosting (GB), and Extreme Gradient Boosting
(XGBoost), while carefully tuning hyperparameters for
optimal performance. The goal of applying different machine
learning techniques is to identify the best approach for devel-
oping a lightweight model that can quickly detect anomalies
with high accuracy. In order to choose the optimal method,
we evaluated each technique based on various evaluation
metrics, such as accuracy, precision, recall, F1 score, and
processing time. We have presented the performance results
of all the supervised learning techniques we evaluated in
Table XII. According to our analysis, XGBoost technique [24]
demonstrated superior performance compared to other tech-
niques in terms of accuracy, recall, precision, F1 score, and
AUC. Although Logistic Regression provides faster detection

time, it has significantly lower performance in terms of
precision, recall, and F1 score. Therefore, we decided to
train the proposed model using XGBoost classifier, which is
a scalable distributed gradient-boosted decision tree machine
learning technique. XGBoost offers parallel tree boosting,
an efficient and rapid machine learning approach designed
to address regression, classification, and ranking problems
effectively [24].

In Section III-B, we explained that authentication events
contain embedded features that provide information about the
entities involved (source computer (Csrc), user (U), destina-
tion computer (Cdst )). Time is another crucial attribute that
needs to be integrated into the authentication paths to generate
final feature vectors. Algorithm 3 outlines the primary steps
for node concatenation, training, and prediction. The Explode
function generates feature vectors that combine both embed-
ded features generated from Algorithm 2 and non-embedded
features. This combined feature set is used to create a new
dataset for training and prediction. The algorithm prepares
the data and utilizes a machine learning classifier to distin-
guish between malicious and normal paths using the feature
vectors.

IV. EXPERIMENTAL RESULTS AND EVALUATION

We evaluate the proposed approach using the
Comprehensive Multi-source Cybersecurity Events dataset,
which was collected over a span of 58 days from Los
Alamos National Lab’s network. This dataset includes logs of
1,648,275,307 authentication requests, involving 12,425 users
and 17,684 computers [19], [20]. Performance metrics are
explained in Section IV-A, followed by a detailed explanation
of experiments and results in Section IV-B.
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Algorithm 3: New Dataset Generation and Model
Training

Input: Embeddings data, Initialized ML-based Model
Result: New path features (f ),Path classification
// Creating the final path features

1 Function explode(x ):
2 node ← split elements of x (elements of events);
3 f ← empty feature vector;
4 foreach i in node do
5 if i starts with “U” or “C” then
6 f ← append embeddings of i ;

7 else
8 f ← append time of the event;

9 return f ;

// Training the XGBoost model
10 Function train(X ,Y ):
11 Xtrain ← feature vectors created using explode;
12 train classifier using Xtrain and Ytrain;

// prediction using classifier
13 Function predict(X ):
14 Xpred ← feature vectors created using explode;
15 Ypredicted ← predict labels using ML classifier;
16 return Ypredicted ;

// Evaluate the classifier
17 Function evaluate(Y ,Ypredicted ):
18 results← compute_metrics(Y ,Ypredicted);
19 return results;

TABLE II
CONFUSION MATRIX

A. Evaluation Metrics

In the performance evaluation of machine learning-based
approaches, a confusion matrix is often generated to assess
the effectiveness of the classifier model. When it comes to
detecting malicious lateral movement paths, the usual scenario
involves identifying malicious paths (class 1) versus benign
paths (class 2).

• Confusion Matrix: This matrix compares predicted pat-
terns with actual ones. Table II presents the evaluation
components for a system designed to detect malicious
lateral movement paths, distinguishing between malicious
and benign paths.

• Overall Accuracy: This metric evaluates the classifier’s
performance by calculating the percentage of correctly
classified patterns (TP, TN) compared to misclassified
patterns (FP, FN). The following equation depicts the
calculation of overall accuracy:

Overall Accuracy =
TP + TN

TP + TN + FP + FN
(3)

• Recall (Sensitivity or True Positive Rate): This metric
represents the proportion of malicious authentication
requests that have been correctly classified as lateral
movement.

Recall =
TP

TP + FN
(4)

• Precision: This metric quantifies the ratio of accurately
classified malicious lateral movement paths to the total
number of predicted paths (both true and false positives)
in the test data. It is calculated using the formula:

Precision =
TP

TP + FP
(5)

• F1 Score: This metric is a harmonic mean of precision
and recall, providing a balanced measure of a classifier’s
performance. It is calculated using the following formula:

F1 Score = 2× Precision× Recall

Precision + Recall
(6)

Indeed, the F1 score is particularly useful in situations
where there is an imbalance between the classes in a
dataset, making it a suitable metric for evaluating network
anomaly detection systems. It provides a balanced assess-
ment of a classifier’s ability to capture both precision
and recall, considering both false positives and false
negatives.

• Area under the ROC Curve (AUC): is a well-known
metric, particularly for binary classification problems, as
it measures the area under the ROC curve. In classifiers
that produce continuous values such as XGBoost, a
threshold is employed to distinguish between positive
and negative samples. The ROC curve illustrates the
True Positive Rate (TPR) against the False Positive
Rate (FPR) for various thresholds ranging from 0 to 1.
The AUC value can be calculated using the following
equation:

AUC =

∫ 1

0
TPR d(FPR) (7)

This integral represents the area under the curve of
the ROC plot, providing a summary measure of the
classifier’s performance. Figure 5 depicts the classifier’s
performance based on the ROC curve.

B. Evaluation Results

The experiments conducted on the LANL dataset to eval-
uate the performance of the proposed graph learning-based
technique using the specified evaluation metrics. In this
experiment, we considered both normal and malicious lateral
movement paths. The testing dataset comprised 218 records
for malicious lateral movement paths and 90,104 records for
normal paths. These records were utilized to comprehen-
sively evaluate the performance of the proposed technique.
The confusion matrix presented in Table III demonstrates
promising results, indicating the accuracy of the proposed
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Fig. 5. The performance of the classifier based on the ROC curve.

TABLE III
CONFUSION MATRIX FOR LATERAL MOVEMENT DETECTION USING THE

PROPOSED CLASSIFIER ON THE LANL DATASET

TABLE IV
RESULTS OF PERFORMANCE METRICS USING THE LANL

DATASET (BEST RESULTS)

approach in classifying authentication requests. Considering
the inherent class imbalance in the dataset, we conducted
a detailed analysis by computing the recall, precision, and
F1 score for each class individually. This step ensured the
verification of any potential misclassification between the
normal class (Class 1) and the malicious class (Class 2).
Furthermore, we calculated the area under the curve (AUC)
value, a widely recognized metric, particularly suitable for
binary classification problems.

Table IV presents all the specified metrics, including their
weighted averages and macro averages. Additionally, Figure 6
provides visual representations of the confusion matrices for
two different experiments, representing the best and worst
outcomes. These results were obtained after conducting 10
iterations of randomly shuffling the dataset to create training
and testing subsets. Specifically, Figure 6(a) illustrates the
confusion matrix for the best outcome, while Figure 6(b)
presents the one for the worst outcome along with the results
of the performance metrics for the worst case presented in
Table V. In order to represent the binary classification results
in a 2-D space, Figure 7 shows the projection of the input fea-
tures from their n-dimensional space into a two-dimensional
plane. This is done using the t-SNE algorithm, which visually

Fig. 6. The best and worst confusion matrices resulting from 10 experiments,
where training and testing data were chosen randomly. Labels 0 and 1
correspond to Class 1 (benign path) and Class 2 (malicious path), respectively.

TABLE V
RESULTS OF PERFORMANCE METRICS USING THE LANL DATASET

(WORST RESULTS)

Fig. 7. A 2-D visualization of binary classification results. Labels 0 and 1
correspond to Class 1 (benign path) and Class 2 (malicious path), respectively.

highlights the difference between lateral movement paths and
normal paths. Additionally, Figure 5 shows the ROC curve
which illustrates the performance of the XGBoost classifier
in detecting malicious lateral movement paths. It is evident
from the figure that maximizing the area under the ROC curve
indicates promising performance achieved by the model in
detecting malicious paths.

C. Forward Prediction

In the previous experiment, we explained the training and
testing procedures of the proposed model for malicious path
detection. The dataset was randomly shuffled and subsequently
divided into 70% for training and 30% for testing purposes. We
conducted additional experiments to enhance the applicability
of the model in real-time scenarios. In other words, the model
will exclusively operate in a forward prediction manner. In
this experiment, we refrained from splitting the dataset into
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Fig. 8. Distribution of the authentication requests in the LANL dataset.

TABLE VI
CONFUSION MATRIX FOR THE SECOND EXPERIMENT

two portions. Instead, we trained the model using the sample
paths from the initial 10 (or 20) days and proceeded to predict
malicious paths for the subsequent days, without performing
any backward prediction. To assess the performance of the
proposed approach in extended prediction scenarios, we con-
ducted four experiments. This section outlines the experiments
along with the corresponding results.

In the first experiment, the classifier was trained using
authentication records spanning from day 1 to day 30, and
subsequently tested on the remaining days (days 31 to 58).
The classifier did not identify any malicious authentication
requests. In Figure 8, we have illustrated the distribution
of authentication requests within the LANL dataset. This
includes Red-team requests (lateral movements) displayed in
Figure 8(a), and benign requests shown in Figure 8(b). As
evident from the Redteam requests graph (Figure 8(a)), the
outcome of our proposed model in this experiment aligns
accurately with real-world scenarios. In the second experiment,
the aim was to reduce the number of training samples while
increasing the number of testing samples. The classifier was
trained using the authentication records from day 1 to day 20
and subsequently tested with the data from the remaining days
(days 21 to 58). Table VI presents the confusion matrix for this
experiment. Notably, the table indicates the misclassification
of only two normal paths that were erroneously identified as
malicious. Table VII also displays the calculated performance
metrics, including precision, recall, and F1 score.

In the third experiment, the aim was to further reduce the
number of training samples and increase the number of testing
samples. The purpose of conducting this experiment is to
evaluate the classifier with an equal number of training and
testing samples. Typically, a machine learning-based classifier

TABLE VII
PERFORMANCE MEASUREMENTS FOR THE SECOND EXPERIMENT

TABLE VIII
CONFUSION MATRIX FOR THE THIRD EXPERIMENT

TABLE IX
PERFORMANCE MEASUREMENTS FOR THE THIRD EXPERIMENT

is trained using a larger portion (approximately 70 percent)
of the dataset patterns and then tested using the remaining
smaller portion. In this scenario, the classifier was trained
using authentication records from a limited period of 10
days (from day 10 to day 19) and then tested using the
subsequent 10 days (days 20 to 29). Table VIII illustrates the
confusion matrix for this experiment, showing that there were
no misclassified paths. Additionally, Table IX presents the
calculated performance metrics, which demonstrate promising
results.

In the context of the fourth experiment, we employed the
authentication records from the initial 10 days (day 1 to day
10) to train the classifier. As depicted in Figure 8, these 10
days include both normal and malicious paths. The number
of malicious paths is significantly lower compared to the
normal paths. However, from days 10 to 17, there is an
increase in the number of malicious paths compared to normal
paths, which could be attributed to weekends or possibly
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TABLE X
CONFUSION MATRIX FOR THE FOURTH EXPERIMENT

TABLE XI
PERFORMANCE MEASUREMENTS FOR THE FOURTH EXPERIMENT

holidays. Therefore, we specifically chose these peak days,
which include 351 malicious paths, to evaluate the proposed
model’s performance on this heterogeneous network. The
obtained results, as shown in Tables X and XI, demonstrate
that the proposed model accurately classified all paths with
outstanding precision, recall, and F1 score.

D. Discussion and Comparison

In this section, we provide a comparative analysis and
discussion of the proposed lateral movement detection system,
examining it from two different perspectives as outlined below:

1) The Impact of Classifier on Lateral Movement Detection
Performance: Regarding the detection technique, Table XII
provides an initial comparison between the performance of
the XGBoost classifier and various supervised learning tech-
niques, including Support Vector Machine (SVM), K-Nearest
Neighbors (K-NN), logistic regression, and Gradient Boosting
(GB). In terms of the performance of the proposed system,
both execution time and various evaluation metrics, such
as overall accuracy, Area Under the Curve (AUC), recall,
precision, and F1 score, have been considered. In this eval-
uation phase, the performance of the classifier is compared
individually with the specified supervised learning techniques,
without taking into consideration the complexity of graph
embedding processes.

To ensure a fair comparison, we also examined recently
published graph learning-based lateral movement detection
approaches from the literature and compared their results
with our proposed model. Furthermore, in this comparative
study, we have exclusively focused on lateral movement
detection approaches that have been evaluated using the LANL
dataset [19], [20], [25]. As indicated in Table XIII, the study
by Fang et al. [13] reported precision, recall, and F1 score
values of 0.86, 0.93, and 0.89, respectively. Additionally, the
research conducted by Bian et al. [14] yielded precision, recall,
and F1 score results of 0.97, 0.93, and 0.95, respectively. The
performance results displayed in Tables XII and XIII clearly
highlight the superiority of our proposed lateral movement
detection technique in terms of both efficiency and accuracy.

2) The Impact of Random Walk Parameters on the
Classification Results: Apart from time and accuracy, which
are primarily associated with the performance of the detection
technique (classifier), several other parameters tied to the

TABLE XII
THE MODEL’S PERFORMANCE USING VARIOUS MACHINE

LEARNING TECHNIQUES

TABLE XIII
THE PERFORMANCE OF OUR PROPOSED MODEL COMPARED

TO RECENT APPROACHES

feature generation process (random walks in node embedding),
such as the number of walks and the length of walks, are cru-
cial and directly influence the overall system’s performance.
Therefore, this aspect should also be taken into consideration.
We have incorporated these two parameters into Table XIII
to offer an additional comparison related to node embedding.
To acquire additional features during random walks over
neighboring nodes, we allocated a maximum length of 3 to
each walk and instructed the walker to repetitively undergo
this process for 10 iterations. We experimented with increasing
the number of walks to 100 and the length of walks to 10
for all the supervised learning techniques mentioned earlier.
However, the improvement in accuracy was not significant.
It’s worth noting that in the study conducted by [13], they
examined their model with a walk length of 100, yet their F1

score is still not comparable to the performance achieved by
our model.

E. Using the Proposed Approach in Kestrel

We have successfully implemented and released the
proposed approach as a Kestrel analytics tool [26]. This tool
is accessible through a Python analytics interface. In addition
to featuring the XGBoost classifier, this Kestrel analytics tool
provides users with a choice among four other classifiers.
Users can specify their preferred classifier through an input
parameter. The analytics itself requires two input parameters.
The first parameter, named walkLength, determines the maxi-
mum length of the random walks used in the node embedding
process. The second parameter, named classifier, allows users
to select a classifier from the available options: “SVM”,
“K-NN”, “Logistic Regression”, “XGBoost”, or “Random
Forest”. If the variable observations and the tables users_obs
and connections_obs have been derived, users can apply this
Kestrel analytics tool, as illustrated in Figure 9. The proposed
Kestrel analytics enhances the variable observations by incor-
porating five additional attributes: destination, source, status,
and user_id, to all entities. Following these modifications,
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Fig. 9. Developing the Kestrel Analytics Tool (implementing the proposed
approach through a Python analytics interface) [26].

each entity represents an authentication request, with its status
classified as either malicious or benign, denoted by the value
of the status attribute.

V. CONCLUSION

This research paper introduces a novel technique for iden-
tifying malicious lateral movement paths through the use
of authentication events and graph learning methods. The
technique involves building a graph that represents hosts and
users and utilizing DeepWalk to embed nodes. The proposed
approach uses features from node and host embedding, along
with the time of authentication events, to create feature vectors
for each authentication request. These features are then used
to train an XGBoost classifier. Furthermore, the model’s
performance is tested through several experiments in realis-
tic scenarios, which confirms its robustness and predictive
ability. The positive results and practical applicability of this
model highlight its potential significance in enhancing network
defenses against sophisticated threats. Additionally, we have
developed this approach into a Kestrel analytics tool accessible
via a Python interface to facilitate its application to various
datasets and scenarios.

ACKNOWLEDGMENT

The authors express their gratitude to the anonymous
reviewers for their valuable feedback.

REFERENCES

[1] M. Li, W. Huang, Y. Wang, W. Fan, and J. Li, “The study of APT
attack stage model,” in Proc. IEEE/ACIS 15th Int. Conf. Comput. Inf.
Sci. (ICIS), 2016, pp. 1–5.

[2] A. Niakanlahiji, J. Wei, M. R. Alam, Q. Wang, and B.-T. Chu,
“ShadowMove: A stealthy lateral movement strategy,” in Proc. 29th
USENIX Security Symp., 2020, pp. 559–576. [Online]. Available: https://
www.usenix.org/conference/usenixsecurity20/presentation/niakanlahiji

[3] M. Xu, “Understanding graph embedding methods and their applica-
tions,” SIAM Rev., vol. 63, no. 4, pp. 825–853, 2021.

[4] G. H. Nguyen, J. B. Lee, R. A. Rossi, N. K. Ahmed, E. Koh, and S. Kim,
“Continuous-time dynamic network embeddings,” in Proc. Web Conf.,
Compan., 2018, pp. 969–976.

[5] F. Xia et al., “Graph learning: A survey,” IEEE Trans. Artif. Intell.,
vol. 2, no. 2, pp. 109–127, Apr. 2021.

[6] I. Chami, A. Wolf, D.-C. Juan, F. Sala, S. Ravi, and C. Ré,
“Low-dimensional hyperbolic knowledge graph embeddings,” 2020,
arXiv:2005.00545.

[7] H. Cai, V. W. Zheng, and K. C.-C. Chang, “A comprehensive survey of
graph embedding: Problems, techniques, and applications,” IEEE Trans.
Knowl. Data Eng., vol. 30, no. 9, pp. 1616–1637, Sep. 2018.

[8] B. Perozzi, R. Al-Rfou, and S. Skiena, “DeepWalk: Online learning of
social representations,” in Proc. 20th ACM SIGKDD Int. Conf. Knowl.
Discov. Data Min., 2014, pp. 701–710.

[9] A. Grover and J. Leskovec, “Node2vec: Scalable feature learning for
networks,” in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data
Min., 2016, pp. 855–864.

[10] M. Chen, Y. Yao, J. Liu, B. Jiang, L. Su, and Z. Lu, “A
novel approach for identifying lateral movement attacks based
on network embedding,” in Proc. IEEE Int. Conf Parallel
Distrib. Process. Appl., Ubiquitous Comput. Commun., Big Data
Cloud Comput., Soc. Comput. Netw., Sustain. Comput. Commun.
(ISPA/IUCC/BDCloud/SocialCom/SustainCom), 2018, pp. 708–715.

[11] M. Morgan, J. Sexton, J. Neil, A. Ricciardi, and J. Theimer, “Network
attacks and the data they affect,” in Dynamic Networks and Cyber-
Security. Singapore: World Sci., 2016, pp. 1–36.

[12] S. Zhao, R. Wei, L. Cai, A. Yu, and D. Meng, “CTLMD: Continuous-
temporal lateral movement detection using graph embedding,” in Proc.
21st Int. Conf. Inf. Commun. Secur. (ICICS), 2020, pp. 181–196.

[13] Y. Fang, C. Wang, Z. Fang, and C. Huang, “LMTracker: Lateral
movement path detection based on heterogeneous graph embedding,”
Neurocomputing, vol. 474, pp. 37–47, Feb. 2022.

[14] H. Bian, T. Bai, M. A. Salahuddin, N. Limam, A. Abou Daya, and
R. Boutaba, “Uncovering lateral movement using authentication logs,”
IEEE Trans. Netw. Service Manag., vol. 18, no. 1, pp. 1049–1063,
Mar. 2021.

[15] I. J. King and H. H. Huang, “Euler: Detecting network lateral movement
via scalable temporal link prediction,” ACM Trans. Privacy Security,
vol. 26, no. 3, pp. 1–36, 2023.

[16] B. Bowman, C. Laprade, Y. Ji, and H. H. Huang, “Detecting lateral
movement in enterprise computer networks with unsupervised graph AI,”
in Proc. 23rd Int. Symp. Res. Attacks, Intrus. Defenses (RAID), 2020,
pp. 257–268.

[17] D. Kushwaha et al., “Lateral movement detection using user behavioral
analysis,” 2022, arXiv:2208.13524.

[18] Q. Liu et al., “Latte: Large-scale lateral movement detection,” in Proc.
IEEE Mil. Commun. Conf. (MILCOM), 2018, pp. 1–6.

[19] A. D. Kent, “Cyber security data sources for dynamic network research,”
in Dynamic Netw. Cybersecurity. London, U.K.: Imperial College Press,
2015.

[20] A. D. Kent, Comprehensive, Multi-Source Cyber-Security Events, Los
Alamos Nat. Lab., Los Alamos, NM, USA, 2015.

[21] H. Dai, B. Dai, and L. Song, “Discriminative embeddings of latent
variable models for structured data,” in Proc. Int. Conf. Mach. Learn.,
2016, pp. 2702–2711.

[22] J. Tang, M. Qu, M. Wang, M. Zhang, J. Yan, and Q. Mei, “Line: Large-
scale information network embedding,” in Proc. 24th Int. Conf. World
Wide Web, 2015, pp. 1067–1077.

[23] X. Rong, “Word2vec parameter learning explained,” 2014,
arXiv:1411.2738.

[24] T. Chen and C. Guestrin, “XGBoost: A scalable tree boosting system,”
in Proc. 22nd ACM SIGKDD Int. Conf. Knowl. Discov. Data Min., 2016,
pp. 785–794.

[25] T. Bai, H. Bian, A. Abou Daya, M. A. Salahuddin, N. Limam, and
R. Boutaba, “A machine learning approach for RDP-based lateral
movement detection,” in Proc. IEEE 44th Conf. Local Comput. Netw.
(LCN), 2019, pp. 242–245.

[26] L. Rashidi. “Graph learning-based lateral movement detection,” 2022.
[Online]. Available: https://github.com/opencybersecurityalliance/
kestrel-analytics/tree/release/analytics/Graph/%20Learning-based/%
20Lateral/%20Movement/%20Detection

Mahdi Rabbani received the M.Tech. degree in
artificial intelligence from the University of Mysore,
India, and the Doctoral degree in computer science
and technology from the Nanjing University of
Science and Technology, China, in 2022. He is
a Postdoctoral Fellow with the Canadian Institute
for Cyber Security, University of New Brunswick,
Fredericton, NB, Canada. Prior to his current role,
he served as a Visiting Researcher with Dalhousie
University, focusing on research related to machine
learning and deep learning approaches for detecting

Distributed Denial of Service attacks in Internet of Things devices. Throughout
his career, he has contributed to the field of cybersecurity, with numerous
publications in various journals. His research interests encompass AI for
cybersecurity, malware analysis, machine learning, and deep learning-based
network anomaly detection and recognition, as well as privacy-enhancing
techniques for IoT devices.

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on March 11,2025 at 17:00:53 UTC from IEEE Xplore.  Restrictions apply. 



RABBANI et al.: GRAPH LEARNING-BASED APPROACH FOR LATERAL MOVEMENT DETECTION 5373

Leila Rashidi received the Ph.D. degree from the
Sharif University of Technology, Tehran, Iran. She
is a Senior Researcher with Huawei Technologies
Company, Ottawa, ON, Canada. Before joining
Huawei, she was a Postdoctoral Fellow with the
Canadian Institute for Cybersecurity, Fredericton,
New Brunswick, Canada, from February 2022 to
July 2023. Furthermore, she was a Postdoctoral
Associate with the University of Calgary from
January 2020 to December 2021. Her research
interests are data center networks, security, access

control, and performance modeling.

Ali A. Ghorbani (Senior Member, IEEE) has held
a variety of positions in academia for the past 37
years and is currently a Professor of Computer
Science, the Tier 1 Canada Research Chair of
Cybersecurity, and the Director of the Canadian
Institute for Cybersecurity, which he established in
2016. He served as the Dean of the Faculty of
Computer Science, University of New Brunswick
from 2008 to 2017 and spent over 27 years of his
37-year academic career. He is also the Founding
Director of the Laboratory for Intelligence and

Adaptive Systems Research. He is the co-founder of the Privacy, Security,
Trust Network in Canada and its international annual conference and the
co-inventor of three awarded patents and has published over 260 peer-
reviewed articles during his career. He has supervised over 170 research
associates, postdoctoral fellows, graduate, and undergraduate students during
his career. His book, Intrusion Detection and Prevention Systems: Concepts
and Techniques (Springer, October 2010). His current research focus is
cybersecurity, Web intelligence, and critical infrastructure protection. He was
twice one of the three finalists for the Special Recognition Award at the 2013
and 2016 New Brunswick KIRA Award for the knowledge industry. He is the
recipient of the Startup Canada Senior Entrepreneur Award in 2017. He served
as the Co-Editor-In-Chief of Computational Intelligence from 2007 to 2017.
He co-founded two startups, Sentrant Security and EyesOver Technologies in
2013 and 2015, respectively.

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on March 11,2025 at 17:00:53 UTC from IEEE Xplore.  Restrictions apply. 



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles false
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Gray Gamma 2.2)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams true
  /MaxSubsetPct 100
  /Optimize true
  /OPM 0
  /ParseDSCComments false
  /ParseDSCCommentsForDocInfo false
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo false
  /PreserveFlatness true
  /PreserveHalftoneInfo true
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts false
  /TransferFunctionInfo /Remove
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile ()
  /AlwaysEmbed [ true
    /Arial-Black
    /Arial-BoldItalicMT
    /Arial-BoldMT
    /Arial-ItalicMT
    /ArialMT
    /ArialNarrow
    /ArialNarrow-Bold
    /ArialNarrow-BoldItalic
    /ArialNarrow-Italic
    /ArialUnicodeMS
    /BookAntiqua
    /BookAntiqua-Bold
    /BookAntiqua-BoldItalic
    /BookAntiqua-Italic
    /BookmanOldStyle
    /BookmanOldStyle-Bold
    /BookmanOldStyle-BoldItalic
    /BookmanOldStyle-Italic
    /BookshelfSymbolSeven
    /Century
    /CenturyGothic
    /CenturyGothic-Bold
    /CenturyGothic-BoldItalic
    /CenturyGothic-Italic
    /CenturySchoolbook
    /CenturySchoolbook-Bold
    /CenturySchoolbook-BoldItalic
    /CenturySchoolbook-Italic
    /ComicSansMS
    /ComicSansMS-Bold
    /CourierNewPS-BoldItalicMT
    /CourierNewPS-BoldMT
    /CourierNewPS-ItalicMT
    /CourierNewPSMT
    /EstrangeloEdessa
    /FranklinGothic-Medium
    /FranklinGothic-MediumItalic
    /Garamond
    /Garamond-Bold
    /Garamond-Italic
    /Gautami
    /Georgia
    /Georgia-Bold
    /Georgia-BoldItalic
    /Georgia-Italic
    /Haettenschweiler
    /Helvetica
    /Helvetica-Bold
    /HelveticaBolditalic-BoldOblique
    /Helvetica-BoldOblique
    /Helvetica-Condensed-Bold
    /Helvetica-LightOblique
    /HelveticaNeue-Bold
    /HelveticaNeue-BoldItalic
    /HelveticaNeue-Condensed
    /HelveticaNeue-CondensedObl
    /HelveticaNeue-Italic
    /HelveticaNeueLightcon-LightCond
    /HelveticaNeue-MediumCond
    /HelveticaNeue-MediumCondObl
    /HelveticaNeue-Roman
    /HelveticaNeue-ThinCond
    /Helvetica-Oblique
    /HelvetisADF-Bold
    /HelvetisADF-BoldItalic
    /HelvetisADFCd-Bold
    /HelvetisADFCd-BoldItalic
    /HelvetisADFCd-Italic
    /HelvetisADFCd-Regular
    /HelvetisADFEx-Bold
    /HelvetisADFEx-BoldItalic
    /HelvetisADFEx-Italic
    /HelvetisADFEx-Regular
    /HelvetisADF-Italic
    /HelvetisADF-Regular
    /Impact
    /Kartika
    /Latha
    /LetterGothicMT
    /LetterGothicMT-Bold
    /LetterGothicMT-BoldOblique
    /LetterGothicMT-Oblique
    /LucidaConsole
    /LucidaSans
    /LucidaSans-Demi
    /LucidaSans-DemiItalic
    /LucidaSans-Italic
    /LucidaSansUnicode
    /Mangal-Regular
    /MicrosoftSansSerif
    /MonotypeCorsiva
    /MSReferenceSansSerif
    /MSReferenceSpecialty
    /MVBoli
    /PalatinoLinotype-Bold
    /PalatinoLinotype-BoldItalic
    /PalatinoLinotype-Italic
    /PalatinoLinotype-Roman
    /Raavi
    /Shruti
    /Sylfaen
    /SymbolMT
    /Tahoma
    /Tahoma-Bold
    /Times-Bold
    /Times-BoldItalic
    /Times-Italic
    /TimesNewRomanMT-ExtraBold
    /TimesNewRomanPS-BoldItalicMT
    /TimesNewRomanPS-BoldMT
    /TimesNewRomanPS-ItalicMT
    /TimesNewRomanPSMT
    /Times-Roman
    /Trebuchet-BoldItalic
    /TrebuchetMS
    /TrebuchetMS-Bold
    /TrebuchetMS-Italic
    /Tunga-Regular
    /Verdana
    /Verdana-Bold
    /Verdana-BoldItalic
    /Verdana-Italic
    /Vrinda
    /Webdings
    /Wingdings2
    /Wingdings3
    /Wingdings-Regular
    /ZapfChanceryITCbyBT-MediumItal
    /ZWAdobeF
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 200
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth -1
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /DCTEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /ColorImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 200
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth -1
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /DCTEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /GrayImageDict <<
    /QFactor 0.76
    /HSamples [2 1 1 2] /VSamples [2 1 1 2]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 15
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 400
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Bicubic
  /MonoImageResolution 600
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create PDFs that match the "Recommended"  settings for PDF Specification 4.01)
  >>
>> setdistillerparams
<<
  /HWResolution [600 600]
  /PageSize [612.000 792.000]
>> setpagedevice


