Milcom 2017 Track 3 - Cyber Security and Trusted Computing

The Mirai Botnet and the IoT Zombie Armies

Georgios Kambourakis®?, Constantinos Kolias?, Angelos Stavrou®
“Computer Science Department, George Mason University, Fairfax, VA 22030, USA
{gkampour, kkolias, astavrou}@gmu.edu
Dept. of Information and Communication Systems Engineering, University of the Aegean, 83200, Greece

Abstract—The rapidly growing presence of Internet of Things
(IoT) devices is becoming a continuously alluring playground
for malicious actors who try to harness their vast numbers and
diverse locations. One of their primary goals is to assemble
botnets that can serve their nefarious purposes, ranging from
Denial of Service (DoS) to spam and advertisement fraud. The
most recent example that highlights the severity of the problem is
the Mirai family of malware, which is accountable for a plethora
of massive DDoS attacks of unprecedented volume and diversity.
The aim of this paper is to offer a comprehensive state-of-the-art
review of the IoT botnet landscape and the underlying reasons
of its success with a particular focus on Mirai and major similar
worms. To this end, we provide extensive details on the internal
workings of IoT malware, examine their interrelationships, and
elaborate on the possible strategies for defending against them.

Keywords—Mirai, Hajime, DDoS, IoT, Botnet, Network Security.

I. INTRODUCTION

Without a doubt, the average household is amassing an
increasing number of IoT devices [1]. A similar trend is
observed on the use of IoT in industrial use case scenarios [2].
Unfortunately, a great number of IoT devices are build with
only cost as the driving design tenet and, as a result, many
of them are having poor configurations and open design. Of
course, from a security standpoint, they have become the new
low hanging fruit for hackers and have drawn the attention of
botnet masters [3, 4, 5]. One of the most recent and prominent
examples of the security threat that IoT devices pose is the
Mirai botnet. The Mirai presence was unveiled in Aug 2016
by MalwareMustDie [6]. There is some speculation that Mirai
is the successor to qBot (also known as Qakbot) [7]. However,
the origins of the Mirai malware as well as the perpetrators’
motivation remain still uncertain. Mirai is classified as an
Executable and Linkable Format (ELF) multi-platform worm,
and thus is also known as ELF Linux/Mirai. According to
estimations [8], after its source code was disclosed on Sept. 30,
2016, Mirai botnets managed to control remotely nearly half
a million IoT devices, assembling a mighty botnet. Up to this
moment, Mirai and its variants are accounted for some of the
largest and most catastrophic DDoS attacks, including those
against computer security journalist Brian Krebs’s web site,
French web host OVH, and Dyn [9], showing an impressive
peak of 620 Gbps in the first of the aforementioned incidents.
A plethora of other relatively smaller scale DDoS attacks
have been carried out using a hit-and-run tactic by Mirai
botnets against other targets, including residential IP addresses
and game servers. The attack signatures against the network

domain www.incapsula.com is a characteristic example of
this situation [10]. Specifically, the latter attack in terms of
GRE floods had a peak of 280 Gbps attributed to about 50
thousand unique IPs dispersed in 164 countries. These IPs
belong to DVRs, WebIP cameras on Busybox, other Busybox
equipped Linux IoT boxes, and under-secured Linux servers.
Note that Busybox packs stripped-down versions of many
common Linux utilities into a small executable, with a focus
on embedded OSs having very limited resources. Allegations
about Mirai made by an individual under the pseudonymous
Anna-Senpai [11] designated an arsenal of about 400 thousand
bots. Mirai daily basis statistics and an overview of data
pertaining to Mirai C&C servers are provided by NetLab
at [12].

As detailed in the next section, until now, several pages,
blogs and other sources on the Internet have been sporadically
reported on Mirai and its variants. However, to our knowledge,
none of them offers a well-rounded review of this particular
ecosystem. In this respect, the present article aspires to fulfill
this significant literature gap by providing a comprehensive
but succinct analysis on the Mirai botnet, its variants, and the
repelling tactics and countermeasures.

The remainder of the paper is structured as follows. The
next section outlines relevant IoT botnets and describes their
basic aspects. Section III presents a high level overview of
Mirai, while section V focuses on methods to detect infected
devices and repel future infections. The last section concludes
and gives pointers to future research.

II. THE EVOLVING LANDSCAPE OF IOT BOTNETS

By capitalizing on the vast number of poorly protected IoT
devices out there, the release of Mirai’s source code [13] (as
well as those of other worms or trojans) was a stimulus to
similar malware projects. In fact, the adaptation of Mirai’s
techniques have been already reported, and the number of
discovered variants grows on a daily basis. This is also verified
by a plethora of recent DDoS incidents against a variety of
targets. The hefty 54-hour long app-layer DDoS attack against
a US College at the end of Feb. 2017 by a Mirai strain is
indicative example of this situation [14]. A Windows-based
spreader for Mirai was recently revealed by Kaspersky [15],
while nearly 900 thousand customers of Deutsche Telekom
Internet Service Provider (ISP) were denied Internet access
after their routers being enslaved by a Mirai variant [16].
Researchers at IBM’s X-force [17] unearthed a Mirai strain
that comes with a new impressive functionality; a bitcoin miner
slave. Not surprisingly, Nexusguard’s 2016 Q4 DDoS threat

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on April 05,2025 at 23:23:53 UTC from IEEE Xplore. Restrictions apply.

978-1-5386-0595-0/17/$31.00 ©2017 IEEE 267

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

report [18] shows a staggering augment of Mirai-based bots
number, from 213K to 493K only 2 months after the release
of Mirai’s source code.

It is believed that Mirai itself is an evolution of an older
DDoS type of Trojan known as Bashlight, BashOday, Bash-
door, Gafgyt, Lizkebab, or Torlus [6, 19]. Very similar to Mirai,
Gafgyt connects to random public IP addresses and performs
Telnet scanning. If a connection succeeds, it attempts to guess
the login credentials from a hardcoded roster. If positive, acting
in a raucous way, Gafgyt downloads and attempts to run bot
binaries targeting multiple architectures in hopes that at least
one will be prosperous. Recently, Mirai variants such as the
one identified in Nov. 2016 by honeypots are also known to
hit other TCP ports [20, 21]. For instance, TCP port 7547
is well-known to be used by ISPs to remotely manage their
customers’ broadband routers, and in that case, Bashlight and
Mirai variants attack devices found prone to a Simple Object
Access Protocol (SOAP) vulnerability [22, 23]. Other ports of
interest to this kind of malware include 7547, 5555, 23231,
37771, 6789, 22, 2222, 32, and 19058. Nevertheless, at least
up to this moment, the overwhelming amount of scans (97%)
is done on ports 23 and 2323.

According to [21] in addition to the those included in the
original Mirai code, Mirai variants use 2 new alternative ser-
vices to resolve the IP addresses of the their C&Cs, namely se-
curityupdates.us, timeserver.host, and 2 report servers, namely,
rep.securityupdates.us, ntp.timeserver.host. This fact suggests
that Mirai descendants share some of the botnet’s infrastruc-
ture. Such variants also try to defend against competitors by
closing the vulnerable port using iptables. On the other hand,
opposite to Bashlight and older versions, newer Mirai malware
strains, encrypt communications between the bot and the C&C
server, making the defender’s task much harder. One could
say that today Mirai and Bashlight are two of the prevalent
malware families being used to rapidly assemble multitudinous
IoT-powered DDoS armies. According to Level3 Communica-
tions, Bashlight controls nearly a million IoT devices and is
the cardinal competitor of Mirai botnets. Other similar Linux-
based trojans that enslave IoT devices for assembling DDoS
botnets include PNScan and Remaiten. The first one, targets
devices on the x86 platform, and depending on its particular
strain, tries to either brute-force router login based on a special
dictionary, or/and establish a SSH connection by using only
3 couples of user credentials. The latter is multi-platform
and syndicates the facilities of Tsunami (Kaiten) [24] and
Gafgyt. An interesting IoT Trojan, the first written in the Lua
programming language specifically for ARM architecture IoT
Linux machines, was reported on late Aug. 2016 by Malware-
MustDie [25]. This malware was named ELF Linux/LuaBot.
According to the researchers, LuaBot’s primary goal is to
zombify devices for adding them to a centrally controlled
botnet. It is also known to hijack cable modems with the aim to
copy their configuration and loot private certificates, which are
later sold to cloners. Lastly, LuaBot is capable of performing
application layer DDoS attacks. The binary analyzed by the
researchers was equipped with MatrixSSL’s code libraries for
encryption operation (HTTPS connections) and featured an
encrypted C&C communication channel to make hijacking

attempts against its C&C harder. After compromising a device,
LuaBot restricts remote access to it via the use of tailor-
made iptables rules. More interestingly, the Trojan embeds a
JavaScript engine for executing scripts signed with the author’s
public key, is equipped with its own Lua resolver function
for DNS queries, includes a SOCKS server, and several other
networking capabilities along with the associated libraries.
These qualities make LuaBot autonomous, meaning that it
does not rely on the infected host to execute its tasks. LuaBot
seems to act antagonistically to Mirai and its creators claim
to be a white/grey-hat outfit; characteristically, when accessing
http://miraitracker.net/ one reads: “This bot isn’t Mirai. Luabot
has signature based memory scanner that kills all Mirai based
bots running on router”.

More recently, researchers from Radware [26] have identi-
fied in their honeypots another flavor of Busybox-based IoT
malware they call “BrickerBot”. According to them, the at-
tacking bots were spread worldwide and all had their SSH port
open, running an older version of the Dropbear SSH server.
Our search using the CyberSpace search engine ZoomEye
revealed 7,514,757 devices running the Dropbear SSH server.
By leveraging on misconfigurations or security gaps, this ilk
of malware aims at launching Permanent Denial-of-Service
(PDoS) against Linux-powered IoT devices with the aim of
rendering them practically unusable. This is done by defacing
the device’s firmware, erasing all files from its memory, re-
configuring operating system kernel parameters related to
network connectivity, removing the default gateway, and so
on. As with Mirai, BrickerBot brute-forces Telnet credentials,
but it seems that does not download a binary after breaking into
the device. A second variant of BrickerBot seems to be more
sneaky as the attacker does not rely on Busybox and exploits
the Tor network to obfuscate the source IP address of its
bots. Another interesting loT-powered worm that presents very
similar behavior to Mirai, at least to its spreading functionality,
yet far more sophisticated, was identified on Oct. 2016 by
researchers in Rapidity Networks [27]. They coined it as
“Hajime”, and according to their analysis, it seems that it
kicked off a few days before the release of Mirai’s source
code. Therefore, the researchers presumed it is improbable
that the two malwares share any common code. However, it
is very likely that the one malware mimics the other in an
effort to confuse network administrators and pass itself as
another Mirai/Hajime strain. In any case, as it is explained
further down, Hajime is more knotty than Mirai, and thus it is
examined further in the context of this paper.

III. A 10,000 FOOT VIEW OF THE MIRAI OPERATION

Like the majority of DDoS-malware, Mirai is comprised
of two parts; the bots and the infrastructure. The bot part
(coded in C) is responsible for unleashing one of several
DDoS attacks and for exploring the IP space for new victims.
Recall, that it mostly targets Linux-based IoT devices. The
botnet’s infrastructure depicted in figure 1 is composed of a
C&C module (implemented in Go) that provides the herder
with a management console, a “report” or “collector” server
that gathers and maintains information about the active bots

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on April 05,2025 at 23:23:53 UTC from IEEE Xplore. Restrictions apply.

268

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

in the botnet, as well as “loader” devices that facilitate the
propagation of the malware to newly-discovered victims. So
far, various Mirai binaries destined to 18 diverse platforms,
including ARM, MIPS, SPARC, Intel x86, and others have
been spotted in the wild. For recruiting new members, every
bot scans randomly the IP address space, but interestingly,
in addition to loopback, internal networks and multicast ad-
dresses, it avoids to tinker with those belonging to a hard-
coded list of IP addresses. These include the US Postal Service,
the Department of Defense, the Internet Assigned Numbers
Authority (IANA), General Electric, and Hewlett Packard. For
each IP, the original version of the bot probes the standard
Telnet 23 port and once in every ten attempts TCP port
2323. This happens in an attempt to discover online services
running on the target that prompt for user credentials. Then,
the malware employs a brute-force dictionary-based technique
for “guessing” passwords based on a hard-coded list. That
inventory contains 62 username/password dyads. Arguably,
this is an indication that the malware coder targets specific
devices rather than searching in the dark. From those pairs, 60
are unique. Also, there are 15 unique user names, and only 42
unique passwords; 2 entries contain no password. Apparently,
such credentials exist on the IoT devices to allow remote access
to the device by the provider for management purposes.

Upon having a working Telnet session, i.e., gaining shell
access, the characteristics of the newly-discovered victim,
including its IP address, port, and login credentials are reported
back to the “report” or “collector” server listening on port
48101. Via a Tor circuit, the bot-herder is always able to
connect to the report server to inspect the new prospective
targets, and may decide to infect some or all of them. In that
case, the victims® IP is sent from the report server to some
other proxies called “loaders”. The latter entity logs in to the
victim and depending on its hardware architecture, instructs it
to download (via TFTP or wget) and execute the appropriate
binary. Then, the new bot can resolve cnc.changeme.com to
learn the current IP of the C&C server listening on port TCP
23 (port 101 is used for management). Using IP fluxing, the
latter IP changes over time. From that time on, the bot listens
to instructions stemming from the C&C server. Starting 10
secs after establishing a connection, the bot and C&C transmit
heartbeat packets to each other every 60 secs.

As already explained in further detail in section II, the
malware strives to dominantly eliminate potentially existing
competitive worms (such as the Anime, gBot, and Bashlight
malwares) via a practise known as memory scraping. Towards
the same end, it kills all processes (PIDs) that use SSH, Telnet,
and HTTP ports, and binds an own socket to these ports. In
some cases, to avoid detection, the worm is also self-deleted,
but its process continues to run in memory. It also monitors
the device’s watchdog timer to defend against system hangs
and reboots (recall that the malware does not write itself to
the device’s persistent filesystem). Mirai bot has both network
and application layer DDoS attacks in its arsenal. The former
category include a variety of floods, including SYN, ACK,
UDP, GRE IP and ETH, STOMP, and DNS. For the latter, a
Mirai bot can launch HTTP floods masquerading itself as one
of several common user-agents.

Botnet

3: Botnet Status

\\ 7: Attack
AN
[N

N
\
Target

Attacker
6: Attack Command

1: Scagning

4: Infect Command

New

Loader Victim

5: Malware Image

Fig. 1. Overview of Mirai communication and basic components

IV. DETAILED DESCRIPTION & COMPARISON

In this section, we dive deeper into the mechanics of two
of the most representative variants of this type of malware,
namely the Mirai and Hajime botnets. A comprehensive com-
parison between the two in matters of their basic functionality
is also offered.

A. Infiltration

As already mentioned, the first step towards infecting new
victims is scanning IPs for open ports and testing for default
credentials. Mirai conducts this process on TCP port 23, while
Hajime attacks port 5358 as well. The latter port is used by the
Web Service on Devices API (WSDAPI), offering a way for
implementing Web services on resource constrained embedded
devices. While the hardcoded user credential lists for Mirai
and Hajime have many common records, Hajime does not
examine the list sequentially. Actually, if the login banner is
unknown to Hajime, credentials are fetched randomly. After
the correct credentials are recovered, Mirai will attempt to
gain a Linux shell. It does so by executing a set of commands
e.g., shell; enable; sh; /bin/busybox MIRAI [6]. Notice, that
the final command which is usually /bin/busybox MIRAI
or /bin/busybox ECCHI actually refers to a dummy non-
existent module. Therefore, the desideratum error message:
“ECCHI: applet not found” is retrieved. This is a common
practise for a) verifying that command sequences that do not
produce output have completed, b) verify that busybox is
installed, c) it helps the attacking bot to discern between a
Cowrie SSH/Telnet honeypot (or other Linux distributions),
which typically responds with a help screen if triggered with
an erroneous module. Actually, analysis has shown that for
all or Mirai variants, every valid command is followed by
the execution of a dummy command, including “MIRAI”,
“ECCHI”, “IHCCE” or “VDOSS”.

An additional observation is that after discovery of the
credentials neither Mirai nor Hajime bots make an effort to
reset the password of the infected device.

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on April 05,2025 at 23:23:53 UTC from IEEE Xplore. Restrictions apply.

269

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

B. Infection

Upon acquiring a working shell, Mirai attempts to finger-
print the device by checking the system mounts for writeable
paths (cat /proc/mounts) and exploring its hardware platform
by executing cat /proc/cpuinfo. That is, for the first part, the
malware tests whether a binary file can be created via “echo”.
Precisely, it echoes the string “kami” to the file /.nippon. The
same test is done for all the available partitions. Using the
commands rm /.t; rm /.sh; rm / human (repeated for directories
/dev, /run, /run/lock, /run/shm) the malware will erase the
“.nippon” file and other similar ones that may have been left
behind by rivals. The malware tests if TFTP and wget are
available. Assuming wget is working, the malware is fetched.
In the case neither of these tools is available, the malware
will employ the echo command to build the binary. Note that
contrary to former malware of this kind, where these exploits
were carried out via bash, Perl, or Python scripts, or relatively
hefty binaries, for Mirai and similar modern malware the
binaries are in the order of few hundred bytes. The malware
is executed and immediately after removed.

Hajime presents a similar fingerprinting behavior by select-
ing as its working path the first writeable directory excluding
Iproc, /sys, or /. After, it needs to download and execute a tiny
binary (platform-specific assembly program, known as loader
stub), which will in turn connect back to the attacking bot
and download a larger executable. So, after Hajime checks
that a stub is not already present at the victim, it inspects the
header of the /bin/echo binary to learn the victim’s hardware
architecture. The latter information is needed to download the
correct platform-specific binary. The IP and port (4636) of
the attacking host are hardcoded into the loader stub. So far,
Hajime supports binaries for the arm5, arm6, arm7, mipseb,
and mipsel platforms. Note that the stub will delete itself
as soon as the download of the larger binary is finished.
Interestingly, as pointed out in [27], at least until now, anyone
can connect to the attacking host’s malware distribution port
because the latter does not check if an incoming connection
indeed stems from an infected host. It is also to be noted
that Hajime’s scan and load module supports the Universal
Plug and Play (UPnP) Internet Gateway Device (IGD) protocol
supported by a great variety of NAT-enabled routers. This
enables it to punch pin-holes in such devices exposing the
ports it requires for its operation even behind the gateway.

C. Operation

The new Mirai bot will start scanning for other vulnerable
devices, initiating a maximum of 128 connections/sec. Once a
minute, it sends any information it has collected to the report
server on port 80. It also establishes a raw socket connection
to C&C server to receive commands. A command includes
the attack type, attack duration, attack id, target count, and a
list of targets. On the other hand, Hajime relies on BitTorrent
DHT protocol with dynamic, daily-changing info_hashes for
peer discovery and uTorrent Transport Protocol (uTP) for data
exchange [27]. These overlaid communications on top of Bit-
Torrent P2P network are RC4 encrypted and signed using pub-
lic and private keys. For this functionality, the worm opens up

a random TCP high port and UDP port 1457. The first port en-
ables the infection process to remotely download the malware
to the newly enslaved device, while the second allows Hajime
to use BitTorrent DHT and uTP. So, in opposite to Mirai which
relies on a centralized infrastructure, Hajime demonstrates high
resilience as its communications regarding configuration and
software updates to its member bots happen over a tracker-less
fully distributed overlay network. This means that Hajime is far
more impervious than Mirai to takedown and hijack attempts
by correspondingly ISPs and competitive botnet operators.
Another major difference between the two malwares is that all
present Hajime variants do not afford any DoS or other attack
functionality. Instead of that, its sole aim is to propagate to
other vulnerable devices and next ban access to their vulnerable
TCP ports, namely 23, 7547, 5555, and 5358. It also removes
any firewall rule pertaining to Customer Premises Equipment
(CPE) WAN management protocol, blocking this way ISP
access to the device. Such behavior is similar to BrickerBot
and Linux/Wifatch [28] and basically targets at blocking Mirai
and similar antagonistic IoT botnets. This however does not
make Hajime a real defender against Mirai and similar worms.
That is, it is not to be forgotten that Hajime secretly and
without authorization installs a back entrance on the device,
which is at least nefarious and mostly unlawful. And of course,
no one can rule out the possibility of future Hajime versions
being capable of conducting large-scale vulnerability scanning,
massive surveillance, executing DDoS, etc.

V. DETECTION AND MITIGATION

Based on the analysis of the previous section, it is obvious
that strong signatures can easily be deduced for network or
host-based methods to detect the presence of Mirai, Hajime,
Bashlight or other resembling family of botnets throughout the
different phases of their lifecycle. First off, during the infection
stage, one can passively monitor network traffic on standard
ports 23, 2323, and 22, which are recursively bombarded with
authorization attempts to gain access to the IoT device. For
this ilk of malware, the number of alternative credentials being
used is limited, thus foreseeable.

Moreover, Mirai bots frequently exchange traffic with the
loader, even when in state of inertia. While the messages send
by the bots are not always the same, a pattern of opening a TCP
connection, followed by a sequence of packets of predictable
size and then finalizing the connection can easily be extracted.
Figure 2 is indicative of such a pattern.

A surge of egress traffic can be also observed throughout
the course of an attack. Mirai bots follow a greedy approach
with the supported attack types. Our experiments with a
Mirai-infected Raspberry Pi 3 attest that as soon as the bot
receives an attack command e.g., to execute SYN flooding,
it starts producing more than 1,500,000 SYN packets in a
minute, which translates in an average of 25,000 packets per
second. Yet, most of the attacks do not make a serious attempt
to randomize specific packet fields, thus the forged packets
can easily be distinguished from the benign. For example,
the HTTP flooding attack relies on five alternative specific
user-agents similar to the: Mozilla/5.0 (Macintosh; Intel Mac

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on April 05,2025 at 23:23:53 UTC from IEEE Xplore. Restrictions apply.

270

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

1200

1f SYN
X< FIN o 0
1000 || @8® PSH+ACK(Loader -> Bot)
[PSH+ACK(Bot -> Loader)

800 -

600 -
]| O]|

R TR ®

15
200+
o o o
+ +-
l.‘O

15 2.0 25 3.0
Time (sec)

Packet Size (bytes)

L EED T =

Fig. 2. Pattern of communication between Mirai bot and loader

OS X 10_11_6) AppleWebKit/601.7.7 (KHTML, like Gecko)
Version/9.1.2 Safari/601.7.7

Having the above in mind, typical countermeasures to mini-
mize the attack surface include the blocking of TCP ports used
for probing and brute-forcing the device, and the dropping
of TCP egress connections containing attack traffic, say, by
applying egress and ingress filtering at router level and de-
ploying rule-of-thumb countermeasures for preventing DDoS
attacks. The well-known “keep security simple” principle must
be also followed by closing and stopping nonessential ports
and services running on the device. A more drastic measure,
which however is not always desirable, is to ensure that no IoT
device is accessible from the Internet and the organization’s
intranet is fully isolated. Recall that in some cases, modems
do not implement NAT, meaning that every device connected
to such a modem will receive a public IP address. Even worse,
usually, the modem offers no friendly interface to manage the
open/closed ports. If remote access to a device is mandatory, a
Virtual Private Network (VPN) can be used, when applicable.
Other solutions, much more preferable than Telnet, are https
for GUI management, and SSH or TLS-based Telnet security
for shell access.

Allowing Busybox execution only by a specific user can
also be of help to the defender. This can be applied in
combination with account lockout policies (e.g., fail2ban) to
fight against brute-force attacks, and automatic logging out
and re-authentication if the device is left unattended or idle
for some time. Generally, the access to any device must be
controlled based on an access list (least privilege). Because
in the majority of cases this kind of malware resides only
in memory, rebooting the gateway will remove the infection.
However, this is futile without changing the default password
to a secure value beforehand (preferably before first time
deployment). As already pointed out in the previous section,
UPnP on IoT devices should be also disabled. The operating
system and applications running on an IoT device must be

also updated with the latest patches and bug fixes. To promptly
detect scan attempts against any system or device, a logging
process on both the network perimeter and the devices them-
selves must be activated by default. In addition to all the above,
detection and countermeasures specific to Hajime can focus on
UDP packets carrying P2P traffic and dropping them using,
say, an application layer firewall facility. Also, monitoring
and possibly blocking TCP port 4636, as Hajime stub binary
acquires the worm over that port.

VI. CONCLUSIONS

The sheer volume of Linux devices directly exposed to
the Internet primarily for remote management purposes, along
with the lack of frequent firmware updates, the ease to built
IoT exploits, and the numerous of already known, scalable
vulnerabilities found in IoT devices, equip malicious actors
with ample ammo to overpower security measures via the
assembly of powerful botnets. In addition to all the malware
families examined in section II, the case of “Leet” botnet which
seems to challenge Mirai in terms of DDoS attack power
verifies this observation [29]. This threat is persistent given
that even script-kiddie type of attackers are able to modify
ready-to-run code as that of Mirai to built their own variant.
Such modern malware is usually slim, multi-platform-destined,
and in most cases does not even care of staying hidden.
That is, as already explained, Mirai turns its victims into
zombies hamstringing the device until the user notices it and
performs a soft reboot. This however may happen after a long
period of time, in which the enslaved device serves solely the
botmaster. All in all, it would not come as a surprise if in the
near future we witness new strains of such malware families,
which in addition will be capable of writing themselves to the
device’s persistent filesystem. On top of that, it can be safely
estimated that future strains will target an extended range of
IoT devices. Especially for BrickerBot and similar malware,
this undoubtedly means greater dissatisfaction and frustration
for the end-user.

It seems that the problem is mainly attributed to the vendors
for shipping their devices with active remote admin capabilities
(Telnet, ssh, etc), which however are undocumented (so the
end-user is neither aware of nor knows how to use them),
rather to the end-users for not changing the default password or
applying the latest software patches, if any. One could say that
Linux is not even the most appropriate operating system for
many of these IoT devices (think of a fridge, air-conditioner,
or thermostat) as it is sure to augment the attack surface and
render the device prone to the plethora of legacy attacks met in
the desktop world. Arguably, a safer option would be the use of
a slimmer, cumbersome to fingerprint OS, such as RIOT OS,
Google’s Brillo, ARM Mbed OS, Nucleus RTOS, FreeRTOS,
and others. For the present time, firmware update appears to
be an effective solution. However, this is rather cumbersome
to be done on large-scale because it requires physical access,
and it is unique per vendor/model. So, until this happens, an
IoT device may “ping-pong” between different botnets. That is,
following every reboot, the same device is potentially enslaved
by different malware. In a way, this means two things. First,

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on April 05,2025 at 23:23:53 UTC from IEEE Xplore. Restrictions apply.

271

Milcom 2017 Track 3 - Cyber Security and Trusted Computing

the lifetime of such a worm on a specific device depends on
reboots, and second the “protection” provided by Hajime or
similar worms against Mirai and others holds until the next
reboot, given that the changes all these worms make are not
persistent, but only in RAM.

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]
[13]

[14]

REFERENCES

Research Nester. IoT Market: Global Demand, Growth
Analysis and Opportunity Outlook 2023. Tech. rep. Feb.
2017. URL: http://www.researchnester.com/reports/
internet- of - things - iot- market- global - demand- growth-
analysis-opportunity-outlook-2023/216.

L. D. Xu, W. He, and S. Li. “Internet of Things
in Industries: A Survey”. In: IEEE Transactions on
Industrial Informatics 10.4 (Nov. 2014), pp. 2233-2243.
K. Angrishi. “Turning Internet of Things (IoT) into
Internet of Vulnerabilities (IoV): IoT Botnets”. In:
arXiv.org arXiv:1702.03681v1 (Feb. 2017). URL: https:
/larxiv.org/abs/1702.03681v1.

C. Kolias, A. Stavrou, and J. Voas. “Securely Making
Things Right”. In: Computer 48.9 (Sept. 2015), pp. 84—
88. 1SSN: 0018-9162. po1: 10.1109/MC.2015.258.

M. Anagnostopoulos, G. Kambourakis, and S. Gritzalis.
“New facets of mobile botnet: architecture and evalua-
tion”. In: International Journal of Information Security
15.5 (Oct. 2016), pp. 455-473.

MalwareMustDie! Linux/Mirai, how an old ELF mal-
code is recycled. Aug. 2016. URL: http : / / blog .
malwaremustdie . org / 2016 / 08 / mmd - 0056 - 2016 -
linuxmirai-just.html.

N. Falliere. W32.Qakbot in Detail. Symantec. 2009.
URL: http : // www . symantec . com / content/en / us /
enterprise/media/security_response/whitepapers/w32_
gakbot_in_detail.pdf.

M. Mimoso. Mirai Bots More Than Double Since
Source Code Release. Oct. 2016. URL: https://threatpost.
com/mirai-bots- more-than-double- since- source-code-
release/121368/.

KrebsOnSecurity. KrebsOnSecurity Hit With Record
DDoS. Sept. 2016. URL: https://krebsonsecurity.com/
2016/09/krebsonsecurity- hit-with-record-ddos/.

I. Zeifman B. Herzberg D. Bekerman. Breaking Down
Mirai: An IoT DDoS Botnet Analysis. Oct. 2016. URL:
https://www.incapsula.com/blog/malware - analysis -
mirai-ddos-botnet.html.

KrebsonSecurity. Who is Anna-Senpai, the Mirai Worm
Author? Jan. 2017. URL: https://krebsonsecurity.com/
2017/01/who-is-anna-senpai-the-mirai-worm-author/.
NetLab. Mirai Scanner. 2017. URL: http://data.netlab.
360.com/mirai-scanner/.

Mirai-Source-Code. Oct. 2016. URL: https://github.com/
jgamblin/Mirai- Source-Code/tree/master/mirai/bot.

D. Bekerman. New Mirai Variant Launches 54 Hour
DDoS Attack against US College. Mar. 2017. URL:
https://www.incapsula.com/blog/new - mirai- variant-
ddos-us-college.html.

[15]

[16]

[17]

[18]

[19]

[20]

[21]

[22]

(23]

[24]

[25]

[26]

[27]

(28]

[29]

Kaspersky Lab. A Windows-based spreader for Mirai
malware has been discovered. Feb. 2017. URL: http:
/Inewsroom.kaspersky.eu/en/texts/detail/article/skilled-
attacker-develops-advanced-windows-botnet-to-spread-
infamous-mirai-malware.

KrebsOnSecurity. New Mirai Worm Knocks 900K Ger-
mans Offline. Nov. 2016. URL: https://krebsonsecurity.
com/2016/11/new-mirai- worm-knocks-900k- germans-
offline/.

M. Alvarez D. McMillen. Mirai IoT Botnet: Mining for
Bitcoins? Apr. 2017. URL: https://securityintelligence.
com/mirai-iot-botnet-mining-for-bitcoins/.
NexusGuard. Distributed Denial of Service (DDoS)
Threat Report Q4 2016. Dec. 2016. URL: https://news.
nexusguard.com/threat-advisories/q4-2016-ddos- threat-
report.

MalwareMustDie! Overview of “SkidDDoS” ELF++
IRC Botnet. Feb. 2016. URL: http : / / blog .
malwaremustdie . org / 2016 / 02 / mmd - 0052 - 2016 -
skidddos-elf-distribution.html.

US-CERT. Heightened DDoS Threat Posed by Mirai
and Other Botnets Alert (TA16-288A). Nov. 2016. URL:
https://www.us-cert.gov/ncas/alerts/TA16-288A.
NetLab. A Few Observations of The New Mirai Variant
on Port 7547. Nov. 2016. URL: http://blog.netlab.360.
com/a-few-observations- of - the- new- mirai- variant-on-
port-7547/.

radware. Telecom & IT Service Providers Beware: New
10T Threat. Dec. 2016. URL: https://security.radware.
com/WorkArea/DownloadAsset.aspx?id=1309.

L. Oppenheim S. Tal. The Internet of TR-069 Things:
One Exploit to Rule Them All. Apr. 2015. URL: https:
//www.rsaconference.com/writable/presentations/file_
upload/hta-r04 - the - internet - of - tr- 069 - things - one -
exploit-to-rule-them-all_final_copy1.pdf.
MalwareMustDie! Another story of Unix Trojan:
Tsunami/Kaiten.c (IRC/Bot) w/ Flooder, Backdoor at
a hacked xBSD. May 2013. URL: http : / / blog .
malwaremustdie . org/2013/05/ story - of - unix - trojan -
tsunami-ircbot-w.html.

MalwareMustDie! Linux/LuaBot - loT botnet as service.
Sept. 2016. URL: http://blog.malwaremustdie.org/2016/
09/mmd-0057-2016-new-elf-botnet-linuxluabot.html.
radware. “BrickerBot” Results In PDoS Attack. Apr.
2017. URL: https://security.radware.com/ddos- threats-
attacks/brickerbot-pdos-permanent-denial-of-service/.
I. Profetis S. Edwards. Hajime: Analysis of a decentral-
ized internet worm for loT devices. RapidityNetworks.
Oct. 2016. URL: https://security.rapiditynetworks.com/
publications/2016-10-16/hajime.pdf.

M. Ballano. Is there an Internet-of-Things vigilante out
there? Oct. 2015. URL: https://www.symantec.com/
connect/blogs/there-internet-things-vigilante-out-there.
D. Bekerman A. Zawoznik. 650Gbps DDoS Attack from
the Leet Botnet. Dec. 2016. URL: https://www.incapsula.
com/blog/650gbps-ddos-attack-leet-botnet.html.

Authorized licensed use limited to: Universite De Sherbrooke. Downloaded on April 05,2025 at 23:23:53 UTC from IEEE Xplore. Restrictions apply.

272

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles false
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Gray Gamma 2.2)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams true
 /MaxSubsetPct 100
 /Optimize false
 /OPM 0
 /ParseDSCComments false
 /ParseDSCCommentsForDocInfo false
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo false
 /PreserveFlatness true
 /PreserveHalftoneInfo true
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts false
 /TransferFunctionInfo /Remove
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile ()
 /AlwaysEmbed [true
 /Arial-Black
 /Arial-BoldItalicMT
 /Arial-BoldMT
 /Arial-ItalicMT
 /ArialMT
 /ArialNarrow
 /ArialNarrow-Bold
 /ArialNarrow-BoldItalic
 /ArialNarrow-Italic
 /ArialUnicodeMS
 /BookAntiqua
 /BookAntiqua-Bold
 /BookAntiqua-BoldItalic
 /BookAntiqua-Italic
 /BookmanOldStyle
 /BookmanOldStyle-Bold
 /BookmanOldStyle-BoldItalic
 /BookmanOldStyle-Italic
 /BookshelfSymbolSeven
 /Century
 /CenturyGothic
 /CenturyGothic-Bold
 /CenturyGothic-BoldItalic
 /CenturyGothic-Italic
 /CenturySchoolbook
 /CenturySchoolbook-Bold
 /CenturySchoolbook-BoldItalic
 /CenturySchoolbook-Italic
 /ComicSansMS
 /ComicSansMS-Bold
 /CourierNewPS-BoldItalicMT
 /CourierNewPS-BoldMT
 /CourierNewPS-ItalicMT
 /CourierNewPSMT
 /EstrangeloEdessa
 /FranklinGothic-Medium
 /FranklinGothic-MediumItalic
 /Garamond
 /Garamond-Bold
 /Garamond-Italic
 /Gautami
 /Georgia
 /Georgia-Bold
 /Georgia-BoldItalic
 /Georgia-Italic
 /Haettenschweiler
 /Impact
 /Kartika
 /Latha
 /LetterGothicMT
 /LetterGothicMT-Bold
 /LetterGothicMT-BoldOblique
 /LetterGothicMT-Oblique
 /LucidaConsole
 /LucidaSans
 /LucidaSans-Demi
 /LucidaSans-DemiItalic
 /LucidaSans-Italic
 /LucidaSansUnicode
 /Mangal-Regular
 /MicrosoftSansSerif
 /MonotypeCorsiva
 /MSReferenceSansSerif
 /MSReferenceSpecialty
 /MVBoli
 /PalatinoLinotype-Bold
 /PalatinoLinotype-BoldItalic
 /PalatinoLinotype-Italic
 /PalatinoLinotype-Roman
 /Raavi
 /Shruti
 /Sylfaen
 /SymbolMT
 /Tahoma
 /Tahoma-Bold
 /TimesNewRomanMT-ExtraBold
 /TimesNewRomanPS-BoldItalicMT
 /TimesNewRomanPS-BoldMT
 /TimesNewRomanPS-ItalicMT
 /TimesNewRomanPSMT
 /Trebuchet-BoldItalic
 /TrebuchetMS
 /TrebuchetMS-Bold
 /TrebuchetMS-Italic
 /Tunga-Regular
 /Verdana
 /Verdana-Bold
 /Verdana-BoldItalic
 /Verdana-Italic
 /Vrinda
 /Webdings
 /Wingdings2
 /Wingdings3
 /Wingdings-Regular
 /ZWAdobeF
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 200
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages true
 /ColorImageDownsampleType /Bicubic
 /ColorImageResolution 300
 /ColorImageDepth -1
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /DCTEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /ColorImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 200
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages true
 /GrayImageDownsampleType /Bicubic
 /GrayImageResolution 300
 /GrayImageDepth -1
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /DCTEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /GrayImageDict <<
 /QFactor 0.76
 /HSamples [2 1 1 2] /VSamples [2 1 1 2]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 15
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 400
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages true
 /MonoImageDownsampleType /Bicubic
 /MonoImageResolution 600
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000410064006f006200650020005000440046002065876863900275284e8e55464e1a65876863768467e5770b548c62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef69069752865bc666e901a554652d965874ef6768467e5770b548c52175370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002c0020006400650072002000650067006e006500720020007300690067002000740069006c00200064006500740061006c006a006500720065007400200073006b00e60072006d007600690073006e0069006e00670020006f00670020007500640073006b007200690076006e0069006e006700200061006600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200075006d002000650069006e00650020007a0075007600650072006c00e40073007300690067006500200041006e007a006500690067006500200075006e00640020004100750073006700610062006500200076006f006e00200047006500730063006800e40066007400730064006f006b0075006d0065006e00740065006e0020007a0075002000650072007a00690065006c0065006e002e00200044006900650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000520065006100640065007200200035002e003000200075006e00640020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f00620065002000500044004600200061006400650063007500610064006f007300200070006100720061002000760069007300750061006c0069007a00610063006900f3006e0020006500200069006d0070007200650073006900f3006e00200064006500200063006f006e006600690061006e007a006100200064006500200064006f00630075006d0065006e0074006f007300200063006f006d00650072006300690061006c00650073002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f006200650020005000440046002000700072006f00660065007300730069006f006e006e0065006c007300200066006900610062006c0065007300200070006f007500720020006c0061002000760069007300750061006c00690073006100740069006f006e0020006500740020006c00270069006d007000720065007300730069006f006e002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA (Utilizzare queste impostazioni per creare documenti Adobe PDF adatti per visualizzare e stampare documenti aziendali in modo affidabile. I documenti PDF creati possono essere aperti con Acrobat e Adobe Reader 5.0 e versioni successive.)
 /JPN <FEFF30d330b830cd30b9658766f8306e8868793a304a3088307353705237306b90693057305f002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e305930023053306e8a2d5b9a3067306f30d530a930f330c8306e57cb30818fbc307f3092884c3044307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020be44c988b2c8c2a40020bb38c11cb97c0020c548c815c801c73cb85c0020bcf4ace00020c778c1c4d558b2940020b3700020ac00c7a50020c801d569d55c002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken waarmee zakelijke documenten betrouwbaar kunnen worden weergegeven en afgedrukt. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200073006f006d002000650072002000650067006e0065007400200066006f00720020007000e5006c006900740065006c006900670020007600690073006e0069006e00670020006f00670020007500740073006b007200690066007400200061007600200066006f0072007200650074006e0069006e006700730064006f006b0075006d0065006e007400650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f00620065002000500044004600200061006400650071007500610064006f00730020007000610072006100200061002000760069007300750061006c0069007a006100e700e3006f002000650020006100200069006d0070007200650073007300e3006f00200063006f006e0066006900e1007600650069007300200064006500200064006f00630075006d0065006e0074006f007300200063006f006d0065007200630069006100690073002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a0061002c0020006a006f0074006b006100200073006f0070006900760061007400200079007200690074007900730061007300690061006b00690072006a006f006a0065006e0020006c0075006f00740065007400740061007600610061006e0020006e00e400790074007400e4006d0069007300650065006e0020006a0061002000740075006c006f007300740061006d0069007300650065006e002e0020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400200073006f006d00200070006100730073006100720020006600f60072002000740069006c006c006600f60072006c00690074006c006900670020007600690073006e0069006e00670020006f006300680020007500740073006b007200690066007400650072002000610076002000610066006600e4007200730064006f006b0075006d0065006e0074002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create PDFs that match the "Required" settings for PDF Specification 4.01)
 >>
>> setdistillerparams
<<
 /HWResolution [600 600]
 /PageSize [612.000 792.000]
>> setpagedevice

