
SPIM S20: A MIPS R2000 Simulator
“ 1

25

th the performance at none of the cost”

James R. Larus

Copyright c⃝1990–2004 by James R. Larus
(This document may be copied without royalties,
so long as this copyright notice remains on it.)

1 SPIM

1.1 Assembler Syntax

Comments in assembler files begin with a sharp-sign (#). Everything from the sharp-sign to the
end of the line is ignored.

Identifiers are a sequence of alphanumeric characters, underbars (), and dots (.) that do not
begin with a number. Opcodes for instructions are reserved words that are not valid identifiers.
Labels are declared by putting them at the beginning of a line followed by a colon, for example:

.data
item: .word 1

.text

.globl main # Must be global
main: lw $t0, item

Strings are enclosed in double-quotes ("). Special characters in strings follow the C conven-
tion:

newline \n
tab \t
quote \"

SPIM supports a subset of the assembler directives provided by the MIPS assembler:

.align n
Align the next datum on a 2n byte boundary. For example, .align 2 aligns the next value
on a word boundary. .align 0 turns off automatic alignment of .half, .word, .float,
and .double directives until the next .data or .kdata directive.

.ascii str
Store the string in memory, but do not null-terminate it.

.asciiz str
Store the string in memory and null-terminate it.

.byte b1, ..., bn
Store the n values in successive bytes of memory.

1

.comm sym size
Allocate size bytes of data segment for symbol sym.

.data <addr>
The following data items should be stored in the data segment. If the optional argument
addr is present, the items are stored beginning at address addr .

.double d1, ..., dn
Store the n floating point double precision numbers in successive memory locations.

.extern sym size
Declare that the datum stored at sym is size bytes large and is a global symbol. This
directive enables the assembler to store the datum in a portion of the data segment that
is efficiently accessed via register $gp.

.float f1, ..., fn
Store the n floating point single precision numbers in successive memory locations.

.globl sym
Declare that symbol sym is global and can be referenced from other files.

.half h1, ..., hn
Store the n 16-bit quantities in successive memory halfwords.

.kdata <addr>
The following data items should be stored in the kernel data segment. If the optional
argument addr is present, the items are stored beginning at address addr .

.ktext <addr>
The next items are put in the kernel text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr .

.label sym
Declare that symbol sym is a label.

.lcomm sym size
Allocate size bytes for symbol sym in the portion of the data segment that can be accessed
via register $gp.

.space n
Allocate n bytes of space in the current segment (which must be the data segment in
SPIM).

.set noat
Permit the program to refer to the $at register explicitly, and forbid SPIM from generating
pseudoinstructions that modify $at.

.set at
Forbid the program from referring to the $at register explicitly, and permit SPIM to
generate pseudoinstructions that modify $at (the default).

2

Service System Call Code Arguments Result
print int 1 $a0 = integer
print float 2 $f12 = float
print double 3 $f12 = double
print string 4 $a0 = string
read int 5 integer (in $v0)
read float 6 float (in $f0)
read double 7 double (in $f0)
read string 8 $a0 = buffer, $a1 = length
sbrk 9 $a0 = amount address (in $v0)
exit 10
print character 11 $a0 = character
read character 12 character (in $v0)
open 13 $a0 = filename, file descriptor (in $v0)

$a1 = flags, $a2 = mode
read 14 $a0 = file descriptor, bytes read (in $v0)

$a1 = buffer, $a2 = count
write 15 $a0 = file descriptor, bytes written (in $v0)

$a1 = buffer, $a2 = count
close 16 $a0 = file descriptor 0 (in $v0)
exit2 17 $a0 = value

Table 1: System services.

.text <addr>
The next items are put in the user text segment. In SPIM, these items may only be
instructions or words (see the .word directive below). If the optional argument addr is
present, the items are stored beginning at address addr .

.word w1, ..., wn
Store the n 32-bit quantities in successive memory words.

SPIM does not distinguish various parts of the data segment (.data, .rdata, and .sdata).

1.2 System Calls

SPIM provides a small set of operating-system-like services through the system call (syscall)
instruction. To request a service, a program loads the system call code (see Table 1) into register
$v0 and the arguments into registers $a0. . .$a3 (or $f12 for floating point values). System calls
that return values put their result in register $v0 (or $f0 for floating point results). For example,
to print “the answer = 5”, use the commands:

.data
str: .asciiz "the answer = "

.text
li $v0, 4 # system call code for print_str
la $a0, str # address of string to print
syscall # print the string

li $v0, 1 # system call code for print_int
li $a0, 5 # integer to print

3

Registers

$0

$31

.

.

.

Arithmetic
Unit

FPU (Coprocessor 1)

BadVAddr

Status

Cause

EPC

Coprocessor 0 (Traps and Memory)

Registers

$0

$31

.

.

.

Arithmetic
Unit

CPU

Multiply
Divide

Lo Hi

Memory

Figure 1: MIPS R2000 CPU and FPU

syscall # print it

print int is passed an integer and prints it on the console. print float prints a single
floating point number. print double prints a double precision number. print string is passed
a pointer to a null-terminated string, which it writes to the console. print character prints a
single ASCII character.

read int, read float, and read double read an entire line of input up to and including the
newline. Characters following the number are ignored. read string has the same semantics as
the Unix library routine fgets. It reads up to n− 1 characters into a buffer and terminates the
string with a null byte. If there are fewer characters on the current line, it reads through the
newline and again null-terminates the string. read character reads a single ASCII character.

sbrk returns a pointer to a block of memory containing n additional bytes. This pointer is
word aligned. exit stops a program from running. exit2 stops the program from running and
takes an argument, which is the value that spim or xspim uses in its call on exit.

open, read, write and close behave the same as the Unix system calls of the same name.
They all return −1 on failure.

2 Description of the MIPS R2000

A MIPS processor consists of an integer processing unit (the CPU) and a collection of coproces-
sors that perform ancillary tasks or operate on other types of data such as floating point numbers
(see Figure 1). SPIM simulates two coprocessors. Coprocessor 0 handles traps, exceptions, and
the virtual memory system. SPIM simulates most of the first two and entirely omits details of

4

Register Name Number Usage
zero 0 Constant 0
at 1 Reserved for assembler
v0 2 Expression evaluation and
v1 3 results of a function
a0 4 Argument 1
a1 5 Argument 2
a2 6 Argument 3
a3 7 Argument 4
t0 8 Temporary (not preserved across call)
t1 9 Temporary (not preserved across call)
t2 10 Temporary (not preserved across call)
t3 11 Temporary (not preserved across call)
t4 12 Temporary (not preserved across call)
t5 13 Temporary (not preserved across call)
t6 14 Temporary (not preserved across call)
t7 15 Temporary (not preserved across call)
s0 16 Saved temporary (preserved across call)
s1 17 Saved temporary (preserved across call)
s2 18 Saved temporary (preserved across call)
s3 19 Saved temporary (preserved across call)
s4 20 Saved temporary (preserved across call)
s5 21 Saved temporary (preserved across call)
s6 22 Saved temporary (preserved across call)
s7 23 Saved temporary (preserved across call)
t8 24 Temporary (not preserved across call)
t9 25 Temporary (not preserved across call)
k0 26 Reserved for OS kernel
k1 27 Reserved for OS kernel
gp 28 Pointer to global area
sp 29 Stack pointer
fp or s8 30 Frame pointer
ra 31 Return address (used by function call)

Table 2: MIPS registers and the convention governing their use.

the memory system. Coprocessor 1 is the floating point unit. SPIM simulates most aspects of
this unit.

2.1 CPU Registers

The MIPS (and SPIM) central processing unit contains 32 general purpose 32-bit registers that
are numbered 0–31. Register n is designated by $n. Register $0 always contains the hardwired
value 0. MIPS has established a set of conventions as to how registers should be used. These
suggestions are guidelines, which are not enforced by the hardware. However a program that
violates them will not work properly with other software. Table 2 lists the registers and describes
their intended use.

Registers $at (1), $k0 (26), and $k1 (27) are reserved for use by the assembler and operating
system.

Registers $a0–$a3 (4–7) are used to pass the first four arguments to routines (remaining
arguments are passed on the stack). Registers $v0 and $v1 (2, 3) are used to return values

5

from functions. Registers $t0–$t9 (8–15, 24, 25) are caller-saved registers used for temporary
quantities that do not need to be preserved across calls. Registers $s0–$s7 (16–23) are callee-
saved registers that hold long-lived values that should be preserved across calls.

Register $sp (29) is the stack pointer, which points to the last location in use on the stack.1

Register $fp (30) is the frame pointer.2 Register $ra (31) is written with the return address for
a call by the jal instruction.

Register $gp (28) is a global pointer that points into the middle of a 64K block of memory
in the heap that holds constants and global variables. The objects in this heap can be quickly
accessed with a single load or store instruction.

2.2 Addressing Modes

MIPS is a load/store architecture, which means that only load and store instructions access
memory. Computation instructions operate only on values in registers. The bare machine
provides only one memory addressing mode: c(rx), which uses the sum of the immediate
(integer) c and the contents of register rx as the address. The virtual machine provides the
following addressing modes for load and store instructions:

Format Address Computation
(register) contents of register
imm immediate
imm (register) immediate + contents of register
symbol address of symbol
symbol ± imm address of symbol + or − immediate
symbol (register) address of symbol + contents of register
symbol ± imm (register) (address of symbol + or − immediate) + contents of register

Most load and store instructions operate only on aligned data. A quantity is aligned if its
memory address is a multiple of its size in bytes. Therefore, a halfword object must be stored
at even addresses and a full word object must be stored at addresses that are a multiple of 4.
However, MIPS provides some instructions for manipulating unaligned data.

2.3 Arithmetic and Logical Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).
The immediate forms of the instructions are only included for reference. The assembler will
translate the more general form of an instruction (e.g., add) into the immediate form (e.g.,
addi) if the second argument is constant.

abs Rdest, Rsrc Absolute Value †

Put the absolute value of the integer from register Rsrc in register Rdest.
addu Rdest, Rsrc1, Src2 Addition
addiu Rdest, Rsrc1, Imm Addition Immediate
Put the sum of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

1In earlier version of SPIM, $sp was documented as pointing at the first free word on the stack (not the last
word of the stack frame). Recent MIPS documents have made it clear that this was an error. Both conventions
work equally well, but we choose to follow the real system.

2The MIPS compiler does not use a frame pointer, so this register is used as callee-saved register $s8.

6

and Rdest, Rsrc1, Src2 AND
andi Rdest, Rsrc1, Imm AND Immediate
Put the logical AND of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

div Rsrc1, Rsrc2 Divide (signed)
divu Rsrc1, Rsrc2 Divide (unsigned)
Divide the contents of the two registers. divu treats is operands as unsigned values. Leave the
quotient in register lo and the remainder in register hi. Note that if an operand is negative,
the remainder is unspecified by the MIPS architecture and depends on the conventions of the
machine on which SPIM is run.

div Rdest, Rsrc1, Src2 Divide (signed) †

divu Rdest, Rsrc1, Src2 Divide (unsigned) †

Put the quotient of the integers from register Rsrc1 and Src2 into register Rdest. divu treats
is operands as unsigned values.

mul Rdest, Rsrc1, Src2 Multiply †

mulou Rdest, Rsrc1, Src2 Unsigned Multiply †

Put the product of the integers from register Rsrc1 and Src2 into register Rdest.

mult Rsrc1, Rsrc2 Multiply
multu Rsrc1, Rsrc2 Unsigned Multiply
Multiply the contents of the two registers. Leave the low-order word of the product in register
lo and the high-word in register hi.

negu Rdest, Rsrc Negate Value †

Put the negative of the integer from register Rsrc into register Rdest.

nor Rdest, Rsrc1, Src2 NOR
Put the logical NOR of the integers from register Rsrc1 and Src2 into register Rdest.

not Rdest, Rsrc NOT †

Put the bitwise logical negation of the integer from register Rsrc into register Rdest.

or Rdest, Rsrc1, Src2 OR
ori Rdest, Rsrc1, Imm OR Immediate
Put the logical OR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

rem Rdest, Rsrc1, Src2 Remainder †

remu Rdest, Rsrc1, Src2 Unsigned Remainder †

Put the remainder from dividing the integer in register Rsrc1 by the integer in Src2 into register
Rdest. Note that if an operand is negative, the remainder is unspecified by the MIPS architec-
ture and depends on the conventions of the machine on which SPIM is run.

subu Rdest, Rsrc1, Src2 Subtract
Put the difference of the integers from register Rsrc1 and Src2 into register Rdest.

xor Rdest, Rsrc1, Src2 XOR
xori Rdest, Rsrc1, Imm XOR Immediate
Put the logical XOR of the integers from register Rsrc1 and Src2 (or Imm) into register Rdest.

7

2.4 Constant-Manipulating Instructions

li Rdest, imm Load Immediate †

Move the immediate imm into register Rdest.

2.5 Comparison Instructions

In all instructions below, Src2 can either be a register or an immediate value (a 16 bit integer).

seq Rdest, Rsrc1, Src2 Set Equal †

Set register Rdest to 1 if register Rsrc1 equals Src2 and to be 0 otherwise.

sge Rdest, Rsrc1, Src2 Set Greater Than Equal †

sgeu Rdest, Rsrc1, Src2 Set Greater Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than or equal to Src2 and to 0 otherwise.

sgt Rdest, Rsrc1, Src2 Set Greater Than †

sgtu Rdest, Rsrc1, Src2 Set Greater Than Unsigned †

Set register Rdest to 1 if register Rsrc1 is greater than Src2 and to 0 otherwise.

sle Rdest, Rsrc1, Src2 Set Less Than Equal †

sleu Rdest, Rsrc1, Src2 Set Less Than Equal Unsigned †

Set register Rdest to 1 if register Rsrc1 is less than or equal to Src2 and to 0 otherwise.

slt Rdest, Rsrc1, Src2 Set Less Than
slti Rdest, Rsrc1, Imm Set Less Than Immediate
sltu Rdest, Rsrc1, Src2 Set Less Than Unsigned
sltiu Rdest, Rsrc1, Imm Set Less Than Unsigned Immediate
Set register Rdest to 1 if register Rsrc1 is less than Src2 (or Imm) and to 0 otherwise.

sne Rdest, Rsrc1, Src2 Set Not Equal †

Set register Rdest to 1 if register Rsrc1 is not equal to Src2 and to 0 otherwise.

2.6 Branch and Jump Instructions

In all instructions below, Src2 can either be a register or an immediate value (integer). Branch
instructions use a signed 16-bit offset field; hence they can jump 215 −1 instructions (not bytes)
forward or 215 instructions backwards. The jump instruction contains a 26 bit address field.

b label Branch instruction †

Unconditionally branch to the instruction at the label.

beq Rsrc1, Src2, label Branch on Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 equals Src2.

beqz Rsrc, label Branch on Equal Zero †

Conditionally branch to the instruction at the label if the contents of Rsrc equals 0.

bge Rsrc1, Src2, label Branch on Greater Than Equal †

bgeu Rsrc1, Src2, label Branch on GTE Unsigned †

8

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than or equal to Src2.

bgez Rsrc, label Branch on Greater Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than or
equal to 0. Save the address of the next instruction in register 31.

bgt Rsrc1, Src2, label Branch on Greater Than †

bgtu Rsrc1, Src2, label Branch on Greater Than Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are greater
than Src2.

bgtz Rsrc, label Branch on Greater Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are greater than 0.

ble Rsrc1, Src2, label Branch on Less Than Equal †

bleu Rsrc1, Src2, label Branch on LTE Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less
than or equal to Src2.

blez Rsrc, label Branch on Less Than Equal Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than or equal
to 0.

bgezal Rsrc, label Branch on Greater Than Equal Zero And Link
bltzal Rsrc, label Branch on Less Than And Link
Conditionally branch to the instruction at the label if the contents of Rsrc are greater or equal
to 0 or less than 0, respectively. Save the address of the next instruction in register 31.

blt Rsrc1, Src2, label Branch on Less Than †

bltu Rsrc1, Src2, label Branch on Less Than Unsigned †

Conditionally branch to the instruction at the label if the contents of register Rsrc1 are less
than Src2.

bltz Rsrc, label Branch on Less Than Zero
Conditionally branch to the instruction at the label if the contents of Rsrc are less than 0.

bne Rsrc1, Src2, label Branch on Not Equal
Conditionally branch to the instruction at the label if the contents of register Rsrc1 are not
equal to Src2.

bnez Rsrc, label Branch on Not Equal Zero †

Conditionally branch to the instruction at the label if the contents of Rsrc are not equal to 0.

j label Jump
Unconditionally jump to the instruction at the label.

9

2.7 Load Instructions

la Rdest, address Load Address †

Load computed address, not the contents of the location, into register Rdest.

lw Rdest, address Load Word
Load the 32-bit quantity (word) at address into register Rdest.

lwcz Rdest, address Load Word Coprocessor
Load the word at address into register Rdest of coprocessor z (0–3).

lwl Rdest, address Load Word Left
lwr Rdest, address Load Word Right
Load the left (right) bytes from the word at the possibly-unaligned address into register Rdest.

2.8 Store Instructions

sw Rsrc, address Store Word
Store the word from register Rsrc at address.

swcz Rsrc, address Store Word Coprocessor
Store the word from register Rsrc of coprocessor z at address.

swl Rsrc, address Store Word Left
swr Rsrc, address Store Word Right
Store the left (right) bytes from register Rsrc at the possibly-unaligned address.

2.9 Data Movement Instructions

move Rdest, Rsrc Move †

Move the contents of Rsrc to Rdest.

The multiply and divide unit produces its result in two additional registers, hi and lo. These
instructions move values to and from these registers. The multiply, divide, and remainder
instructions described above are pseudoinstructions that make it appear as if this unit operates
on the general registers and detect error conditions such as divide by zero or overflow.

mfhi Rdest Move From hi
mflo Rdest Move From lo
Move the contents of the hi (lo) register to register Rdest.

mthi Rdest Move To hi
mtlo Rdest Move To lo
Move the contents register Rdest to the hi (lo) register.

Coprocessors have their own register sets. These instructions move values between these
registers and the CPU’s registers.

10

mfcz Rdest, CPsrc Move From Coprocessor z
Move the contents of coprocessor z’s register CPsrc to CPU register Rdest.

mfc1.d Rdest, FRsrc1 Move Double From Coprocessor 1 †

Move the contents of floating point registers FRsrc1 and FRsrc1 + 1 to CPU registers Rdest
and Rdest + 1.

mtcz Rsrc, CPdest Move To Coprocessor z
Move the contents of CPU register Rsrc to coprocessor z’s register CPdest.

2.10 Floating Point Instructions

The MIPS has a floating point coprocessor (numbered 1) that operates on single precision (32-
bit) and double precision (64-bit) floating point numbers. This coprocessor has its own registers,
which are numbered $f0–$f31. Because these registers are only 32-bits wide, two of them are
required to hold doubles. To simplify matters, floating point operations only use even-numbered
registers—including instructions that operate on single floats.

Values are moved in or out of these registers a word (32-bits) at a time by lwc1, swc1, mtc1,
and mfc1 instructions described above or by the l.s, l.d, s.s, and s.d pseudoinstructions
described below. The flag set by floating point comparison operations is read by the CPU with
its bc1t and bc1f instructions.

In all instructions below, FRdest, FRsrc1, FRsrc2, and FRsrc are floating point registers
(e.g., $f2).

abs.d FRdest, FRsrc Floating Point Absolute Value Double
abs.s FRdest, FRsrc Floating Point Absolute Value Single
Compute the absolute value of the floating float double (single) in register FRsrc and put it in
register FRdest.

add.d FRdest, FRsrc1, FRsrc2 Floating Point Addition Double
add.s FRdest, FRsrc1, FRsrc2 Floating Point Addition Single
Compute the sum of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and put
it in register FRdest.

c.eq.d FRsrc1, FRsrc2 Compare Equal Double
c.eq.s FRsrc1, FRsrc2 Compare Equal Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if they are equal.

c.le.d FRsrc1, FRsrc2 Compare Less Than Equal Double
c.le.s FRsrc1, FRsrc2 Compare Less Than Equal Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
floating point condition flag true if the first is less than or equal to the second.

c.lt.d FRsrc1, FRsrc2 Compare Less Than Double
c.lt.s FRsrc1, FRsrc2 Compare Less Than Single
Compare the floating point double in register FRsrc1 against the one in FRsrc2 and set the
condition flag true if the first is less than the second.

11

cvt.d.s FRdest, FRsrc Convert Single to Double
cvt.d.w FRdest, FRsrc Convert Integer to Double
Convert the single precision floating point number or integer in register FRsrc to a double
precision number and put it in register FRdest.

cvt.s.d FRdest, FRsrc Convert Double to Single
cvt.s.w FRdest, FRsrc Convert Integer to Single
Convert the double precision floating point number or integer in register FRsrc to a single
precision number and put it in register FRdest.

cvt.w.d FRdest, FRsrc Convert Double to Integer
cvt.w.s FRdest, FRsrc Convert Single to Integer
Convert the double or single precision floating point number in register FRsrc to an integer and
put it in register FRdest.

div.d FRdest, FRsrc1, FRsrc2 Floating Point Divide Double
div.s FRdest, FRsrc1, FRsrc2 Floating Point Divide Single
Compute the quotient of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

l.d FRdest, address Load Floating Point Double †

l.s FRdest, address Load Floating Point Single †

Load the floating float double (single) at address into register FRdest.

mov.d FRdest, FRsrc Move Floating Point Double
mov.s FRdest, FRsrc Move Floating Point Single
Move the floating float double (single) from register FRsrc to register FRdest.

mul.d FRdest, FRsrc1, FRsrc2 Floating Point Multiply Double
mul.s FRdest, FRsrc1, FRsrc2 Floating Point Multiply Single
Compute the product of the floating float doubles (singles) in registers FRsrc1 and FRsrc2 and
put it in register FRdest.

neg.d FRdest, FRsrc Negate Double
neg.s FRdest, FRsrc Negate Single
Negate the floating point double (single) in register FRsrc and put it in register FRdest.

s.d FRdest, address Store Floating Point Double †

s.s FRdest, address Store Floating Point Single †

Store the floating float double (single) in register FRdest at address.

sub.d FRdest, FRsrc1, FRsrc2 Floating Point Subtract Double
sub.s FRdest, FRsrc1, FRsrc2 Floating Point Subtract Single
Compute the difference of the floating float doubles (singles) in registers FRsrc1 and FRsrc2
and put it in register FRdest.

12

