Practical Work: Vectorization

Master CSMI
Compilation & Performance
Bérenger Bramas

October 22, 2024

1 Summary

In this current work, you will manually vectorize a code.

2 Ressources
e The Intel Intrinsics Guide: https://software.intel.com/sites/landingpage/IntrinsicsGuide/.

e Gce documentation on the possible options: https://gcc.gnu.org/onlinedocs/gcc/x86—-0Options.
html.

2.1 Get the practical work

Consider you are in your project directory do the following;:

Clone my repo

If you use SSH, use:

git clone git@git.unistra.fr:bbramas/csmi-tp-2024.git --branch=TP4 csmi-tp4

With https

git clone https://git.unistra.fr/bbramas/csmi-tp-2024.git —--branch=TP4 csmi-tp4
Go in the newly created directory

cd csmi-tp4

H o e

2.2 Add your repository as remote

You will push on your own repository:

Rename my remote

git remote rename origin old-origin

Add your own remote

If you use an SSH key:

git remote add origin git@git.unistra.fr:[YOU LOGIN HERE]/cnp-tp-2024.git

If you use https:

git remote add origin https://git.unistra.fr/[YOU LOGIN HERE]/cnp-tp-2024.git
Push the current branch and active the tracking

git push -u origin TP4

2.3 Compilation

To compile, we use CMake:

cd TpP4

mkdir build

cd build

cmake

make # Will make all

make something # Will build only something

https://software.intel.com/sites/landingpage/IntrinsicsGuide/
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html
https://gcc.gnu.org/onlinedocs/gcc/x86-Options.html

VERBOSE=1 make # Will show the commands used to compile (including the flags)

By default CMake will not use any optimization flag, and looking at the output of VERBOSE=1
make will show you that there is -Oxz. To enable optimization you have to specify to cmake to generate
a make file with the correct flags. To so, you can use ccmake. (in the build directory, note that ccmake
should be installed) and edit DCMAKE_BUILD_TY PE, or directly set the variable with cmake.. —
DCMAKE_BUILD_TY PE = Release in the build directory.

3 Reminder

Vectorization is a capability of the CPU to execute a single instruction on multiple data (SIMD). On
current modern hardware, it is implemented by having registers that can store several values and in-
structions that can act on these registers. Therefore, this can also be seen as ”vector” processing because
the values we want to work on should be contiguous. Also, it is important to understand that there is a
difference between the values in memory and the one in the registers.

Because not all CPUs support the same vectorization instruction sets, it is important to inform the
compiler about the CPU we target. For instance, by default the compiler will optimize for a generic
CPU (and will certainly not be able to vectorize). But, if we tell the compiler that we focus on a given
hardware (and that the binary will not be executed on other/old systems) the compiler will start using
specific instructions and might be able to vectorize.

One can provide specific options to turn on some of the CPU features, for instance -mavz to tell Gee
that it can use AVX instructions. Or, it is possible to speak in terms of hardware version, like pentium2,
atom, etc. To do so Gee have two flags:

o -march=X: allows GCC to generate code that may not run at all on processors other than the one
indicated.

e -mtune=X: asks GCC to generate code that is better optimized for the process indicated (but
remain compatible with what is specified by -march).

If one wants to optimize a binary for the CPU where the code is compiled, then -march=native
-mtune=native should be used.

To facilitate the vectorization of codes, many compilers support ”intrinsics”. An "intrinsic” is a
function that should translate into a single instruction by the compiler. Additionally, intrinsics use data-
types that have the size of some CPU registers and thus should be directly mapped to registers and not
allocated in the stack.

_ml28d a, b; // __ml28d is a data-type for 2 double real values
// and which represent SSE registers

_ ml28d ¢ = _mm_add_pd(a, b); // Will call an SSE instruction to some
// registers a and b, and store the result
// in a register c

4 Check the capability of the CPU

Make sure that your CPU support AVX using:
e [scpu

e cat /proc/cpuinfo

5 Does the compiler auto vectorize?

Using https://godbolt.org/, look at the asm of the dot function from the dot.cpp file. (use x86-64
gee 9.1) You will see that it is not vectorized since all the instructions are for scalars and the floating
point registers contain only one value (%xmmX).

To allow the compiler to use more instructions, we can use different options:

https://godbolt.org/

e -mtune=native -march=native: in our case this is not the best idea as it says to the compiler that
the code should be optimize for the web server of godbolt.org.

e -march=haswell -mtune=haswell: Haswell processors support AVX2.

e -mavx -mavz2: be specific on the fact that Gce can use AVX2 instructions but you might miss
some features of the CPU you target.

However, as you will see, you will also need -O8& to have the compiler doing auto-vectorization.
Go back on your terminal, and compile while looking at the options (VERBOSE=1 make), and ensure
to have all the flags you need to have auto vectorization.

6 AVX2 dot kernel

In dot.cpp, you will find the function dot_sse3 that perform the dot using SSE3 instructions. Use it as
a model to implement the dot in AVX2 in the empty function dot_avz2 (remember that AVX2 is AVX
plus extra things). In the first version consider that the memory is not aligned, and then implement a
second version considering that the vector are 32 bytes aligned.

To help you, the function hsum that perform the horizontal sum (the sum of all the elements of a
vector) is provided. This function should be use at the end.

Here is an possible performance difference that you should obtain (notice that the process is pinned
to a core):

$ taskset -c¢ 0 ./dot

idx = 50000

>> Scalar timer : 0.0147024

>> SSE3 timer : 0.0110316

>> AVX2 timer : 0.0058162

>> AVX2 aligned timer : 0.00564722

On my PC, vectorizing by hand provides an important speedup over auto-vecotorize code (and this
difference can be even more significant for complexe codes).

7 4x4 matrix/matrix product

Create an AVX2 kernel in the matmat.cpp file to compute the 4x4 matrix product. As you will see in
matmat4z4 we consider that we use the transpose of matrix B. The function hjsum is provided: this
function does the horizontal sum of 4 vectors and stores the result in a vector. Remark: As you can
see in the code, the matrix are allocated in the stack (no call to new/malloc) but are aligned using the
C++ alignas(32) keyword, and thus can safely be loaded into register using the load for aligned memory
instruction.

$ taskset -c 0 ./matmat
Check matmat4x4

>> Scalar timer : 0.00981972
>> AVX2 timer : 0.00518744

	Summary
	Ressources
	Get the practical work
	Add your repository as remote
	Compilation

	Reminder
	Check the capability of the CPU
	Does the compiler auto vectorize?
	AVX2 dot kernel
	4x4 matrix/matrix product

