Practical Work: Compilation

Master CSMI
Compilation & Performance
Bérenger Bramas

October 15, 2024

1 Summary

In this practical work, you implement some parts of a compiler.

2 Ressources

e Emacs regexp: https://www.emacswiki.org/emacs/RegularExpression

C++ regexp: https://fr.cppreference.com/w/cpp/regex/basic_regex

C++ regexp help: https://www.regular—expressions.info/stdregex.html

Register allocation: https://en.wikipedia.org/wiki/Register_allocation

Online regexp tester: https://regex101.com/

2.1 Get the practical work

Consider you are in your project directory do the following:

Clone my repo

If you use SSH, use:

git clone git@git.unistra.fr:bbramas/csmi-tp-2024.git --branch=TP3 csmi-tp3

With https

git clone https://git.unistra.fr/bbramas/csmi-tp-2024.git --branch=TP3 csmi-tp3
Go in the newly created directory

cd csmi-tp3

H =

2.2 Add your repository as remote

You will push on your own repository:

Rename my remote

git remote rename origin old-origin

Add your own remote

If you use an SSH key:

git remote add origin git@git.unistra.fr:[YOU LOGIN HERE]/cnp-tp-2024.git

If you use https:

git remote add origin https://git.unistra.fr/[YOU LOGIN HERE]/cnp-tp-2024.git
Push the current branch and active the tracking

git push -u origin TP3

https://www.emacswiki.org/emacs/RegularExpression
https://fr.cppreference.com/w/cpp/regex/basic_regex
https://www.regular-expressions.info/stdregex.html
https://en.wikipedia.org/wiki/Register_allocation
https://regex101.com/

2.3 Compilation

To compile, we use CMake:

cd TP3

mkdir build

cd build

cmake

make # Will make all

make something # Will build only something

VERBOSE=1 make # Will show the commands used to compile (including the flags)

By default CMake will not use any optimization flag, and looking at the output of VERBOSE=1
make will show you that there is -Oz. To enable optimization you have to specify to cmake to generate
a make file with the correct flags. To so, you can use ccrnake. (in the build directory, note that ccmake
should be installed) and edit DCMAKE _BUILD_TY PE, or directly set the variable with cmake.. —
DCMAKE_BUILD_TY PE = Release in the build directory.

3 Reminder

A compiler is usually subdivide into three parts: the front end, the middle optimization layer, and the
back end. In the front end, the lexical analysis step uses regular expressions to find token in the text.
These tokens are later uses to analyzes the syntax and validate the grammar, before generating IR. The
optimization layers work on the IR to perform optimization in multi-passes. Finally, in the back end,
the compiler has to decide where the variable should be stored (in memory, in register) and how data
should be moved between both.

4 Regex

Update the regexTest.cpp file to add three regular expressions to catch: C++ multilines comments,
decimal numbers and variable declarations (considering only int, float, double and string types).
Example of output for the given test case:

$./regexTest ../test—input.cpp

Will read ../registerAllocations.cpp
Match var_decl: string line;

Match var_decl: double num = 1.2;

Match var_decl: float anotherNum = 1123123.3123123E-1;
Match decimal_ number: 1.2

Match decimal_number: 1123123.3123123E-1
Match decimal_number: 0

Match comments: /+ I am a comment */
Match comments: /+ I am a multine
comment */

Match comments: /** I am a difficult
multiline

comment «x

with star

*/

You can extend the decimal numbers with scientific notations.
Note that, ideally, a regex should be defined such that it does not catch more strings than expected.
Here is a formal definition of the elements:

case-sensitive (lowercase and uppercase letters are distinct), and every character is significant.

Specification: an identifier is an arbitrary long sequence of digits, underscores, lowercase and uppercase Latin
letters. A valid identifier must begin with a non-digit character (Latin letter or underscore). Identifiers are

Integer in ¢ (but we use only decimal in our case, and without suffix):

Specification: an integer literal is a primary expression of the form:
1. decimal-literal integer-suffiz(optional)
where

e decimal-literal is a non-zero decimal digit (1, 2, 3, 4, 5, 6, 7, 8, 9), followed by zero or more decimal digits
(07 17 27 37 47 57 67 77 87 9)

Floating point numbers in C (we do not use suffix in our case):

Specification: floating-point literals have two syntaxes. The first one consists of the following parts:
e nonempty sequence of decimal digits containing a decimal point character (defines significand)

e (optional) e or E followed with optional minus or plus sign and nonempty sequence of decimal digits (defines
exponent)

The second one consists of the following parts:

e nonempty sequence of decimal digits (defines significant)

e cor E followed with optional minus or plus sign and nonempty sequence of decimal digits (defines exponent)

5 Optimization
In the file registerAllocation.cpp, a list of instructions is stored in a vector.

Original instructions:
>>t0 = $0
>>t1l = $10
>>t3 = t0+x
>>t4d = t0xtl
>>t5 = t4+t0
>>t6 = yx*tl
>>t7 = toxtl
>>t8 = t6xtl
>>t9 = t0*t8
>>t10 = t4+t8
>>t11 = t4+t8
>>t12 t3%t7
>>t13 = tl2xtll
>>t14 = tl2xtll
>>return tl13

You have to optimize those instructions.

Constant propagation In the instructions, some values are already known and some operations could
be evaluated at compile time. You have to implement a constant propagation mechanism where each
known variable is replaced by the formula to evaluate.

For example:

t0=$10 // t0 is actually equivalent to 10
t1=t0*xt0 // we know the value of t0, so it should be tl1=$($10%x5$10)
// and if tl is later used, we also know its value

A possible implementation of this mechanism is to keep in a map all the constant variables (map[name] =
formula) and to propagate them.
In the test case this should give:

After constant propagation:

>>t0 = $0

>>tl = $10

>>t3 = $0+x

>>t4 = $($0%510)

>>t5 = $($($0x510)+$0)

>>t6 = yx$10

>>t7
>>t8
>>t9

>>t10 =

>>tll
>>t12
>>t13
>>t14

t6x$10

t6%$10

$0+t8
S(S0%x510) xt8
S(S0%x$10) xt8

= t3xt7

tl2xtll

= tl2xtll

>>return tl13

Remove unused variables A single value is returned at the end of the function (instruction list).
Therefore, several variables are actually unused: Create the code to remove them. One possible approach,
is to start from the returned value and to iterate on the instructions backward to see the dependencies,
and to store in a set all the used variables. Then, a second iteration can simply remove all the variables
that are not in the set.

Proceed to remove unused variables:

Erase t0
Erase tl
Erase t4
Erase t5
Erase t9
Erase t10
Erase tl1l4
After removing unused variables:
>>t3 = $0+x
>>t6 = y*$10
>>t7 = t6x$10
>>t8 = t6x$10
>>t11l = $(S0%$10) *t8
>>t12 = t3*t7
>>t13 = tl2xtll

>>return tl3

Find duplicate We leave it aside, but you will notice that some variables are equivalent.

6 Back end

Now that our list of instructions is optimized (at a high-level at least), we will focus on the allocation of
the registers. In fact, the instruction x = yOPz cannot be converted into a single instruction if x/y/z
are not in registers. More precisely, we consider in our model that each instruction should put its result
in register and at least one operand of an instruction should be in register (but a constant would be
considered as a register).

So if the user write the code x = yO Pz, we should have one instruction to move y in a register, call
OP, and move the result at the address of x.

In this context there is the following terminology:

e Allocation: deciding which values to keep in registers

e Assignment: choosing specific registers for values

e Spilling: storing a variable into memory instead of registers

e Move: moving a variable from memory/register to register/memory

Also, there are important issues when placing a value in a register:

e Aliasing: several addresses may point to the same memory, and thus coherency has to be maintained

e Dirty: if a variable is moved to register and updated, the original memory should be considered a
dirty and updated before the end.

In the code, a naive register allocation mechanism is provided. It simply move variables before each
operation in the registers (always the first variable). This is far from optimal, and your objective is to
do better.

	Summary
	Ressources
	Get the practical work
	Add your repository as remote
	Compilation

	Reminder
	Regex
	Optimization
	Back end

