
Practical Work: Process Affinity

Master CSMI
Compilation & Performance

Bérenger Bramas

October 8, 2024

1 Summary

In this practical work, you will analyze how the pinning of the processes works and can be beneficial,
but also what aligned memory allocation means.

2 Ressources

� taskset command man page: https://linux.die.net/man/1/taskset

� sched getcpu man page: https://linux.die.net/man/3/sched_getcpu

� sched getaffinity man page: https://linux.die.net/man/2/sched_getaffinity

� aligned alloc man page: https://en.cppreference.com/w/c/memory/aligned_alloc

2.1 Get the practical work

Consider you are in your project directory do the following:

Clone my repo
If you use SSH, use:
git clone git@git.unistra.fr:bbramas/csmi-tp-2024.git --branch=TP2 csmi-tp2
With https
git clone https://git.unistra.fr/bbramas/csmi-tp-2024.git --branch=TP2 csmi-tp2
Go in the newly created directory
cd csmi-tp2

2.2 Add your repository as remote

You will push on your own repository:
Rename my remote
git remote rename origin old-origin
Add your own remote
If you use an SSH key:
git remote add origin git@git.unistra.fr:[YOU LOGIN HERE]/cnp-tp-2024.git
If you use https:
git remote add origin https://git.unistra.fr/[YOU LOGIN HERE]/cnp-tp-2024.git
Push the current branch and active the tracking
git push -u origin TP2

2.3 Compilation

To compile, we use CMake:
cd TP2
mkdir build

1

https://linux.die.net/man/1/taskset
https://linux.die.net/man/3/sched_getcpu
https://linux.die.net/man/2/sched_getaffinity
https://en.cppreference.com/w/c/memory/aligned_alloc

cd build
cmake ..
make # Will make all
make something # Will build only something
VERBOSE=1 make # Will show the commands used to compile (including the flags)

By default CMake will not use any optimization flag, and looking at the output of VERBOSE=1
make will show you that there is -Ox. To enable optimization you have to specify to cmake to generate
a make file with the correct flags. To so, you can use ccmake. (in the build directory, note that ccmake
should be installed) and edit DCMAKE BUILD TY PE, or directly set the variable with cmake.. −
DCMAKE BUILD TY PE = Release in the build directory.

3 Reminder

3.1 Processor affinity

As we have seen in class, a CPU can have multiple cores, where each core can execute a different process.
The OS is in charge of distributing the processes on the cores and decides based on criteria (priority,
etc.) and heuristics which processes should be executed. Being preempted - remove from a core or move
to another core - have significant execution penalty in terms of performance, because it means that the
context of the process has to be stored and restored and that the data that were moved close to the core
(in the different levels of the cache) might need to be reloaded from higher-levels. Therefore, when you
execute simulations and try to get the best performance, or if you need to do an accurate execution time
measure, the process must be pinned (bind) to a core. To pin a process, one has to inform the Linux
scheduler about it, and there are several ways to do so. The first approach is to inform the scheduler
before an execution starts, it has the advantage of being transparent for the target application (this
can be achieved with taskset). The second method is to use the programming interface to the Linux
scheduler to express the fact that a given process should run on some specific core(s). The good news is
that this can be done directly from the process itself (see sched getaffinity).

3.2 Aligned memory

Memory address p is say to be X-aligned if pMODX is 0. In current systems only power of two
alignment are meaningful, and p is aligned to 2Y if the first non zero bit in p is at position Y . For
instance, 1101.0101 is aligned to 1, but 1010.1000 is aligned to 8.

By default the classical allocation functions do not perform any specific alignment, and thus the
addresses they return should be considered as aligned to 1 even if they might be aligned to a higher
degree. One of the reasons is that the regular allocators focus more and filling the blank (having efficient
memory filling pattern) rather than returning aligned blocks. Having aligned memory matters when we
deal with performance because the caches work with lines of 64 Bytes (that must be 64 aligned). If
a value at position @v is used, the cache line that is 64 aligned and which includes v will be moved
((@v/64) ∗ 64). Moreover, if the compiler knows that a block is aligned, it can use specific instructions
to load them into register, as we will see when we will vectorize a code.

There are different possibilities to have aligned allocations. The first one is to use existing functions,
such as the C11 aligned alloc. The second is to create your own allocator on top of malloc/new.

4 Pinning

4.1 Print the available CPU core

The file print av cores.cpp contains the code to know the pinning of the current process, and print the
list on the standard output. Using the taskset command try to do the following:

� pin the process on a single core

� pin the process on two cores

You should obtain output like:

2

$./print_av_cores
Available cores =
0 1 2 3 4 5 6 7

$ taskset [something] ./print_av_cores
Available cores =
0

$ taskset [something] ./print_av_cores
Available cores =
0 1

4.2 Develop a kernel to print the used cores

Update the print moves.cpp file to print everytime the process is moved on a different core. To ensure it
does, run several instance of the application on multiple terminals. To know on which core is the current
process, you can use the function sched getcpu.

Example of desired output:

$./print_moves
>> Move to core 3
>> Core count : [0] 1 [3] 1
>> Move to core 7
>> Core count : [0] 1 [3] 1 [7] 1
>> Move to core 3
>> Core count : [0] 1 [3] 2 [7] 1
>> Move to core 7
>> Core count : [0] 1 [3] 2 [7] 2
>> Move to core 3
>> Core count : [0] 1 [3] 3 [7] 2
>> Move to core 7
>> Core count : [0] 1 [3] 3 [7] 3
>> Move to core 3
>> Core count : [0] 1 [3] 4 [7] 3
>> Move to core 7
>> Core count : [0] 1 [3] 4 [7] 4

4.3 Measure the performance cost of changing cores

Update the file dot with move.cpp such that in the second scope the process is moved on a different core
after each call to dot. Notice that a list of available cores is obtained at the beginning of the main.

Example of desired output:

$./dot_with_move
Check dot
TestSize = 500000
>> Without move : 1.22568
>> With move : 4.4557

5 Memory alignment

5.1 Memory alignment evaluation

Fill the function alignementOfPtr in the first part of the code in file aligned malloc.cpp such that the
main will print the alignment of several imaginary addresses but also the addresses returned by C11
aligned malloc function. You can consider only alignment power of 2.

Test with hard numbers
Address 1

3

>> Alignement 1
Address 2
>> Alignement 2
Address 4
>> Alignement 4
Address 8
>> Alignement 8
Address 6
>> Alignement 2
Address 7
>> Alignement 1
Test with C11
alignment = 1
Address 0x5585a4a86280
>> Alignement 128
...
alignment = 2
Address 0x5585a4a86280
>> Alignement 128
...
alignment = 4
Address 0x5585a4a86280
>> Alignement 128
...
alignment = 8
Address 0x5585a4a86280
>> Alignement 128
...
alignment = 16
Address 0x5585a4a86280
>> Alignement 128
...

5.2 Create an allocator for aligned memory

Create your own function that will allocate aligned memory. It is advised to do it in two steps. In the
first one, you can simply allocate more memory than asked, and return a pointer that is correctly aligned
(but that will not be compatible with the regular free leading to memory leaks). In a second step, you
will store the address of the real block just before the aligned pointer and use it to free as usual.

// First step
function aligned-malloc(alignment, size)

size_with_extra_space = extra_need_space(alignment, size)
unaligned_ptr = malloc(size_with_extra_space)
ptr = get_first_aligned_address_in_block(alignment, unaligned_ptr)
return ptr

end

// Second step
function aligned-malloc(alignment, size)

size_with_extra_space = extra_need_space(alignment, size)
unaligned_ptr = malloc(size_with_extra_space)
ptr = get_first_aligned_address_in_block(alignment, unaligned_ptr)

*(ptr-size_of_pointer) = unaligned_ptr
return ptr

end

function aligned-free(ptr)
unaligned_ptr = *(ptr-size_of_pointer)

4

free(unaligned_ptr)
end

5

	Summary
	Ressources
	Get the practical work
	Add your repository as remote
	Compilation

	Reminder
	Processor affinity
	Aligned memory

	Pinning
	Print the available CPU core
	Develop a kernel to print the used cores
	Measure the performance cost of changing cores

	Memory alignment
	Memory alignment evaluation
	Create an allocator for aligned memory

