
Practical Work: Assembly

Master CSMI
Compilation & Performance

Bérenger Bramas

October 2, 2024

1 Summary

In this work, you will program in assembly language (ASM).

2 Ressources

� x86 Assembly LanguageReference Manual: https://docs.oracle.com/cd/E19253-01/817-5477/
817-5477.pdf

� x86 and amd64 instruction reference: https://www.felixcloutier.com/x86/

� Registers: https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture

� CPUID: https://www.amd.com/system/files/TechDocs/25481.pdf

2.1 Get the practical work

Consider you are in your project directory do the following:

Clone my repo
If you use SSH, use:
git clone git@git.unistra.fr:bbramas/csmi-tp-2024.git --branch=TP1 csmi-tp1
With https
git clone https://git.unistra.fr/bbramas/csmi-tp-2024.git --branch=TP1 csmi-tp1
Go in the newly created directory
cd csmi-tp1

2.2 Add your repository as remote

You will push on your own repository:
Rename my remote
git remote rename origin old-origin
Add your own remote
If you use an SSH key:
git remote add origin git@git.unistra.fr:[YOU LOGIN HERE]/cnp-tp-2024.git
If you use https:
git remote add origin https://git.unistra.fr/[YOU LOGIN HERE]/cnp-tp-2024.git
Push the current branch and active the tracking
git push -u origin TP1

2.3 Compilation

To compile, we use CMake:
cd TP1
mkdir build

1

https://docs.oracle.com/cd/E19253-01/817-5477/817-5477.pdf
https://docs.oracle.com/cd/E19253-01/817-5477/817-5477.pdf
https://www.felixcloutier.com/x86/
https://en.wikibooks.org/wiki/X86_Assembly/X86_Architecture
https://www.amd.com/system/files/TechDocs/25481.pdf

cd build
cmake ..
make # Will make all
make something # Will build only something
VERBOSE=1 make # Will show the commands used to compile (including the flags)

By default CMake will not use any optimization flag, and looking at the output of VERBOSE=1
make will show you that there is -Ox. To enable optimization you have to specify to cmake to generate
a make file with the correct flags. To so, you can use ccmake. (in the build directory, note that ccmake
should be installed) and edit DCMAKE BUILD TY PE, or directly set the variable with cmake.. −
DCMAKE BUILD TY PE = Release in the build directory.

3 Reminder about registers

We have seen that modern CPUs have registers. If we leave aside the aspects related to perfomance,
registers are used by the instructions as input/ouput (some instructions can also have main memory as
input/output, but usually the output must be a register). In X86-64, the 64 bits regisers are: %rax,
%rbx, %rcx, %rdx, %rdi, %rsi, %rbp, %rsp, and %r8-r15 (from 8 to 15). These registers are also used to
pass parameters when calling a function (if the data to pass are less or equal than 64 bits). However, a
convention is used to know which registers must be saved by the caller or the callee. In fact, a function
might put values in all the registers, then call another function, and thus the question is asked to know
which registers can be safely overwritten by the called function, and which registers must be saved and
restored. Registers %rax, %rcx, %rdx, %rdi, %rsi, %rsp, and %r8-r11 must be saved by the caller.
Therefore, the callee can erase their content and use these registers. Registers %rbx, %rbp, and %r12-
r15 must be saved by the callee before being used. The register %rsp is used as stack pointer (to know
where is the top of the stack) and thus should not be modified.

The six first parameters of a function call are passed using %rdi, %rsi, %rdx, %rcx, %r8, and %r9
(additional parameters or those which excess 64 bits are passed using the stack).

4 Passing a real number as parameter

Generate the assembly of the code in code real.cpp and find-out how a real number is passed by parameter
to the function just add and how the number is returned. To do so, try the three methods:

� GCC and AS:

g++ -S -fverbose-asm -g -O2 code_real.cpp -o code_real.s
as -alhnd code_real.s > code_real.lst

� GCC only

g++ -g -O -Wa,-aslh code_real.cpp > code_real.txt

� Online tool https://godbolt.org/, remember to disable Intel and enable demangle.

5 Debug an assembly code

In the debugme.cpp file, you will find a kernel that has a bug. As shown in the main, the objective of
this kernel is to do: param0 + param1 * param2 - param3. But in the code there are two bugs. I recall
in the code that the parameters are in the following registers: (val1 rdi) (val2 rsi) (val3 rdx) (val4 rcx).
The results should be in rax. As a reminder, leaq (a,b,c) does a + b * c. c default value is 1, and can
only be 1, 2, 4 or 8. If needed, use godbolt to get a possible solution, in this case you could need to play
with the optimization flags.

2

https://godbolt.org/

6 Update an existing function: return the power of the number
given in parameter

In the power.cpp file, you will find two kernels, both add 1 to a number and return it, but one version is
for integers and the other for real numbers. Update these functions to return the power of the number
given in parameter. If needed, use godbolt to get a possible solution, in this case you could need to play
with the optimization flags.

7 Update an existing function: return the power5 of the num-
ber given in parameter

In the power5.cpp file, you will find one kernel that adds 1 to a number and return it. Update this
function to return the power 5 of the number given in parameter. We want to use only two registers (rdi
and rax).

8 Sum of all the parameters

In sum.cpp add your own assembly code to sum two parameters together (sum2 asm) and seven param-
eters together (sum7 asm). Remember that the first six parameters are passed in registers and the next
ones in the stack.

9 Dot product of integers

In dot.cpp, add your own code to create a vector product of long int. To compare two registers, you can
use the cmp instruction follow by je or jne for ”jump if equal” and ”jump if not equal”, respectively. A
register can easily be set to 0 using a xor between a register and itself:

xor %rax, %rax; // set rax = 0

You will need to jump to different execution paths:

i_am_a_label:
cmp %rax, %r8; // I compare %rax %r8
je i_am_a_label; // If they are equal, then jump to i_am_a_label

You can use godbolt to help you, but I am expecting a hand written code.

10 Know more about your CPU (CPUID)

CPUs support special instructions to provide information about themselves or the current hardware.
For instance, such instructions can be used to know if a CPU supports a given features or instruction
extension, or even to know the size of the caches, etc. To do so, specific registers have to be used to store
the information query. Then, the CPUID instruction can be called and will fill other registers with the
answer.

"movl $X, %eax;\n" // Query part 1
"movl $Y, %ecx;\n" // Query part 2
"cpuid;\n" // Ask the CPU
// Answers are now in %eax, %ebx, %ecx, %edx
// where a bit set to 1 at a given position will mean "yes"

Implement such a function to get the information from the CPUID instruction. As you will see,
0x00000001 is passed to EAX before calling CPUID. Then we use the value from EDX at bits/features:
HTT/28, MMX/23, SSE/25 and SSE2/26. Remark: you can notice that we now work with int instead
of long int, and thus the registers have now different prefix, and the instructions can be post-fixed with
”l”.

3

	Summary
	Ressources
	Get the practical work
	Add your repository as remote
	Compilation

	Reminder about registers
	Passing a real number as parameter
	Debug an assembly code
	Update an existing function: return the power of the number given in parameter
	Update an existing function: return the power5 of the number given in parameter
	Sum of all the parameters
	Dot product of integers
	Know more about your CPU (CPUID)

