Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Lecturers: Prof. Dr. Florina M. Ciorba florina.ciorba@unibas.ch
Dr. Osman Simsek osman.simsek@unibas.ch

Assistants: Thomas Jakobsche thomas . jakobsche@unibas.ch
Tutors: Reto Krummenacher reto.krummenacher@unibas.ch
Agni Ramadani agni.ramadani@unibas.ch

Tom Rodewald tom.rodewald@unibas.ch

Exercise 3: Synchronization (10 points)

Given: April 5, 2024
Deadline: April 30, 2024, 10:00

Objectives

Understand the producer-consumer problem (semaphores and mutex locks).
Investigate the dining-philosopher problem and report on the output.
Correct the dining-philosopher problem and report the correct output.

Investigate and correct example code that contains problems similar to deadlocks.

Tasks
e Task 1: Bounded-Buffer and Producer-Consumer (3 points)
e Task 2: Dining-Philosopher (3 points)
e Task 3: Problem Investigation (2 points)
e Task 4: Synchronization Problems (1 point)
e Task 5: Deadlock vs. Starvation (1 point)
e Task 6: Bonus (1 bonus point)

Instructions

You can solve this exercises in teams of two.
Submit the solution of each task with detailed comments that clarify your solution.

Show your solution and upload it to https://adam.unibas.ch with all deliverables
in a ZIP folder with the naming scheme: [GroupID| Ex[SheetNo| LastNamel LastName2.

In total, at least 65% of exercise points have to be obtained (with a min of 30% of
each exercise).

https://adam.unibas.ch

Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Task 1: Bounded-Buffer and Producer-Consumer (3 points)
In this task you will work on the bounded-buffer problem using the producer-consumer
model. Producers and consumers (running as separate threads) move items to and from
a buffer with a fixed size. T1.c contains the code without the necessary synchronization.

Hint: In this bounded-buffer example producers should stop producing when the buffer
is full, and consumers should only consume items that are actually in the buffer.

To compile the code: gcc -0 T1 T1l.c -lpthread
To execute the code: ./T1 <duration> <producer threads> <consumer threads>

i) Execute T1.c with the parameters below, report the output and explain the problems.
e /T11050
e /T11005

ii) Correct the code by inserting the necessary synchronization, execute your corrected
code with the parameters below, report the output and explain the correct process of the
producer-consumer model. Hint: You can use counting semaphores and mutex locks.

e /T11050
e /T11005
o /T11022

You must use the given source file T1.c as your starting point. All you need
is to implement the open TODOs in the code.

Task 2: Dining-Philosopher (3 points)
In this task you will work on the dining-philosophers problem using condition variables.
Philosophers spend their lives alternating between thinking and eating, thinking and
eating, etc. They occasionally try to pick up forks to eat from a bowl at the center of
the table. They can only eat when their neighbors are not eating.

Hint: If you do not see the "DINNER, IS OVER" message at the end of the program,
then something is wrong and your code might encounter a deadlock. Deadlocks might
not always occur, so try to run your code multiple times to be sure.

To compile the code: make all
To execute the code: ./diningphilosophers

There are multiple files in this task. All you need is to implement the open
TODOs in the code (main.c and dining.c).

Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Task 3: Problem Investigation (2 points)
Investigate the code example given below, in Listing 1. Adjust the code to make it
executable and run it a few times. What is the name of the problem that can occur and
how can you solve it?

Listing 1: Problem example.

1 // thread one runs in this function

2 void xdo_work_one (void *param)

3

4 int done = 0;

5 while (!done)

6 {

7 pthread_mutex_lock (&first_mutex);

8 if (pthread_mutex_trylock (&second_mutex) == 0)
9 {

10 // do some work

11 pthread_mutex_unlock (&second_mutex) ;
12 done = 1;

13 }

14 pthread_mutex_unlock (&§first_mutex) ;

15 }

16 pthread_exit (0);

19 // thread two runs in this function
20 void xdo_work_two (void xparam)
21 |

22 int done = 0;

23 while (!done)

24 {

25 pthread_mutex_lock (&second_mutex) ;

26 if (pthread_mutex_trylock (&first_mutex) == 0)
27 {

28 // do some work

29 pthread_mutex_unlock (&§first_mutex) ;

30 done = 1;

31 }

32 pthread_mutex_unlock (&second_mutex) ;

33 }

34 pthread_exit (0);

35 }

Task 4: Synchronization Problems (1 point)

Describe the classical synchronization problems and tools to solve them for this exercise.

Task 5: Deadlock vs. Starvation (1 point)
Describe the difference between deadlocks and starvation for this exercise.

Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Task 6: Bonus (1 bonus point)
Investigate the code example given below, in Listing 2. Adjust the code to make it
executable and run it a few times. What is the behavior of the code? How does the
behavior differ from the code given in Task 37

Listing 2: Problem example.

1 // thread one runs in this function

2 void xdo_work_one (void *param)

3

4 int done = 0;

5 while (!done)

6 {

7 pthread_mutex_lock (&first_mutex);

8 if (!pthread_mutex_trylock (&second_mutex))
9 {

10 // do some work

11 pthread_mutex_unlock (&second_mutex) ;
12 done = 1;

13 }

14 pthread_mutex_unlock (&§first_mutex) ;

15 }

16 pthread_exit (0);

19 // thread two runs in this function
20 void xdo_work_two (void xparam)
21 |

22 int done = 0;

23 while (!done)

24 {

25 pthread_mutex_lock (&second_mutex) ;

26 if (!pthread_mutex_trylock (&first_mutex))
27 {

28 // do some work

29 pthread_mutex_unlock (&§first_mutex) ;
30 done = 1;

31 }

32 pthread_mutex_unlock (&second_mutex) ;

33 }

34 pthread_exit (0);

35 }

