
Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Lecturers: Prof. Dr. Florina M. Ciorba florina.ciorba@unibas.ch
Dr. Osman Simsek osman.simsek@unibas.ch

Assistants: Thomas Jakobsche thomas.jakobsche@unibas.ch

Tutors: Reto Krummenacher reto.krummenacher@unibas.ch
Agni Ramadani agni.ramadani@unibas.ch
Tom Rodewald tom.rodewald@unibas.ch

Exercise 3: Synchronization (10 points)

Given: April 5, 2024
Deadline: April 30, 2024, 10:00

Objectives

• Understand the producer-consumer problem (semaphores and mutex locks).

• Investigate the dining-philosopher problem and report on the output.

• Correct the dining-philosopher problem and report the correct output.

• Investigate and correct example code that contains problems similar to deadlocks.

Tasks

• Task 1: Bounded-Buffer and Producer-Consumer (3 points)

• Task 2: Dining-Philosopher (3 points)

• Task 3: Problem Investigation (2 points)

• Task 4: Synchronization Problems (1 point)

• Task 5: Deadlock vs. Starvation (1 point)

• Task 6: Bonus (1 bonus point)

Instructions

• You can solve this exercises in teams of two.

• Submit the solution of each task with detailed comments that clarify your solution.

• Show your solution and upload it to https://adam.unibas.ch with all deliverables
in a ZIP folder with the naming scheme: [GroupID]_Ex[SheetNo]_LastName1_LastName2.

• In total, at least 65% of exercise points have to be obtained (with a min of 30% of
each exercise).

1

https://adam.unibas.ch


Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Task 1: Bounded-Buffer and Producer-Consumer (3 points)
In this task you will work on the bounded-buffer problem using the producer-consumer
model. Producers and consumers (running as separate threads) move items to and from
a buffer with a fixed size. T1.c contains the code without the necessary synchronization.

Hint: In this bounded-buffer example producers should stop producing when the buffer
is full, and consumers should only consume items that are actually in the buffer.

To compile the code: gcc -o T1 T1.c -lpthread
To execute the code: ./T1 <duration> <producer threads> <consumer threads>

i) Execute T1.c with the parameters below, report the output and explain the problems.

• ./T1 10 5 0

• ./T1 10 0 5

ii) Correct the code by inserting the necessary synchronization, execute your corrected
code with the parameters below, report the output and explain the correct process of the
producer-consumer model. Hint: You can use counting semaphores and mutex locks.

• ./T1 10 5 0

• ./T1 10 0 5

• ./T1 10 2 2

You must use the given source file T1.c as your starting point. All you need
is to implement the open TODOs in the code.

Task 2: Dining-Philosopher (3 points)
In this task you will work on the dining-philosophers problem using condition variables.
Philosophers spend their lives alternating between thinking and eating, thinking and
eating, etc. They occasionally try to pick up forks to eat from a bowl at the center of
the table. They can only eat when their neighbors are not eating.

Hint: If you do not see the "DINNER IS OVER" message at the end of the program,
then something is wrong and your code might encounter a deadlock. Deadlocks might
not always occur, so try to run your code multiple times to be sure.

To compile the code: make all
To execute the code: ./diningphilosophers

There are multiple files in this task. All you need is to implement the open
TODOs in the code (main.c and dining.c).

2



Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Task 3: Problem Investigation (2 points)
Investigate the code example given below, in Listing 1. Adjust the code to make it
executable and run it a few times. What is the name of the problem that can occur and
how can you solve it?

Listing 1: Problem example.
1 // thread one runs in this function
2 void *do_work_one(void *param)
3 {
4 int done = 0;
5 while (!done)
6 {
7 pthread_mutex_lock(&first_mutex);
8 if (pthread_mutex_trylock(&second_mutex) == 0)
9 {

10 // do some work
11 pthread_mutex_unlock(&second_mutex);
12 done = 1;
13 }
14 pthread_mutex_unlock(&first_mutex);
15 }
16 pthread_exit(0);
17 }
18

19 // thread two runs in this function
20 void *do_work_two(void *param)
21 {
22 int done = 0;
23 while (!done)
24 {
25 pthread_mutex_lock(&second_mutex);
26 if (pthread_mutex_trylock(&first_mutex) == 0)
27 {
28 // do some work
29 pthread_mutex_unlock(&first_mutex);
30 done = 1;
31 }
32 pthread_mutex_unlock(&second_mutex);
33 }
34 pthread_exit(0);
35 }

Task 4: Synchronization Problems (1 point)
Describe the classical synchronization problems and tools to solve them for this exercise.

Task 5: Deadlock vs. Starvation (1 point)
Describe the difference between deadlocks and starvation for this exercise.

3



Operating Systems (10904-01 and 10904-02) FS 2024
University of Basel, Department of Mathematics and Computer Science

Task 6: Bonus (1 bonus point)
Investigate the code example given below, in Listing 2. Adjust the code to make it
executable and run it a few times. What is the behavior of the code? How does the
behavior differ from the code given in Task 3?

Listing 2: Problem example.
1 // thread one runs in this function
2 void *do_work_one(void *param)
3 {
4 int done = 0;
5 while (!done)
6 {
7 pthread_mutex_lock(&first_mutex);
8 if (!pthread_mutex_trylock(&second_mutex))
9 {

10 // do some work
11 pthread_mutex_unlock(&second_mutex);
12 done = 1;
13 }
14 pthread_mutex_unlock(&first_mutex);
15 }
16 pthread_exit(0);
17 }
18

19 // thread two runs in this function
20 void *do_work_two(void *param)
21 {
22 int done = 0;
23 while (!done)
24 {
25 pthread_mutex_lock(&second_mutex);
26 if (!pthread_mutex_trylock(&first_mutex))
27 {
28 // do some work
29 pthread_mutex_unlock(&first_mutex);
30 done = 1;
31 }
32 pthread_mutex_unlock(&second_mutex);
33 }
34 pthread_exit(0);
35 }

4


